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Abstract The phylogenetic diversity of ammonia-oxidizing
archaea (AOA) was surveyed in the surface sediments from
the northern part of the South China Sea (SCS). The
distribution pattern of AOA in the western Pacific was
discussed through comparing the SCS with other areas in
the western Pacific including Changjiang Estuary and the
adjacent East China Sea where high input of anthropogenic
nitrogen was evident, the tropical West Pacific Continental
Margins close to the Philippines, the deep-sea methane seep
sediments in the Okhotsk Sea, the cold deep sea of
Northeastern Japan Sea, and the hydrothermal field in the
Southern Okinawa Trough. These various environments
provide a wide spectrum of physical and chemical conditions
for a better understanding of the distribution pattern and
diversities of AOA in the western Pacific. Under these
different conditions, the distinct community composition
between shallow and deep-sea sediments was clearly delin-
eated based on the UniFrac PCoA and Jackknife Environ-
mental Cluster analyses. Phylogenetic analyses showed that a

few ammonia-oxidizing archaeal subclades in the marine
water column/sediment clade and endemic lineages were
indicative phylotypes for some environments. Higher phylo-
genetic diversity was observed in the Philippines while lower
diversity in the hydrothermal vent habitat. Water depth and
possibly with other environmental factors could be the main
driving forces to shape the phylogenetic diversity of AOA
observed, not only in the SCS but also in the whole western
Pacific. The multivariate regression tree analysis also sup-
ported this observation consistently. Moreover, the functions
of current and other climate factors were also discussed in
comparison of phylogenetic diversity. The information
collectively provides important insights into the ecophys-
iological requirements of uncultured ammonia-oxidizing
archaeal lineages in the western Pacific Ocean.

Introduction

The aerobic microbial ammonia oxidation as the first step
of nitrification plays a pivotal role in the global nitrogen
cycle because of its wide distribution on the earth not only
in the marine ecosystems but also terrestrial environments,
carried out by ammonia-oxidizing bacteria (AOB) and
ammonia-oxidizing archaea (AOA) [55, 62]. Since the
recognition of AOA which have been proven to be one
separated lineage Thaumarchaeota from Crenarchaea line-
ages [5, 59], this microbial group has been found in a wide
variety of habitats including marine water column and
sediments [11, 15, 40, 42, 53, 65], the marine sponge [3,
38], soils [21, 30, 45, 54, 69], freshwater and sediments
[26, 37, 67], estuaries [6, 14, 43, 51, 52, 65], hydrothermal
vents [63] and hot springs [17, 24, 31, 66, 68], activated
sludge [58], and groundwater systems [50]. Our knowledge

Electronic supplementary material The online version of this article
(doi:10.1007/s00248-011-9901-0) contains supplementary material,
which is available to authorized users.

H. Cao :Y. Hong :M. Li : J.-D. Gu (*)
School of Biological Sciences, The University of Hong Kong,
Pokfulam Road,
Hong Kong, SAR, People’s Republic China
e-mail: jdgu@hkucc.hku.hk

Y. Hong
State Key Laboratory of Oceanography in the Tropics,
South China Sea Institute of Oceanography,
Chinese Academy of Sciences,
164 Xingang Road West,
Guangzhou 510301, People’s Republic China

Microb Ecol (2011) 62:813–823
DOI 10.1007/s00248-011-9901-0

http://dx.doi.org/10.1007/s00248-011-9901-0


of this type of ammonia oxidizer has expanded rapidly, and
more and more studies have been focused on the commu-
nity structure and abundance of AOA in seawater and
sediments all over the world [4, 19]. The wide distribution
indicates a likely critical role of them in the N cycle in
marine ecosystems. However, our understanding of AOA in
the marine sediments is still inadequate.

