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Abstract

Cancer evolves through the accumulation of mutations, but the order in which mutations occur is poorly understood.
Inference of a temporal ordering on the level of genes is challenging because clinically and histologically identical tumors
often have few mutated genes in common. This heterogeneity may at least in part be due to mutations in different genes
having similar phenotypic effects by acting in the same functional pathway. We estimate the constraints on the order in
which alterations accumulate during cancer progression from cross-sectional mutation data using a probabilistic graphical
model termed Hidden Conjunctive Bayesian Network (H-CBN). The possible orders are analyzed on the level of genes and,
after mapping genes to functional pathways, also on the pathway level. We find stronger evidence for pathway order
constraints than for gene order constraints, indicating that temporal ordering results from selective pressure acting at the
pathway level. The accumulation of changes in core pathways differs among cancer types, yet a common feature is that
progression appears to begin with mutations in genes that regulate apoptosis pathways and to conclude with mutations in
genes involved in invasion pathways. H-CBN models provide a quantitative and intuitive model of tumorigenesis showing
that the genetic events can be linked to the phenotypic progression on the level of pathways.
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Introduction

Cancer progression is an evolutionary process that is driven by

mutations and clonal expansions in a cell population. Mutations in

cancer-associated genes can alter the behavior of a cell and result

in loss of cooperation and increased proliferation. Cells with

advantageous mutations eventually outgrow competing cells and

tumor development proceeds by successive clonal expansions. In

each clonal expansion, additional mutations are fixed in the

population. Cancer progression is therefore characterized by the

accumulation of these genetic changes [1,2,3].

Many oncogenes and tumor suppressor genes have been

identified that contribute to tumorigenesis when activated or

inactivated by mutation, respectively [4]. It is believed that cells

need to acquire certain key properties, including those sometimes

referred to as the hallmarks of cancer, to form a tumor [5,6].

Among these functional changes are avoidance of apoptosis,

angiogenesis, limitless replication potential, and invasion. Biolog-

ical functions are usually maintained by one or several groups of

genes that interact in functional pathways. Many signaling

pathways have been identified that play a key role in carcinogen-

esis [7] and recently a set of twelve core pathways was defined

[8,9,10].

Mathematical modeling of carcinogenesis has a long history,

starting with multi-stage models for the interpretation of cancer

incidence data [11,12,13]. Because cancer is an evolutionary

process, population genetics has provided useful models for

describing the dynamics of cancer cell populations [14,15,16,17].

The order in which genetic events tend to fixate in tumors is of

particular interest, because it might elucidate the critical events in

carcinogenesis and could even have therapeutic applications.

Tumors progress through a sequential series of genetic alterations,

but the order of these alterations can vary among tumors and

even among different compartments of the same tumor

[8,9,10,14,17,18,19,20]. This observation has prompted the

development of statistical methods that generalize the assumption

of a linear order in different ways [21,22,23,24,25,26]. Most of

these models have been applied to CGH data from various cancer

types but not yet to detailed cancer sequencing data.

Here, we use a class of graphical models, called Hidden

Conjunctive Bayesian Networks (H-CBNs) to describe the

progression of cancer at the level of genes and pathways

[27,28,29,30,31]. H-CBNs model the accumulation of alterations

under partial order constraints allowing for small deviations in the

actual data from the most likely progression model. The notion

behind the partial order assumption is that there exist constraints

on the sequence of genetic events characterizing the progression of

cancer development for some mutations, but not necessarily for all.

While in each tumor a specific linear series of mutations occurs,

progression may be different among tumors. The partial order is
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the set of order constraints, or relations, that holds for all tumors.

Here and in the following, we use the terms ‘order constraint’ and

‘relation’ synonymously. Inferring these partial order constraints

from experimental data is the main aim of this study.

The H-CBN model has three layers (Figure 1A): (1) Mutations

accumulate stochastically according to the partial order con-

straints. The rate at which each mutation arises and becomes

detectable in the population is described by a parameter li. (2) The

accumulation process is observed at the time of diagnosis, and the

individual genotype X of a tumor contains all alterations that have

occurred so far. (3) The observed mutation data Y, however, may

differ slightly from the true genotypes, because of missing

information or wrong interpretation. For example, intronic

mutations, epigenetic silencing, or genomic deletions may not be

detected, but have the same compromising effect on the gene.

