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Abstract

Autism is a common neurodevelopmental disorder with genetic and environmental components.
Though unproven, genetic susceptibility to high mercury (Hg) body burden has been suggested as
an autism risk factor in a subset of children. We hypothesized that exposure to “safe” Hg levels
could be implicated in the etiology of autism if genetic susceptibility altered Hg's metabolism or
intracellular compartmentalization. Genetic sequences of four genes implicated in the transport
and response to Hg were screened for variation and association with autism. LAT1 and DMT1
function in Hg transport, and Hg exposure induces MTF1 and MT1a. We identified and
characterized 74 variants in MT1a, DMT1, LAT1 and MTF1. Polymorphisms identified through
screening 48 unrelated individuals from the general and autistic populations were evaluated for
differences in allele frequencies using Fisher's exact test. Three variants with suggestive p-values
<0.1 and four variants with significant p-values <0.05 were followed-up with TagMan genotyping
in a larger cohort of 204 patients and 323 control samples. The pedigree disequilibrium test was
used to examine linkage and association. Analysis failed to show association with autism for any
variant evaluated in both the initial screening set and the expanded cohort, suggesting that
variations in the ability of the four genes studied to process and transport Hg may not play a
significant role in the etiology of autism.
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1. Introduction

Autism is a common neurodevelopmental disorder with 0.1 to 0.2% prevalence in the U.S
(Network, 2007) and is part of the autism spectrum disorders (ASD, a collective term which
also encompasses Asperger's syndrome and children diagnosed with “pervasive
developmental disorder, not otherwise specified”)(Pickett and London, 2005). Autism is
characterized by repetitive patterns of behavior, impairments in social interaction and
disrupted communication which are usually evident by age 3.

Autism is a complex disorder with both genetic and environmental components (Rapin,
1997). Genome-wide linkage screens have identified multiple genetic loci proposed to
impact susceptibility and the overall autistic phenotype, but few surpass the significant
linkage threshold value and fail to be consistently replicated (Vorstman et al. , 2006). In
addition, positive findings from candidate gene analysis (summarized in recent reviews
(Abrahams and Geschwind, 2008, Freitag et al. , 2010)) are not consistently replicated
across studies (Newschaffer et al. , 2007). Autism is 90% heritable (Freitag, 2007), yet
defined gene mutations, copy number variations and genetic syndromes account for only
10-20% of autism ASD cases(Abrahams and Geschwind, 2008) suggesting complex
interactions between multiple genes and/or with environmental factors influence the risk and
severity of autism (Folstein and Rosen-Sheidley, 2001). Furthermore, it has been
hypothesized that variation in the interplay between inherited vulnerabilities and different
environmental exposures may account for the observed heterogeneity in the autism
phenotype (Landrigan, 2010).

Mercury (Hg) has been implicated as an environmental risk factor for autism (Schultz,
2010). Exposure to this known neurotoxicant can result from a variety of sources, and its
metabolism and toxicity depends upon the chemical form. Consumption of predator fish is
the most prevalent source of organic methylmercury (MeHg)(Aschner et al. , 2010). In
contrast, ethylmercury (EtHg) is found at high concentrations (~50 %) in the preservative
thimerosal used in multidose vials of childhood vaccines to prevent fungal and bacterial
contamination. Finally, inhalation of elemental Hg vapor occurs in some occupational
settings such as industry, dentistry (amalgam tooth fillings) and extraction of gold. Metallic
Hg in dental amalgams can release both Hg vapor and divalent mercury (Hg?*) into
surrounding tissues. Topically applied skin creams, infant teething powders and
contaminated food are also routes of inorganic Hg exposure (Casarett, 2001, Counter and
Buchanan, 2004).

Hg levels have been evaluated in autistic children and both increased and decreased levels
were reported, leading to inconclusive results. Gene expression studies correlated with low
blood Hg levels are significantly different between autistic boys compared to non-autistic
boys, suggesting the possibility that autistic children might metabolize Hg differently
compared to non-autistic children (Stamova B et al. , 2011). Inherited variations in metal
transporters or metal processing genes may render certain individuals more susceptible to
Hg toxicity and, in the context of environmental exposure to Hg, could be associated with
autism.