The ecological features of AOA in the surface sediments
of western Pacific Ocean are largely unknown. A few
studies have detected this type of microbes in the western
Pacific [13, 14, 44, 46]. The quantities and diversity of
AOA and AOB amoA genes in the northeastern Japan Sea
showed that AOA amoA gene sequences from the water
column fell into the Deep Marine Group, while most
sequences from pelagic brown sediment were not closely
related to any known sequences from the GenBank [44].
The sedimentary AOA diversity, community structure, and
spatial distribution in the Changjiang Estuary and the
adjacent East China Sea (ECS) shifted along the
Changjiang freshwater flow path [14]. It was concluded
that the deep-sea sediment of the tropical west Pacific
Continental Margin potentially harbors diverse and novel
AOA [13]. However, without the information from the
largest marginal sea, specifically the South China Sea
(SCS), it is difficult to form a general view about AOA. The
archaeal diversity and distribution along thermal and geo-
chemical gradients in hydrothermal sediments at the Yonaguni
Knoll IV hydrothermal field in the southern Okinawa Trough
were also investigated [46]. These studies in the western
Pacific provide an opportunity to combine results from all
these studies to form a comprehensive understanding about
the ecological distribution pattern of AOA in the western
Pacific Ocean.

In the present study, through employing amoA gene as a
functional genetic marker, the phylogenetic diversity and the
spatial distribution of AOA were surveyed in the northern
part of the SCS, which is featured as a deep rhombus-shaped
basin in the eastern part and connecting channels, e.g.,
Luzon Strait, Taiwan Strait, and compared with a selective
areas, estuary, continental shelf, slope, deep sea with
methane in the western Pacific including Changjiang Estuary
and ECS, the deep-sea methane seep sediments in the
Okhotsk Sea, the Southern Okinawa Trough, the tropical
West Pacific Continental Margins, and the Northeastern
Japan Sea to find the dominated lineages and general view
about the spatial distributions of AOA in the surface
sediments of the western Pacific Ocean. Here, through
detections of AOA in the northern SCS and comparison
with other ocean ecosystems mentioned above, some general
view about distribution of AOA in the western Pacific Ocean
sediments might be concluded, and the function of some
channels, e.g., Luzon Strait and Taiwan Strait, to shape the
AOA community structure could also be discussed.

Materials and Methods

Sampling and Molecular Experiments

Sampling of sediments was conducted aboard the R/V
Shiyan No. 3 during a South China Sea Open Cruise in
2008. A total of seven surface sediment samples were
collected from the northern part of the SCS (Fig. 1). Sites
201 and 525 are located in the margin area of the northern
part of the SCS and are close to the mainland of China,
while site 201 is adjacent to Taiwan Strait. Samples CF5
and 08CF7 were collected from the cold deep sea, site 510
from the upwelling system. Cold deep-sea sites 407 and
425 located in the Luzon strait are close to the Philippines.
The environmental physical and chemical parameters of
these sites were reported elsewhere [7, 8, 10, 36].

One pair of polymerase chain reaction (PCR) primers
(Arch-amoAF: 5′-STAATGGTCTGGCTTAGACG-3′ and
Arch-amoAR: 5′-GCGGCCATCCATCTGTATGT-3′) [19]
was employed to amplify archaeal amoA gene from the total
genomic DNA extracted from sediment samples using the
SoilMaster DNA Extraction kit (Epicentre Biotechnologies,
Madison, WI, USA) as described before [7–10, 36]. Besides
the sequences obtained from this current study, other archaeal
amoA gene sequences were retrieved from the GenBank
based on the published information [8, 13, 14, 44, 46].

Phylogenetic and Statistical Analyses

All of the amoA gene sequences retrieved from the present
study were transferred into MEGA 5.0 to edit [60] and
combined with the most similar amoA gene sequences
downloaded from GenBank including the sequences from
other sites in the SCS based on the reference information
available [8]. And then the alignment file was constructed
using Clustal X 1.81 in MEGA 5.0 [60]. Phylogenetic trees
were constructed using neighbor-joining criterion in MEGA
5.0 [60] with 1,000 bootstrap tests for every node.
Rarefaction analysis, the nonparametric richness estimator
(Chao1 and Shannon), and Simpson diversity index were
carried out for the gene sequences retrieved from samples in
the SCS using DOTUR, and operational taxonomic units
(OTUs) were calculated based on a 5% distance cutoff [57].