Conversely, recorded mutations may be passenger mutations with

no functional consequences instead of drivers. These observation

errors, which can "hide" the true genotypes, occur at rate e. We
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Figure 1. Schematic illustration of the H-CBN model and gene-to-pathway mapping. A. Partial order constraints, as denoted by arrows,
restrict the possible ordering in which mutations occur. In this example, mutation C arises only after A, and mutation D requires A and B to be
present. Mutations A and B can occur in any order. Because the order is only partial, the sequence of events can differ between tumors. The
accumulation of each mutation is described by a stochastic exponential waiting time process that corresponds to a clonal expansion. Each tumor
thus arises by a series of expansions that differs across tumors depending on the number of constraints. No constraints imply that all orderings are
possible; a linear (total) ordering corresponds to a single sequence of events for all cases. Tumors are examined at diagnosis and its genotype X
indicates all functionally altered genes that have accumulated until then (1: altered, 0: functional). The observed list of mutated genes Y, however, can
contain errors (red) due to incomplete data or wrong interpretation of the results. The most likely constraints and model parameters are estimated
from the data Y. B. Mapping of genotypes to core pathways. The list of observed tumor genotypes is transformed to a list of altered core pathways by
assuming that a pathway is altered if at least one member of that pathway is mutated. The order of core pathway alterations is then estimated using
the H-CBN model. The influence of the gene-to-pathway mapping on the estimated constraints is analyzed by permuting genes among tumors (red
arrows). To assess the stability of parameter estimates, bootstrap samples are drawn from the list of genotypes by sampling with replacement (green
arrows) and the inference algorithm is run on each.
doi:10.1371/journal.pone.0027136.g001
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estimate the accumulation rate for each mutation, the partial order

constraints, and the error rate from the observed mutation data

using maximum likelihood (ML).

The data for the H-CBN model is, for each tumor, a list of

mutated genes or a list of altered pathways. Many mutations in

different genes can have the same, or a similar, effect if they act in

the same pathway [7,32]. We model this phenomenon by

analyzing twelve core pathways that were defined in ref. [8].

The core pathways are compiled from different annotation

databases and describe the central signaling pathways altered in

cancer. We assume that a core pathway is altered if any of its gene

members has a non-synonymous mutation. We then use the H-

CBN model to estimate in which order pathway alterations occur.

To assess the confidence of our estimates, subsets of the original

data are repeatedly drawn with replacement (bootstrapped), the

algorithm is applied to each, and the resulting output is analyzed

(Figure 1B). A high similarity among bootstrap results indicates

high confidence. A similar procedure is used to quantify the

contribution of the gene-to-pathway mapping to the ordering. The

mapping is expected to have an influence on the ordering, because

some pathways are larger than others, and genes can be part of

multiple pathways. To assess this effect, the genetic mutations are

permuted between tumors, thereby breaking all correlations and

leaving only those imposed by the mapping itself.

Results

Colorectal cancer
The prevalence screen published by Wood et al. [10] contains

data from 95 colorectal carcinoma samples in which the exons of

28 genes were sequenced. We considered non-synonymous

changes as driver mutations. Eight genes that were found to have

driver frequencies above 5% were chosen for estimating the gene-

based order constraints, namely APC (82.1% frequency), KRAS

(62.1%), TP53 (56.8%), PIK3CA (24.2%), FBXW7 (8.4%), TCF7L2

(7.4%), EPHA3 (5.3%), and EVC2 (5.3%) (Table S1A). The

estimated order constraints are displayed in Figure 2A. Mutations

in the APC gene appear to be initiating, followed by mutations in

KRAS, PIK3CA, and others. Interestingly, TP53 is mutated

independently of APC and KRAS, meaning that it could be

mutated before or after these mutations. APC mutations have the

highest accumulation rates (0.39 per year), in agreement with its

early driving role in colorectal carcinogenesis. KRAS and TP53

mutations accumulate at rates 0.12 and 0.06 per year, respectively.

With the exception of TCF7L2, the remaining mutations have

accumulation rates below 0.01 per year.

On average, 66% of the estimated order relations are also found

in bootstrap samples. The average frequencies for each order

constraint are displayed as edge labels in Figure 2A. The average

false positive rate (FPR) of bootstrapped edges relative to the

original estimate was 10.5% and the average false negative rate

(FNR) was 33.6% (Table 1).