In this study, we screened the genetic sequences of four key genes involved in Hg response
and transport for variation and any association with autism. The large neutral amino acid
transporter type 1 (LAT1) transports MeHg and likely EtHg, while the divalent metal
transporter 1 (DMT1) transports inorganic Hg, a byproduct of cleaved MeHg and EtHg.
Metal-regulatory transcription factor 1 (MTF1) induces transcription of metallothionein 1a
(MT1a) which binds to both inorganic and organic Hg and works to alleviate metal toxicity.
(Figure 1)
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In contrast to Hg exposure at toxic levels, even at Hg blood levels within Centers for
Disease Control and Prevention (CDC) or US Environmental Protection Agency (EPA)
accepted values (considered “safe” levels) could be implicated in the etiology of autism due
to genetic susceptibility. We hypothesized that even in the absence of elevated Hg levels,
inherited variations in metal regulatory genes could potentially increase susceptibility to Hg
toxicity by altering the transport, binding, efflux, or tissue distribution of Hg in the body.
Prenatal and postnatal exposure to Hg could then act synergistically with these genetic
susceptibility factors to manifest the behavioral and developmental deficits present in
autism.

2. Materials and methods

2.1 Data Set

All probands were between 4 and 22 years of age with an 1Q above 35. As samples were
collected prior to 2001, the year thimerosal was revoked from the US market, the probands
were likely exposed to thimerosal for their primary vaccinations. All probands were
evaluated using both Autism Diagnostic Interview-Revised and Autism Diagnostic
Observation Schedule (all modules) to strictly select those with autism and not ASD. Each
proband was also evaluated using the Childhood Autism Rating Scale, the Repetitive
Behavior Scale, the Aberrant Behavior Checklist, and the Social Responsiveness Scale.
Each proband also had a dysmorphology examination to screen for phenocopies.

The initial screening data set consisted of 24 Caucasian autistic individuals and 24
Caucasian normal controls, gender-matched, from the general population.

The larger data set used for TagMan genotyping of rs2285230, rs1048230, rs33914778 and
rs12444670 consisted of a total of 130 families, of which 65 were multiplex families. There
were 204 autistic individuals (166 males and 38 females) and 323 control individuals (161
males and 162 females).

However, the TagManassay for rs12444670 could only successfully genotype 482
individuals, representing 185 autistic individuals and 297 control individuals (294 males and
188 females, with 235 founders and 247 non-founders).

2.2 Primer Design

Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and PrimerFinder
software (J. Smith and K. Bradley, unpublished) were used to design a series of overlapping
amplimers spanning the genes of interest (DMT1, MT1a, MTF1 and LAT1) to amplify all
exons, exon-intron boundaries, 5° and 3* untranslated regions, and up to 1000 bp of the
promoter region (Table 1). Primer sets were screened on a 2% agarose gel to confirm
specific amplification and the correct amplicon size. A total of 100 primer sets were required
to amplify the coding and near-coding regions of all four genes combined.

2.3 Polymorphism Screening and Detection

To detect polymorphisms in DMT1, MT1a, MTF1 and LAT1, we screened an initial data set
consisting of 48 Caucasian individuals (24 cases and 24 controls). Fragments were PCR
amplified (20 uL reactions containing Platinum SuperMix, 10 ng of human genomic DNA
or 20 ng of autism DNA, and 40 ng/uL each of forward and reverse primers) in a thermal
cycler (MJ Research, Waltham, MA). Annealing temperatures were adjusted based on GC
content.
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Single strand conformation polymorphism (SSCP) analysis was employed to screen all of
the exons, 5° and 3 untranslated regions, 1kb upstream of the transcript start, and the exonic
bordering regions for genetic variations. DNA fragments were electrophoresed on a 0.5X
non-denaturing polyacrylamide gel (15 watts, 4°C for 10-16 hours, depending on product
size) with 0.6X TBE running buffer and then visualized by silver stain as previously
described (von Deimling et al. , 1993). Polymorphic fragments were sequenced to
characterize the specific variant (VVanderbilt University DNA Sequencing Facility or
GenHunter Corporation, Nashville, TN).