Principal coordinates analyses (PCoA) and Jackknife
Environment Clusters analyses were conducted in an online
software UniFrac (http://bmf2.colorado.edu/unifrac/index.psp)
[39] which employs the genetic distances to evaluate the
community similarity based on the gene sequences data. The
archaeal amoA gene sequences from the SCS surface
sediments were classified on the basis of the environmental
variables. The environment cluster tree was projected in
MEGA 5.0 [60]. Canonical correspondence analysis (CCA)
was executed in CANOCO 4.5 to determine the correlations
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between archaeal amoA gene sequence community composi-
tions and physical and chemical parameters [61]. In addition,
Pearson moment correlations were also conducted with
Microsoft Excel to relate the physical and chemical factors
with the diversity and richness indices of the archaeal amoA
genes.

Comparative Analyses between the SCS and Other Habitats
in the Western Pacific

Comparisons were made between six different types of
habitats, including the SCS coast, SCS deep sea, the Philippine
deep sea, ESC and Changjiang Estuary, Northeastern Japan
Sea, and Hydrothermal fields. All of the archaeal amoA gene
sequences from the habitats mentioned above and those from
the present study were combined with the most similar
sequences downloaded from GenBank and imported into
MEGA 5.0 to align using Clustal X1.81 [60]. The phyloge-
netic tree was constructed using neighbor-joining criteria to
explore the phylogenetic diversity of AOA lineages in the
western Pacific Ocean. PCoA and Jackknife Environment
Clusters analyses were also employed to conduct community
similarity analyses based on the genetic distances and
phylogenetic relatedness from all archaeal amoA gene
sequences in the researched areas through UniFrac [39]. To
assess the sources of variations in the UniFrac matrix,
permutational MANOVA based on 1,000 permutations [41]
with function adonis in vegan package [47] was used.

To compare the phylogenetic diversity between different
habitats, all sequences from the different habitats were
clustered and homogenized at 95% identity threshold through
DOTUR analyses, ended with six clone libraries affiliated to
the six different habitats (Supplementary Table S1). Jackknife
Environment Clusters analysis was conducted to compare
the community similarity on the basis of six clone libraries
data via UniFrac [39]. Phylogenetic diversity (PD) indices for

each of the six habitats were calculated as the sum of the
branch length associated with the amoA gene sequences
within each habitat [18], and the mean PD of 1,000
randomized subsamples of each habitat was calculated to
correct for unequal number of sequences [1]. Another index,
the phylogenetic species variability (PSV), which quantifies
how phylogenetic relatedness decreases the variance of a
hypothetical neutral trait, was calculated to estimate the
phylogenetic structure with the R package picante [1, 25, 33].

The potential environmental factors that could affect the
community structures in the variable surface sediments of the
western Pacific were deduced through a Multivariate Regres-
sion Tree (MRT) analysis with the R package mvpart [1, 16],
based on the observed subclades in the above phylogenetic
analysis. Because of the heterogeneity of environmental
parameters in different studies, a coding for them was used
so as to be comparable (Supplementary Table S1). OTUs as
the assemblages were related to the environmental matrix.

Nucleotide Sequences Accession Numbers

The archaeal amoA gene sequences retrieved in this study
from the seven surface sediment samples were deposited in
GenBank with the accession numbers from JF924520 to
JF924865.