After mapping colorectal cancer genes to core pathways, we

found that Apoptosis and Wnt/Notch signaling pathways always

occurred together. The same holds true for DNA damage control

and JNK signaling. This situation arises from the specific set of

genes predominantly altered in colorectal cancer, where multiple

core pathways are hit by a single mutation, viz. APC for the

Apoptosis/Wnt-Notch pathway and TP53 for the DNA damage/

JNK pathway (Table S1A). Because no further statistical inference

on the order of identically hit pathways is possible, they were

grouped together into two compound pathways (Figure 2A, right

panel). Colorectal cancer progression begins with mutations in the

Small GTPase pathway, followed by alterations of the Apoptosis/

Wnt-Notch and Homophilic cell adhesion pathways, often caused

by a single APC mutation. These alterations occur before

perturbations of genes in the KRAS and TGF-b signaling

pathways, as well as Control of G1/S phase. At later stages

DNA damage control and JNK are altered (through TP53).

Integrin signaling and subsequently Invasion are hit with the

lowest frequencies, indicating a role at later stages of progression,

but are modeled independently.

Under bootstrap re-sampling, the pathway FPR per relation is

9.8%, and the FNR is 32.7%, slightly smaller than the

corresponding gene-based values. Under permutations, where all

correlations of the genes are broken up, the FPR and FNR are

18.6% and 43.0%, respectively. Without the genetic correlations,

the FPR is almost twice as large as the bootstrap FPR, i.e., more

relations that were not in the original estimate were found. Also

the FNR is higher under permutations as compared to the

bootstraps, indicating that more of the original relations were

missed. Together, these results demonstrate that the structure of

the estimated model is sensitive to the particular combination of

the genetic mutations in each tumor, and not only a simple

consequence of the mapping.

To assess the impact of individual genes on the pathway-level

results, we computed the likelihood of the model if a gene is left out

from the analysis. Genes with a strong influence on the model fit

also have an effect on the likelihood (Figure S1A). Genes with a

strong impact were APC, KRAS, PIK3CA, and TP53, but also

TCFL7 and MMP2 showed a recognizable effect.

Pancreatic cancer
In the prevalence screen by Jones et al. [8], 22 genes in 90 cases

of pancreatic cancer were sequenced. The most frequently (.4%)

mutated genes were KRAS (98.9%), TP53 (84.4%), SMAD4

(25.6%), CDKN2A (24.4%), TGFBR2 (6.7%), MLL3 (5.6%), and

PXDN (4.4%).

The genetic order constraints are displayed in Figure 2B.

Mutations in KRAS initialize progression, followed by TP53,

CDKN2A, and MLL3. SMAD4 mutations occur independently of

those in KRAS. The average FPR and FNR were 15.1% and

42.7%, respectively (Table 1). The estimated accumulation rate of

KRAS mutations is very high, because the prevalence reaches

almost 100%. TP53 has the second highest rate of 0.34 per year,

underpinning its central role in cancer progression. The other

genes have lower accumulation rates between 0.15 (TGFBR2) and

661024 (MLL3) per year.

On the core pathway level, the Apoptosis, G1/S transition,

Hedgehog, and TGF-beta signaling pathways were altered in all

90 cases, and can thus be considered to occur at the earliest stages

(Table S1B). Conversely, the Invasion pathway was never affected

and may be assigned to the latest stage, if relevant at all.

The second stages of pancreatic cancer progression were found

to be Small GTPase-dependent signaling and KRAS signaling,

which arise independently. Both occur before a series of events,

consisting of DNA damage control, JNK, and Wnt/Notch

signaling. Integrin signaling is altered at late stages, after

Homophilic cell adhesion mutations.

The stability of the pathway constraints was again higher as

compared to the gene level. The FPR and FNR were 13.6% and

15.4%, respectively, under bootstrap sampling (Table 1). As in the

case of colorectal cancers, the pathway FPR is slightly smaller than

the genetic FPR (P = 361021), and FNR is significantly smaller for

pathways than for genes (P = 1.6610215). The FPR and FNR

under permutations were 8.5% and 51.4%. Thus, on average half

of the original relations is lost if the correlations of the genes are

erased, indicating that they cannot be explained by the gene-to-
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pathway mapping alone. When testing for the influence of

individual genes, KRAS and TP53, but also PXDN and MYH2

had an appreciable effect on the likelihood (Figure S1B).

Primary glioblastoma
Parsons et al. [9] sequenced 16 different genes in 83

glioblastoma cases. The most frequently (.5%) mutated genes

were TP53 (28.9%), PTEN (26.5%), EGFR (15.7%), NF1 (15.7%),

PIK3CA (9.6%), IDH1 (8.4%), PIK3R1 (7.2%), and RB1 (7.2%).