2.4 TagMan Genotyping

SNP genotyping was performed using Assays-On-Demand or Assays-by-Design (Applied
Biosystems, Foster City, CA) with the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Amplification was performed in a 384-well DNA Engine Tetrad 2
Peltier Thermal Cycler (MJ Research, Waltham, MA) with the following conditions: 94°C
for 10 min; 92°C for 15 sec, 60°C for 1 min (50 cycles); and held at 4°C. Systematic
genotyping errors were minimized through quality control (QC) checks with duplicated
samples.

2.5 Statistical Analysis

3. Results

In the initial screening set of 48 individuals, Hardy-Weinberg Equilibrium (HWE) was
calculated in cases and controls with Fisher's exact test. Polymorphisms in both the control
and autistic populations were evaluated for differences in allele and genotype frequencies
using Fisher's exact test. A p-value <0.05 was considered significant, and a p-value <0.1 was
considered suggestive.

Polymorphisms with a suggestive p-value <0.1 or a significant p-value <0.05 were evaluated
further in a larger data set of 527 individuals using TagMan genotyping methods. Allele
frequencies and Hardy Weinberg equilibrium were calculated using all genotyped founders
in a family, if the family did not contain any genotyped founders, one individual was
selected randomly for each family to determine the allele frequencies. The pedigree
disequilibrium test (PDT) was performed to examine linkage and association at each marker
(Martin et al. , 2001, Martin et al. , 2000). For this analysis 123 trios were used to calculate
the sum and average PDT values, that are based on allele counts and the genotype PDT
value that is based on genotype counts.

Of the 74 polymorphisms currently identified in LAT1, DMT1, MTF1 and MT1a, 17 were
novel and 5 were in coding regions, 2 of which were nonsynonymous SNPs (Table 2).
Analysis with Fisher's exact test revealed 4 polymorphisms exhibited allele or genotype
frequencies that differed significantly (p<0.05) between autistic and control populations (a
novel SNP in MTF1, rs12444670 in LAT1, a novel SNP in DMT1 and rs2285230 in DMT1)
while 3 polymorphisms (rs33914778 in LAT1, rs11169655 in DMT1, and rs1048230 in
DMT1) had suggestive p-values (p<0.1) (Table 2).

Four of the polymorphisms with suggestive or significant p-values were successfully
evaluated further in a larger data set of 527 individuals (204 affected individuals and 323
unaffected individuals) using TagMan genotyping methods. The pedigree disequilibrium test
(PDT) was applied to examine linkage and association at each marker, and they were not
statistically significant for association with autism (Table 3). However, the remaining three
markers (a novel SNP in MTF1, a novel SNP in DMT1 and rs11169655 in DMT1) with
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suggestive or significant p-values could not be properly quantified in the larger cohort due to
the lack of reliable genotyping assays.

4. Discussion

In the U.S. ~8% of the women of childbearing age have Hg levels exceeding EPA limits
(Schober et al. , 2003). At high concentrations, MeHg is highly toxic, especially during
central nervous system (CNS) development. Inhaled Hg vapor deposits in the CNS, and
organic Hg (e.g. MeHg, EtHg) is readily transported across the blood-brain barrier (BBB).

After a link between autism and EtHg toxicity was suggested in 1998 (Wakefield et al. ,
1998) for children who had received measles-mumps-rubella (MMR) vaccines containing
thimerosal, it was removed from childhood vaccines in the United States in 2001, but is still
widely used in developing countries. A critical review of the 12 original studies examining
this link concluded that an association could not be established because of methodological
flaws (Parker et al. , 2004). Prenatal and infant exposure to EtHg in vaccines containing
thimerosal was not associated with an increased risk of autism or ASD (Price et al. , 2010).