Results

Environmental Parameters and the Diversity and Richness
of amoA Gene Sequences

The environmental features of the surface sediments in
these investigated sites are summarized in Table 1. The
seawater depth above sediment ranged from 30 m at site
201 located in the coastal area to 1,900 m at site 407, which

Figure 1 Sampling map of
surface sediments in the
northern SCS
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is the deep-sea margin. The temperature could be divided
into two distinct groups: cold and warm. Within the seven
sites, site CF5 exhibited extremely high concentration of
inorganic nitrogen, especially NH4

+, site 201 showing the
second highest. Among these samples from the present
study, the higher diversities of amoA gene were shown at
sites CF5 and 407, while the lowest one was at site 525
based on a group of indices (Table 1). Within each site
clone library, the number of OUT showed high variability
from 10 to 27 on the basis of the rarefaction analysis
(Fig. S1).

Phylogenetic Analysis of Archaeal amoA Gene in the SCS
Surface Sediments

Based on the phylogenetic analysis on all the sequences
from the surface sediments in the western Pacific and the
sequences from one former study in the northern SCS
(Figs. 2 and S3), a comparatively slim soil/sediment clade
was evident, while most sequences clustered into the
marine water column/sediment clade. The sequences in
the soil/sediment clade were from sites 407 (ca. 7), 525 (ca.
17), 201 (ca. 3), and 08CF7 (ca. 1), and they shared higher
similarity with those mostly from the tropical West Pacific
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Figure 2 Phylogenetic tree based on archaeal amoA gene sequences
from the variable surface sediments in the western Pacific and most
similar sequences using the neighbor-joining criterion. Filled circles at
the nodes represent the significant bootstrap values (>50) through 500
resampling test. Branch lengths correspond to sequence differences as
indicated by the scale bar
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Continental Margin sediment [13] and some retrieved from
ESC [14] or the Bahia del Tobari Mexico Gulf [19]
(Fig. S3).

In the marine water column/sediment clade, most of the
sequences could be grouped with the closest lineages. Six
subclades were identified in the present phylogenetic tree
based on the phylogenetic analyses of all the sequences in
the western Pacific and most similar sequences as refer-
ences (Figs. 2 and S3). Clade IA was mostly constituted
with sequences from the northern SCS surface sediments
and also included some sequences from other environ-
ments. In Clade IB, sequences were mostly retrieved from
the shallow surface sediments of the northern SCS and ESC
[14]. A few sequences from the deep-sea site CF5 and some
from the San Francisco Bay and Bahia del Tobari Mexico
Gulf [19] were also included in this clade. Clades IC and
Clade ID were mixture clades including sequences
shared by the deep-sea and shallow marine surface
sediments. Clade IE also consisted of sequences from
the deep-sea sediments, the tropical West Pacific Conti-
nental Margin sediment [13], Okhotsk cold deep-sea
sediments [15], a few sequences from the hydrothermal
vents sediments in Southern Okinawa trough [46], and
Juan de Fuca field hydrothermal vents [63]. Most sequences
in Clade IF were retrieved from the hydrothermal vents and
deep-sea sediments and rooted in the marine water column/
sediment clade.

Two groups were identified in the UniFrac analyses
(Figs. 3 and S4). All the shallow samples were clustered
together and separated with another group containing all the
samples from the deep-sea sediments. In each group, the
lower statistical support indicated that the similarity
between the samples within the same group was higher.
These two groups supported that depth and the resulting
temperature might be the important factors to shape the
distinct AOA lineages. Although no single factor was

distinguished to determine the diversity of archaeal amoA
gene in the Pearson moment analyses (Table S2), CCA
could compensate for the lack of information in the Pearson
moment analyses. Depth and temperature were proposed as
the main contributors for the diversity of archaeal amoA
gene (Fig. 4). The concentration of inorganic nitrogen
contributed to the distribution of the deep-sea sediments,
especially for 407, 702, 425, and CF5, while the separation
of 704 was a result of the concentration of nitrite (Fig. 4).