For this cancer type, the distribution of frequencies was more

uniform, with less pronounced ‘mountains’ (genes mutated at high

frequency), as compared to colorectal and pancreatic cancer. Of

the 83 glioblastoma cases, five were of the secondary type, which is

characterized by distinct genetics [9,33]. Consequently, the

secondary glioblastomas were found to have a significantly lower

likelihood in a model fitted only on the remaining cases (P,0.01,

cross-validation), indicating a worse fit for secondary glioblastomas

and diverging mutational pathways. We therefore restricted the

analysis to the remaining 78 primary glioblastomas. Of note, 16

out of these 78 cases contained mutations in none of the 16 genes

sequenced.

The first mutation occurs in TP53, parallel to which EGFR,

NF1, and PTEN mutate (Figure 2C). These alterations are followed

sequentially by mutations in PIK3CA, PIK3R1, and RB1. The

bootstrap stability of the relations was 11.6% (FPR) and 40.6%

(FNR), respectively (Table 1). In line with the low frequencies of

individual mutations, the estimated accumulation rates are all of

order 0.01 per year or lower, showing that the probability for a

specific gene alteration in this cancer type is low.

Despite the low frequencies of single gene mutations, the

Apoptosis and Small GTPase core pathways were altered in

79.2% of the samples and are hit first (Figure 1C). As in the case of

pancreatic cancers, no mutations were found in the Invasion

pathway consistent with a late role (Table S1C). Among other

early-mutated pathways are G1/S phase transition, Wnt/Notch

signaling, and KRAS signaling. These pathways occur before

mutations in DNA damage control and JNK signaling, as well as

in Homophilic cell adhesion and Integrin signaling which form an

independent branch.

The bootstrap stability of the relations was very high with a FPR

of 5.2% and a FNR of 10.9% and therefore more stable than that

determined on the gene level (P = 3610220 and P = 3610230,

respectively). This compares to a permutation stability of 11.4%

and 9.5%, respectively. Genes with a visible influence on the

model fit were TP53, RB1, PIK3CA, EGFR, and NF1 (Figure S1C).

All Cancer Types
We integrated all 268 cases to estimate a "global" model of

cancer progression on the pathway level. The resulting graphical

representation is shown in Figure 3, the complete gene-to-pathway

mapping can be found in Table S1D. The first event is Apoptosis

which occurs before TGF-b and KRAS signaling, as well as

Control of G1/S phase transition. Independently of this, Small

GTPase-dependent signaling, Hedgehog signaling, and Homo-

philic cell adhesion are hit. Late events occurring after these

changes are DNA damage control, Wnt/Notch signaling, and

JNK, but also Integrin signaling and Invasion at late stages.

The model fit is highly stable with average FPR = 0.04 and

FNR = 0.061 under bootstrapping. These values are significantly

lower under bootstrapping than under permutations (FPR = 0.164,

P,6610250, and FNR = 0.289, P,3610235, t-tests). The likeli-

hood of the model is largely influenced by mutations in TP53,

KRAS, NF1, PIK3R1, PIK3CA, PTEN, RB1, and APC (Figure S1D).

When comparing the topology of this model with the specific

cancer cases, one finds that for colorectal cancer, 14 of 31 relations

present in the colorectal poset are present in the unified model.

Moreover, the global model contains 5 of 11 relations of the

pancreatic poset and 5 out of 12 relations from the primary

glioblastoma model. The constraints found in the global model

may therefore be seen as the maximal subset of order constraints

that hold true for all cancer types. The unified model, however,

also contains constraints that could not be resolved in individual

cancer types, where some pathways were grouped together, or

have been either completely absent or universally present.

Discussion

In this work we have analyzed the order constraints under

which genetic alterations accumulate during cancer progression.

Figure 2. Most likely order constraints on the gene (left) and core pathway level (right) for colorectal cancer (A), pancreatic cancer
(B), and primary glioblastoma (C). Each edge in the graph denotes an order constraint on the accumulation of alterations. The two values
labeling each edge and separated by a slash denote relative frequencies of occurrence of the order constraint in permutation and bootstrap samples,
respectively. The estimated yearly accumulation rates are given below the gene name at each node of the graph. The color of a node reflects the
frequency of the alteration (dark green 100% to dark red 0%). Nodes labeled with white font have frequencies of exactly 100% or 0% and were not
considered for the statistical analysis.
doi:10.1371/journal.pone.0027136.g002

Table 1. Quality measures for the accuracy of estimated order constraints based on bootstrapping and permutations for genes
and core pathways. FPR = false positive rate, FNR = false negative rate.