However, the possibility that the risk for autism might be altered due to an individual's gene
profile that modifies their susceptibility cannot be excluded (Aschner and Ceccatelli, 2010).
Even in the absence of toxic Hg levels, “safe” Hg levels could be implicated in the etiology
of autism due to genetic susceptibility. Variants in metal regulatory genes could alter Hg's
metabolism or intracellular compartmentalization An autistic individual may not have a
higher Hg level, but rather they might handle what is condered a “safe” Hg level differently
than a non-autistic individual depending on genetic susceptibility (for example, a genetic
profile that lowers the threshold of what Hg level could be tolerated) While there are many
genes involved in metal regulation, the four candidate genes exhaustively screened in this
study are strong candidates as they are directly related to Hg transport and adaptation.

DMT1 is ubiquitously expressed in tissues including the brain and liver (Gunshin et al. ,
1997). It is non-specific and transports numerous divalent metals, including Hg?* and Fe2*
(Forbes and Gros, 2003, Gunshin, Mackenzie, 1997, Picard et al. , 2000). Elemental,
metallic or inhaled Hg is oxidized to Hg2* after absorption by various tissues. Organic
mercury (EtHg and MeHg) can be biotransformed to Hg?* (Casarett, 2001).

While much is known about MeHg pharmacokinetics, data on EtHg is scarce. EtHg passes
through the BBB more slowly, but it decomposes into inorganic Hg faster (Magos, 2003).
Many of the theories concerning organic Hg toxicity suggest that it is the inorganic form that
causes the damage. We reasoned that polymorphisms in this gene are likely to govern brain
uptake mechanisms for decomposed EtHg.

LAT1 is restricted to specific tissues such as brain, placenta, fetal liver, testis, bone marrow
and tumor cells (Kanai and Endou, 2003, Kanai et al., 1998). Importantly, LAT1 is highly
expressed on both sides of the BBB membrane (Boado et al. , 1999, Matsuo et al. , 2000,
Pardridge, 1998) and is the major carrier of neutral amino acids from blood into the brain.

MeHg has a high affinity for reduced sulfhydryl groups and binds to the thiol groups of L-
cysteine (Cys). Because the MeHg-Cys complex structurally mimics the amino acid
methionine, uptake across the BBB is facilitated by LAT1 (Aschner and Clarkson, 1988,
Simmons-Willis et al. , 2002, Yin et al. , 2008). Prenatal exposure to MeHg is especially
damaging, as it rapidly crosses both the placenta and the BBB. Since LAT1 is also expressed
at the placental barrier, the transport of toxic compounds such as EtHg through this barrier is
one of the important determinants in fetal toxicity (Kanai and Endou, 2003).
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Human metallothioneins (MTs) are part of a gene cluster on chromosome 16q13 that
contains four isoforms (MT1, MT2, MT3 and MT4) and 17 subtypes of MT genes. MT1a, a
subtype of MT1, is a small metal-binding protein with important functions in metal
metabolism and protection (Lichtlen and Schaffner, 2001). MT1 has a high affinity for toxic
heavy metals and is induced following Hg exposure (Aschner, 1996). As a potent
antioxidant, it is upregulated in response to Hg and MeHg, as well as a variety of other
metals including Cd2*, Cu2*, Ag?* and Zn2* (Schultz, 2010) thus attenuating metal-induced
reactive oxygen species (ROS) damage(Maret, 2000).

MTF1 is a transcription factor which plays a role in cell stress conditions such as heavy
metal overload. One major target of MTF1 is the MT genes. In response to Hg and other
types of heavy metals, MTF1 binds to the metal response element (MRE) in the promoter
region of MT genes to induce transcription. Polymorphisms in MTF1 could decrease an
individual's ability to initiate transcription of genes critical for cell stress response. It is
speculated that MTF1 could also bind to MREs in DMT1(Lee et al. , 1998), providing
another means of Hg regulation. Upon the presence of Hg, DMT1 would be transcriptionally
upregulated to increase the available amount of this protein for metal transport.