Community of AOA Based on Phylogenetic Diversity
in the Western Pacific

Samples from 43 archaeal amoA gene clone libraries were
clustered on the basis of the phylogenetic community
similarity (Figs. 5 and S5). Shallow marine sediments were
clearly separated from the deep-sea and hydrothermal vent
sediments (Figs. 5 and S5), and depth was the strongest and
the only significant environmental factor. Although the
statistical support was not strong enough, two groups were
present in the UniFrac analyses as in the former analyses
constrained to the SCS (Figs. 5 and S5). All the shallow
samples including SCS and ESC grouped together, while all
the samples from the SCS clustered together, and ESC
samples divided into two sub-groups (Figs. 5 and S5).
Sample 201 shared higher similarity with those from ESC
than with others from SCS. All the deep-sea sediment
samples were separated from the shallow samples and
formed another group. The deep-sea samples from the SCS
shared higher similarity with those from the Philippine deep
sea than Northern Japan Sea andOkhotsk Sea (Figs. 5 and S5).
These two groups as shown in the UniFrac analyses of the
SCS were also proposed to be affected by depth and the

Figure 3 Hierarchical clustering analysis (UPGMA algorithm with
Jackknife supporting values) for the archaeal amoA gene sequences from
the whole northern SCS based on the online UniFrac software

Figure 4 CCA ordination plots for the physicochemical parameters and
the ammonia oxidizing archaeal lineages represented by amoA gene
sequences
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resulting temperature. A MRT analysis was carried out in
order to link the abundance of the lineages to environmental
data. The analysis showed a two-leaf tree ordination primarily
based on their origin environments, deep sea vs. shallow
water (Fig. S6).

Rarefaction curves (Fig. S2) and diversity indices were
determined for the six types of habitats (Fig. 6). PD values

were higher in the Philippine deep-sea sediments and the
ESC, whereas hydrothermal vents hold the lowest PD value
(Fig. 6). Particularly, the Philippine deep sea and the ESC
showed the highest PSV values (that is, more over-dispersed),
whereas SCS coast, hydrothermal vent, and Okhotsk Sea with
the lowest (that is, more phylogenetically clustered).

Discussion

Molecular Ecological Pattern of AOA in the Northern SCS

The surface sediments of coastal, deep sea, upwelling, and
estuarine were used to delineate the ecological pattern of
AOA lineages so as to gain a comprehensive understanding
about this newly known ammonia-oxidizing prokaryote in
the SCS. A few features could be derived from the present
analyses. Firstly, the soil/sediment clade lineages were
absent in most samples from the SCS surface sediments
except for a few clones retrieved from sites 201, 407,
08CF7, and 525, but site 525 contributed to the most clones
(ca. 17), indicating this site was mostly affected by
terrestrial influence. Similar to reported studies, only
lineages related to the marine water column/sediment clade,
but not the soil/sediment clade related lineages, was
detected at deep-sea hydrothermal fields of the Southern
Mariana Trough [32], or a small number of the marine
water column/sediment clade-related lineages was present
in the present study. This could be resulted from the fact
that these samples without soil/sediment clade lineages
were not affected by the terrestrial influence. In contrast,
samples 201, 407, and 525 could be affected by the
terrestrial influence as the soil/sediment clade of AOA was
detected. Another possibility is the bias of the PCR primers
used which might not be efficient enough to amplify all
AOA lineages inhabiting in this environment because of the
lower similarity between the potential soil/sediment line-
ages and the known sequences deposited in the GenBank,
which were used to design the primers in this study.
Improvement in sensitivity of detection methods could

Figure 5 Hierarchical clustering analysis (UPGMA algorithm with
100 replicates Jackknife supporting test) for the all archaeal amoA
gene sequences from the western Pacific represented every clone
library according to the online UniFrac software

Figure 6 Hierarchical clustering analysis (UPGMA algorithm with 100
replicates Jackknife supporting test) for the all amoA gene sequences
from the western Pacific represented six different habitats calculated by
the online UniFrac software. The number of sequence (n), number of

libraries (Nlib), phylogenetic diversity with SD (PD±SD), and
phylogenetic species variability (PSV) in each habitat are given. SD
for PSV index was 0.001 for all habitats
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resolve this problem including the use of pyrosequencing
[35] or new genetic markers, e.g., nirK (nitrite reductases)
[2] and hcd (putative 4-hydroxybutyrate-CoA dehydratase)
genes [48, 69].