Genes Core Pathways

Bootstrap Bootstrap Permutations

FPR FNR FPR FNR FPR FNR

Colorectal cancer 0.105 (0,0.286) 0.336 (0,0.662) 0.098 (0, 0.235) 0.327 (0.053,0.684) 0.219 (0.098,0.333) 0.551 (0.211,0.842)

Pancreatic cancer 0.151 (0,0.333) 0.427 (0.1,0.8) 0.136 (0,0.385) 0.154 (0,0.455) 0.085 (0,0.286) 0.519 (0.455,0.636)

Primary glioblastoma 0.152 (0,0.179) 0.427 (0.221,0.75) 0.052 (0,0.133) 0.109 (0,0.286) 0.114 (0.067,0.182) 0.095 (0,0.19)

All Cancer Types - - 0.04 (0,0.091) 0.061 (0,0.211) 0.164 (0.076,0.258) 0.289 (0.074,0.526)

Values in parentheses denote the confidence intervals defined by the 5% and 95% quantiles.
doi:10.1371/journal.pone.0027136.t001
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We have studied the progression of colorectal and pancreatic

cancer as well as glioblastomas on the level of individual genes,

and also on the phenotype level of functional pathways. The

analysis was based on a probabilistic graphical model, termed H-

CBN, which was used to estimate the most likely set of order

constraints, the rate at which each individual alteration occurs,

and the observation error rate. We found differences in the

ordering across cancer types and generally stronger evidence for

order constraints on the pathway level than on the gene level.

In the gene-level model of colorectal cancer progression, APC

has an initializing role, followed by mutations in KRAS. This

resembles the progression proposed in an early study of this cancer

type [19]. It appears, however, that the role of TP53 mutations

might be more flexible. In the original model, TP53 mutations

occurred after KRAS mutations. The late occurrence of p53

mutations has been experimentally observed since that time [34]

and the most likely mutational pathway in our model also begins

APC R KRAS R TP53 R PIK3CA, followed by other mutations.

However, the model we obtained allows for several other

sequences of mutations and, on a population level, we estimate

TP53 mutations to occur independently of all other mutations

(P = 0.01 in bootstrap samples), including APC and KRAS. Whether

this difference reflects a limitation of the model, lack of statistical

power, a defect in the experimental data, or our understanding of

the pathways through which p53 acts, remains to be determined.

For the majority of genes the estimated accumulation rates of

individual mutations li were of order 0.01 to 0.001 per year, but

some mutations in colorectal carcinoma and pancreatic cancer

have higher values of order one per year. Among those were TP53,

KRAS, and for colorectal cancer, also APC. The inferred

accumulation rates can be related to the fitness surplus a mutation

contributes in a clonal expansion model. Under the assumption of

an identical mutation rate per gene, an accumulation rate of 1 per

year corresponds approximately to a fitness surplus of 2.6%

(Methods Section). Therefore the high accumulation rates of

TP53, KRAS, and APC can be explained by a fitness effect on the

order of a few percent, compared to other mutations with lower

fitness gains of order 1023 or 1024. Thus, these critical genes,

which also form the mountains in the mutation landscape

[8,10,20], may act as ‘superdrivers’ that provide a higher fitness

gain than other genes.

Interestingly, this effect was not as pronounced in glioblastomas,

where the mutation spectrum was also found to be flatter and

fewer mutations were found in each tumor. One possible

explanation for the absence of mountains in glioblastoma could

be that the cellular context limits the possible fitness gain by single

mutations, leading to a flatter mutation landscape. It may also be

that other lesions that were not assessed in our data sets drive

disease progression. It is striking, however, that despite the low

levels of individual gene mutations and the absence of a clear

genetic pattern there exist a robust signature of progression on the

pathway level. Possibly, for glioblastoma larger parts of the

pathways are active and vulnerable to mutations than in other

cancer types that only permit mutations in a subset of genes with

high mutation prevalence.

In pancreatic cancer, KRAS mutations are present in virtually all

tumors. In this case, the estimated accumulation rate represents an

almost instantaneous appearance of KRAS mutations at the onset

of disease because only one case without KRAS is observed. It

appears that the progression is initiated by KRAS mutations,

followed by additional mutations in CDKN2A, SMAD4, TP53, and

MLL3 in a second stage and PXDN and TGFBR2 in a third stage.