One family-based association study revealed a polymorphism in MTF1 was linked autism
spectrum disorder (p=0.02)(Serajee et al. , 2004). However, after performing Bonferroni
correction, the linkage result was no longer statistically significant. We examined this SNP
in our study, but it was not present in the Caucasian individuals in our data set.

Our initial sample set of 48 individuals was adequate for SNP discovery, as we were
interested in genetic effects that are common risk factors in the population. Power
calculations indicate this was sufficient to detect a polymorphism occurring at a 5% level in
the autistic population with 91% confidence (and 99.2% confidence of detection in the total
population of 48 individuals screened).

While seven polymorphisms initially exhibited suggestive or significant p-values when
evaluated in the small set of 48 individuals, further analysis performed on a much larger
cohort of 527 individuals confirmed that four of these variants were not significantly
associated with autism. The remaining three variants could not be properly quantified in the
larger cohort due to lack of reliable genotyping assays available at the time the study was
performed. At present their association with autism in a larger population is inconclusive
and will need to be examined further in future studies.

The levels of Hg exposure in the studied cohort may have acted as a confounder for this
study. We would expect that for each individual in which genetic variants were evaluated for
association to autism, that exposure to Hg (even at “safe” levels) could further contribute to
the development of autism following the hypothesis that these genetic variants alter the way
that Hg is then processed in the body. For this reason, we specifically selected our autistic
cohort to include probands who were likely exposed to thimerosal for their primary
vaccinations, as these samples were collected prior to 2001 (the year that thimerosal was
revoked from the US market). According to the CDC's National Immunization Survey, the
estimated vaccination coverage for the proportion of the US population that received
vaccines before thimerosal was removed from the US market is 90.5% (CDC, 2001).

This study is valuable as it is an exhaustive screen for genetic variants in MTF1, MTl1a,
LAT1 and DMT1. The advantage of screening all exons, exonintron boundaries, 5° and

3‘ untranslated regions, and up to 1000 bp of the promoter region was that it encompassed
polymorphisms located in coding regions which might affect protein structure or folding, as
well as those non-coding regions possibly involved in transcript splicing or stability . In
contrast with studies which examined known candidate SNPs, we performed a thorough
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screen throughout the gene, and identified seventeen polymorphisms in this study that have
not been previously reported.

The frequency data for all validated genetic variants identified in the four critical metal
metabolism genes evaluated in this study will be useful for future studies regarding other
disorders with altered metal content. Increased aluminum, copper and zinc are present in
Alzheimer's disease (Liu et al. , 2005). Menkes and Wilson's diseases result in copper
insufficiency and copper accumulation, respectively (Daniel et al. , 2004). Copper,
manganese and iron levels are altered in prion disease (Wong et al. , 2001). Iron overload
has been observed in the brains of patients with Alzheimer's disease (increased iron in Lewy
bodies), Parkinson's disease and Huntington's disease (Moos and Morgan, 2004). Since
DMT1, MT1 and MTFL1 function in regulating levels of the metals mentioned above, it is
possible that polymorphisms identified in this study may also explain the altered metal
content in these other disorders.

Our analysis failed to show association with autism for any of the variants identified in
LAT1, DMT1, MTF1 and MT1a which were evaluated in both the initial screening set and
the expanded cohort, suggesting that variations in the ability of these four genes to process
and transport heavy metals may not play a significant role in the etiology of autism.

The same genes we evaluated likely play an important role in the etiology of other
neurodegenerative diseases. For example, because of the multispecificity of LAT1, it has
been proposed to transport compounds other than MeHg and EtHg, which mimic amino acid
structures, including toxins implicated in the pathogenesis of amyotrophic lateral sclerosis
(ALS), Parkinsonian dementia (Weiss and Choi, 1988), trigeminal neuropathy (Patel et al. ,
1993), Huntington's disease, and HIVV/AIDS (Eastman and Guilarte, 1991, Stone, 2001).
Polymorphisms identified in LAT1 may have broad relevance to understanding the genetic
factors that influence individual susceptibility to toxins in a broad range of
neurodegenerative diseases.