In the study areas, based on the UniFrac and CCA
analyses, two psychrophile and mesophile groups could be
distinguished. Water depth and the associated temperature
might be potential important factors to drive the distribution
patterns of these two large groups of AOA. In the marine
water column/sediment clade, most of the sequences could
be grouped with their closest lineages in the phylogenetic
tree. Six subclades were identified in the present phyloge-
netic tree based on the analyses of all sequences in the
western Pacific and closest sequences from other environ-
ments. Except for the Clade 1F, the AOA lineages were
broadly distributed into all other clades in the marine water
column/sediment clade indicating the marine features. Both
psychrophile and mesophile detected in this study could be
grouped with the relatives distributed in other sediments of
the Pacific, indicating some geographical factors could be
responsible for this similarity [13, 14]. For example, in
Clade IB, the sequences were mostly retrieved from the
shallow surface sediments in the northern SCS and ESC
[14]. Some endemic lineages were also present in the SCS,
e.g., some lineages in Clade IA indicating the geographical
distance resulting in the observed differences from other
environments. However, no sequence from the SCS was
affiliated with the base subclade (Clade 1F), which
included sequences retrieved from the hydrothermal
vents in the marine water column/sediment clade. It
seems that the different geographical distribution of the
AOA lineages in the SCS may be related to the history of the
environments.

General Features of AOA in the Western Pacific

Though studies have been carried out to explore the
diversity or the abundance of AOA in the western Pacific
[7, 8, 13–15, 32, 44], the scattered information could not
provide a concrete comprehensive view about this newly
revealed group of microorganism. For the first time, results
from different studies in the western Pacific were gathered
and analyzed to discuss the molecular ecological patterns of
the AOA, and this could provide a model to investigate the
role of AOA in the marine ecosystem.

As in the analyses of sequences from the SCS, the soil/
sediment clade was slimly present in the whole phylogenetic
tree. The highest phylogenetic diversities of AOAwere found
in the Philippine deep-sea sediments and the ESC, which were
affected by the terrestrial discharges, e.g., the Changjiang
Estuary and the Philippines Island. Previous studies indicated
that the AOA communities in terrestrial environments are
distinct from those in marine environments [49], whereas

other studies indicated that estuaries and coasts might harbor
mixed populations of AOA from soil and sediment sources
[4, 14]. The deposition of archaea from terrestrial source
could potentially explain the existence of the putative terrestrial
or estuarine AOA-related sequences in some of the deep-sea
sites [13]. The lowest PD values of hydrothermal vents
sediments suggest that the phylotypes were constrained and
were mostly endemic or thermophilic (Fig. 6). The hydro-
thermal vent environments were grouped into the deep-sea
sediments group, indicating that the ammonia-oxidizing
archaeal lineages exhibited higher deep-sea features than the
thermophilic feature.

A number of factors could be responsible for shaping the
diversity and distribution patterns of AOA. Firstly, sedimen-
tological conditions including pH values, temperature,
nutrient, organic matter contents, O2 concentrations, and
pore-water redox may play an important role affecting the
ecological distribution patterns [13–15, 29, 40]. However, as
the environmental parameters were highly variable in
different studies, it was impossible to carry out the same
multivariate statistic analysis on all of them. One MRT
analyses was employed, and the water depth was singled out
to be a potential important factor. On the other hand,
currents, tides, upwelling, hydrothermal vents, water mix-
ture, and the intensity and dynamics of these activities may
also influence the sediment AOA assemblages [15]. In this
area, current in the Taiwan Strait and the Philippines should
not be ignored [13]. However, the relationships between
AOA communities in the marine surface sediments and the
ecological conditions still need further confirmation. About
the thermophilic AOA [17, 24, 32, 68] and the comprehen-
sive review about AOA [49], the basic position of AOA in
the whole phylogeny and the marine water column/sediment
clade indicates a thermophilic evolutionary history of AOA,
and this could shed light on the evolutionary study of
ammonia oxidation. Otherwise, some geothermal events, for
example, volcanoes, hydrothermal vents, or hot geofluids
from deep subsurface biosphere or oil reservoirs, might be
responsible for some dispersal of thermophilic microorganisms
to the deep-sea surface sediments [27, 28].