Notably, the three stages are consistent with a three rate-limiting

steps model fitted to age-incidence data [35].

The average frequency at which any pathway was altered in all

samples was 70.0% in colorectal carcinoma, 72.0% in pancreatic

cancer, and 67.7% in glioblastoma. This relatively high frequency

probably reflects that the analyzed samples were all late-stage

carcinomas. This finding is in contrast to the fact that, on the gene

level, typically only a few genes have prevalence higher than 50%.

Due to the joint action of multiple genes in different pathways,

however, the frequency of pathway alterations can be high. A

striking example is glioblastoma, were no gene has a mutation

frequency higher than 35.8% (TP53), but the Apoptosis and Small

GTPase pathways contain mutations in 79.2% of the samples

analyzed.

The global model contains in total 19 order constraints among

the 12 core pathways, which restrict the number of possible

sequences in which the pathway alterations arise in a particular

tumor from 12! = 479,001,600 to 356,640. Of these, the most

likely sequence given the order constraints and the individual

accumulation rates is: Apoptosis R TGF-b signaling R Small

GTPase-dependent signaling (other than KRAS) R Wnt/Notch

signaling R Control of G1/S phase transition R KRAS signaling

R Hedghehog signaling R DNA damage control R JNK R
Homophilic cell adhesion R Integrin signaling R Invasion.

Mutations in the Apoptosis core pathway are early events in all

cancer types evaluated here. For colorectal carcinogenesis, it is

thought that APC mutations initiate carcinogenesis by compro-

mising apoptosis in colonic endothelial cells resulting in the

creation of adenomatous polypes [36]. In these cell pools,

additional mutations accumulate and drive malignancy [37].

Figure 3. Global pathway progression model for all three cancer types. Each edge denotes an order constraint. The two numbers at
each edge are the frequencies at which the given relation is observed under permutations of the genes and bootstrapping of the data, respectively.
Colors denote the relative frequencies at which each pathway is hit by at least one mutation.
doi:10.1371/journal.pone.0027136.g003
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Our analysis shows that similar mechanisms could also act in

pancreatic cancer and primary glioblastoma. The reason why the

loss of apoptotic control is a critical step for initiating cancer can

be understood from an evolutionary argument: The larger the

population, the higher the number of cells at risk of acquiring

additional mutations, and the higher the probability that cells with

increased proliferation reach fixation [14]. In healthy organs,

tissue organization reduces the number of cells at risk, for example,

by organizing the tissue into stem cell niches such that only

mutations in the stem cells can reach fixation [2]. This

organization, however, breaks down if cells fail to undergo

apoptosis and accumulate in an uncontrolled manner. In contrast

to the findings for the Apoptosis pathway, mutations in the

Invasion pathway are rare and occur late. This finding also agrees

with our current understanding of carcinogenesis, wherein the

capacity to invade other tissues and to metastasize is the last and

often lethal step.

Despite the success of this model to recapitulate some critical

aspects of neoplasia, there are several limitations. One is that our

current annotation of signaling pathways is far from complete and

many concurring definitions exist. We have therefore used a

curated compilation of ‘core pathways’ from different sources to

avoid a bias to a particular database. Yet the underlying data is

often obtained from other species and cell types, whereas it is

becoming increasingly clear that gene networks operate in a tissue-

and species-specific fashion. It is striking, however, that despite

these limitations in pathway annotations, our model is capable of

inferring an ordering of alterations that is consistent with our

current understanding of disease progression. As our knowledge of

pathways improves through advanced systems biology approaches,

we can expect our model to be more accurate and informative.

The robustness of the model fits was determined by boot-

strapping, with estimated per-relation error rates of order 10%. In

the future, the stability can be expected to improve further using

larger cohorts from current cancer genome projects that aim to

identify alterations in all genes in thousands of cancers. We

observed that the stability of the genetic model was generally lower

than that of the pathways. This may be attributed to the fact that,

with a few exceptions such as TP53 and KRAS, the mutation

frequencies are very low. There is thus only weak evidence for

specific order constraints on the accumulation of genetic

mutations. This limitation should be at least partially resolved

through the analysis of additional tumors, which will engender

more confidence in the causality of mutations that occur at

relatively low frequencies.