In addition to metal regulation, MTF1 is critical for liver development and has a variety of
other targets related to cell stress defense (glutathione), development (C/EBPalpha),
oxidative stress (Sepwl)(Wimmer et al. , 2005), hypoxia (Nrdgl), xenobiotic components,
and reactive oxygen intermediates (a-foetoprotein, AFP). Furthermore, MTF1 is implicated
in cytoskeletal organization (Csrpl)(Wimmer, Wang, 2005) and cancer (Ndrg1)(Wimmer,
Wang, 2005) and PIGF (Green et al. , 2001)). Consequently, polymorphisms identified in
MTF1 may have broad significance to each condition listed above.

MTs are associated with a number of diseases (Simpkins, 2000) and are implicated in ageing
and neurodegenerative brain disorders. Interestingly, MT1 and MT2 have been shown to be
neuroprotective in animal models of familial ALS (Nagano et al. , 2001) and multiple
sclerosis (Espejo et al. , 2001). In addition, MT levels are also elevated in cancer (Schmid et
al., 1993, Zelger et al. , 1993). It has been proposed that MT is the “danger signal” that
indicates cellular damage has occurred in order to mount an active immune response (Yin et
al. , 2005). MT in the extracellular environment facilitates the movement of white blood
cells to the site of inflammation (Yin, Knecht, 2005). The discovery that MTs mediate
leukocyte chemotaxis implies that these proteins could be associated with autoimmune
disease and toxicant exposure.

The knowledge gained from this study expands the current understanding of environmental
influences on the susceptibility to Hg neurotoxicity and how it relates to autism. Identifying
markers of susceptibility is of great clinical concern for they can be incorporated into
epidemiological studies to better predict health risks and used to help improve health
protection policies.
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Highlights
Polymorphisms identified through screening 48 unrelated individuals from the general
and autistic populations were evaluated for differences in allele frequencies.

Overall, we identified and characterized 75 variants in MT1a, DMT1, LAT1 and MTF1.

Despite the fact that the analysis failed to show association with autism for any variant,
we believe that given the debate (and unfounded theories on the role of thimerosal in the
etiology of autism and related disorders, such as autism spectrum disorder) the results
presented herein are highly important and will dispel some of the myths on Hg and these
disorders.
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Figure 1. Function of LAT1, DMT1, MTF1 and MT1a in Hg metabolism and transport into the
brain

Upon Hg exposure, organic Hg (MeHg or EtHg) is transported into liver hepatocytes by
LAT1, where a portion is decomposed into Hg2*. Hg?* is transported into the brain by
DMT1, while remaining MeHg and/or EtHg are taken up by LAT1 into the brain via
molecular mimicry of methionine. The presence of MeHg, EtHg and/or Hg?* in neurons or
astrocytes then triggers MTF1 to upregulate MT1a in response to this heavy metal stress.
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Table 1
Summary of investigated genes
Gene Name Gene Symbol Location | Gene Size | # of exons
Divalent Metal Transporter 1 DMT1 (aka SLC11a2, NRAMP2) 12913 43,999 bp 17*
Metallothionein la MT1la 16913 2941 bp 3
Metal-regulatory transcription factor 1 MTF1 1p33 3302 bp 11
Neutral amino acid transporter, system L 1 LAT1 (aka SLC7a5) 16924.3 5183 bp 10

*
additional exons possible due to alternate splicing
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Pedigree Disequilibrium Test (PDT) analysis

Gene Variant MAFl HWE2

DMT1 rs2285230  0.1746 0.2671
DMT1 rs1048230  0.1752 0.2671
LAT1  rs33914778 0.4223 0.5166
LAT1  rs12444670 0.266 0.6453

AVE PDT3

0.1066
0.1663
0.1051
0.3704

1MAF indicates the Minor Allele Frequency

2HWE indicates the Hardy-Weinberg Equilibrium

AVE PDT indicates the average pedigree disequilibrium test value
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