In our analysis, we considered a gene to be compromised in its

function if there was a non-synonymous exonic mutation. While

this may be true for most genes, there exist situations where this

simple interpretation fails, or where additional lesions, such as

genomic losses or epigenetic silencing, are required to inactivate a

gene. These effects were subsumed in the error rate e; larger data

sets and integration of different data types can be expected to yield

lower error rates and also better estimates of the order constraints.

In summary, the H-CBN model presents a framework for

estimating the order constraints under which alterations in tumors

accumulate over time. While there exist subtle differences in the

order in which core pathways are altered in different cancer types,

a common theme is that apoptosis is affected first, while invasion is

affected at a late stage. The pathway H-CBN model may also be

used to help define precise genetics-based progression measures

with prognostic impact [25]. Moreover, the explicit nature of the

error process allows for imputing the true genotypes from the data.

This principle was shown to yield more accurate survival

predictors for cytogenetic data for renal cell carcinomas [30].

The exomes of thousands of tumors will be sequenced in the next

several years. We anticipate that the approach described here will

be very useful for the analysis of these data and the statistical

power gained from these large cohorts will further increase the

accuracy of the model’s predictions.

Materials and Methods

Hidden conjunctive Bayesian network model
We use the Hidden Conjunctive Bayesian Network (H-CBN)

model defined in ref. [30]. In this model, alterations accumulate

with respect to partial order constraints and the observed data may

also contain observation errors. For example, errors can occur if a

detected mutation is not functional, or if pathway membership is

not correctly assigned. Genetic alterations occur according to

exponential waiting time processes that are subject to partial order

constraints [29]. The waiting time for mutation i is defined as

Ti ~Exp(li)z max Tj jj [ pa(i)
� �

ð1Þ

where 1/li is the average waiting time of the exponential distribution

Exp, and the maximum is over all mutations j that are immediate

predecessors of mutation i according to a fixed partial order P. The

definition implies that all predecessor (or parent) mutations j [ pa(i)
must be present before mutation i can occur.

The result of the waiting time processes is observed at the time of

diagnosis, denoted Ts, and the mutations that have occurred prior to

diagnosis constitute the genotype of the tumor, X = (X1, …, Xn),

where Xi = 1 if Ti,Ts indicates the occurrence of mutation i, and

Xi = 0 otherwise. Because the exact time of diagnosis with respect to

the onset of tumorigenesis is unknown and likely to vary across

patients, Ts is modeled as an independent, exponentially distributed

waiting time with parameter ls = 1/(20 years). This choice was

made to reflect the approximate time from the unknown onset of

disease to diagnosis, which was estimated to be 10–20 years [35,37].

The probability of a genotype X is thus given by:

Pr (X jl,P)~ Pr max Tj jXj~1
� �

vTsv min Tj jXj~0
� �� �

ð2Þ

This probability can be computed efficiently by summing over all

possible paths starting with zero mutations and leading to the

genotype X under the constraints of the poset [29].

With probability e the observation Yi of mutation Xi is incorrect.

Hence the probability of the observed genotype Y = (Y1, …, Yn), is

given by

Pr (X jY ,e)~ed(X ,Y )(1{e)n{d(X ,Y ) ð3Þ

where d(X, Y) is the Hamming distance counting the number of

differences between X and Y. The unobserved true genotypes X

and the waiting times T = (T1, …, Tn) are hidden variables in the

Bayesian network defined by T, X, and Y. The resulting marginal

probability of the data Y is given by

Pr (Y je,l,P)~
X

X[G

Pr (Y jX ,e) Pr (X jl,P) ð4Þ

The symbol G denotes the lattice of genotypes compatible with the

partial order P. The network parameters e, l= (l1, …, ln), and P
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are estimated using maximum likelihood (ML). For e and l, this

involves an expectation-maximization algorithm. The most likely

poset, denoted by P̂P, is found by simulated annealing [30]. A

schematic overview of the H-CBN is given in Figure 1A.

Genetic data and core pathways
Genetic data was obtained from the publicly available

prevalence screens of refs. [8,9,10] in which the exons of 20 genes

mutated at high frequency in each cancer case were screened for

100 patients. We considered a gene to be mutated if it contained at

least one non-synonymous base substitution or indel. For

estimating the genetic H-CBN model, only genes with mutation

frequencies greater than 5% were selected for each cancer type.

This pre-selection step was done for the genetic analysis because

simulations show that the statistical power to learn relations for

very rare mutations is low [30].

To assess progression on the pathway level, the complete

genotypes with all recorded mutations were mapped to the set of

twelve core pathways defined in ref. [8]. A given core pathway is

assumed to be altered if at least one of its members is mutated.

Some genes are members of multiple core pathways. If such a gene

is mutated, all pathways in which the gene is active are considered

to be affected. The process of mapping is illustrated in Figure 1B.

The H-CBN software, and additional code and data for analyzing

the gene-to-pathway mapping can be downloaded from our

website http://www.cbg.ethz.ch/software/ct-cbn.

Bootstrap and permutation analysis
To assess the robustness of the estimated order constraints, we

performed a bootstrap analysis. For each cancer type, 100 bootstrap

samples were generated and the ML posets were estimated as

described above. For each possible relation, the average occurrence

in the ML poset was computed. Values close to one or zero indicate

a high level of confidence for the presence or absence, respectively,

of this relation. As overall measures of the stability of posets we

consider the estimated false positive rate (FPR) and false negative

rate (FNR) over all poset relations in the bootstrap posets
^̂
PP̂PP relative

to the ML poset P̂P obtained from the original dataset:

FPR~
# of relations in

^̂
PP̂PP but not in P̂P

r0
ð5Þ

FNR~
# of relations in P̂P but not in

^̂
PP̂PP

# of relation in P̂P
ð6Þ

where r0 = n(n21)/2 is the maximum number of relations

(constraints) that can be found, which is the case for the linear

poset. Here, the number of relations includes all direct constraints,

termed "cover relations", and indirect constraints that can be

derived from the cover relations. For example, the poset A R B R
C, has two cover relations, which imply the indirect relation A R
C, because C also comes after A, giving in total r0 = 3 relations.

The false positive rate is maximal, FPR = 1, if the bootstrap

estimate
^̂
PP̂PP is linear, and all relations are different from those

defined in P̂P (e.g., by a reversal of the ordering, or if P̂P has no

relations. If, on the contrary, all boostrapped relations are

contained in the original poset, it follows that FPR = 0. The false

negative rate FNR measures the relative number of relations in P̂P

that are missed by
^̂
PP̂PP. From the collection of bootstrap samples, the

average FPR and FNR are computed.

To assess whether the estimated poset structures were merely a

consequence of the pathway mappings and the marginal

frequencies of the mutations, rather than an effect of their specific

co-occurrence, we shuffled, for each gene, the occurrence of the

mutations in order to break all correlations between mutations and

again estimated the ML posets. The permutations hold the

population frequencies of each mutation constant and generate the

distribution of posets under the null hypothesis of independently

occurring mutations. This procedure was repeated for 100

permutations and the frequencies of each relation in the ML

poset were computed. We then computed FPR and FNR for the

ML poset P̂P as in Eq. (6).

The differences between bootstrapping and gene-wise permut-

ing are illustrated in Figure 1B. Bootstrapping is done on the set of

tumors and the composition of each genotype remains intact. By

contrast, gene-wise permutations break the correlation between

genes, and therefore allow for assessing to which extent the

observed dependencies on the pathway level stem from the

definition of pathway membership alone.

Relation to population genetics models
The average waiting time ti for mutation i, given that all the

necessary predecessors have occurred, is 1/li. This waiting time may

be interpreted as the time until the mutation has occurred and reached

fixation in the population. It has been shown recently that the

expected waiting time between two successive clonal expansions in a

Wright-Fisher model is approximately ti~log (si=m)= 2 si log Nð Þ
[14,31]. Here, si is the fitness of the clone, m the mutation rate, and N

the population size. For log sivv log m, the approximate fitness

surplus of mutation i from the rate li is

si&
2 li log N

log mð Þ2
ð7Þ

The average population size is assumed to be N = 106 cells, and the

mutation rate m = 1027 per gene. The fitness depends only

logarithmically on these two quantities, so even a change by an

order of magnitude has only a moderate effect. Under these

conditions, and for one cell generation per day, one has the relation

si&0:026 li, that is, fitness is approximately one fortieth of the

yearly accumulation rate.

Supporting Information

Figure S1 Log-likelihood of the core pathway model after
exclusion of individual genes for the three cancer types (A–
C) and the global model including all cancer types (D). The

solid line is the cumulative distribution function (CDF) of the log-

likelihood under bootstrapping. Genes (black dots) with a strong

influence on the likelihood are found in the tails of the CDF.

(EPS)

Table S1 Gene-to-pathway mapping and alteration
frequencies for all colorectal cancer (A), pancreatic
cancer (B), primary glioblastoma (D), and the combined
data for all three tumor types (D).
(XLSX)
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