Shallow Marine AOA in the Western Pacific

In the AOA community cluster analysis, the marine surface
sediment cluster of shallow water was grouped together and
in the shallow marine groups and the SCS coastal marine
samples shared high similarity with some from the ESC
than with other deep-sea sediment samples. These two
habitats with shallow water shared some lineages as shown
in the phylogenetic analysis, e.g., Clade 1A (Figs. 2 and
S3). In a former study, the current influence from the
Taiwan Strait was not strong [14], but the UniFrac analysis
indicated that site 201 close to the Taiwan Strait was
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grouped together with samples from the ESC, indicating the
higher phylogenetic similarity between them (Figs. 5 and
S5). One possible explanation was that the Taiwan Strait
current might be responsible for the similarity between site
201 and the ESC samples through carrying them into the
mixing zone between them or the close geographical
distance between them resulting in such phylogenetic
similarity.

The continental margin is the most important interface
between the terrestrial and marine environments, especially
in the cycling of nutrients [19]. SCS is the largest marginal
sea in the western Pacific with a deep section named China
Sea Basin, which is surrounded by broad continental
shelves less than 100 m in depth and the margin areas
from an important interface of the terrestrial and marine
environments. The AOA community at this area might be a
mixed population of both soil/sediment clade, and marine
water column/sediment clade. However, only site 201
showed the soil/sediment-related AOA resulting from the
long distance transport from the shore or estuaries of other
shallow sites in the SCS. On the other hand, the ECS close
to the Changjiang estuary mixing zone harbored a distinct
AOA community including the soil/sediment-related AOA
lineages [14]. The distribution of AOA communities
correlated significantly with the gradients of surface water
salinity and sediment sorting coefficient. The spatial distribu-
tion of putative soil-related AOA in certain sampling stations
indicated a strong impact of Changjiang freshwater discharge
on the marine benthic microbial ecosystem [14]. Besides the
freshwater, nutrients, organic matter, and suspended particles,
the Changjiang water might also contribute to the transport
of terrestrial source archaea into the marine water column
and sediments in the mixing zone along its flow path [14].
This could explain the existence of the putative soil-related
AOA lineages in the coastal sedimentary environments.

Deep-cold Sea Lineages in the Western Pacific

AOA may contribute to the deep-sea nitrate reservoirs [34],
but their ecological features were largely undetected for
most of the deep-sea sediments of the oceans [15]. A few
deep-sea sediments were compared in this study to
understand the ecological pattern of psychrophilic AOA
including the SCS deep sea, the Philippine deep sea, and
the Northern Japan deep sea (Okhotsk sea and another one
in Northern Japan Sea). The hydrothermal vents samples
were buried into the deep-sea group (Fig. 6). Recent studies
also showed that diverse and unique AOA lineages could
inhabit in the continental margin deep-sea sediments
[13, 44]. By comparison, AOA phylogenetic diversity was
higher in the Philippines cold deep-sea sediments than that
of the hypernutrified subtropical Bahía del Tóbari Estuary
[4], and similar to the temperate Changjiang estuary and its

adjacent East China Sea (Fig. 6), indicating in the tropical
West Pacific Continental Margin, the stations in the
Philippines inland seas (including station 3043) contained
AOA of various terrestrial sources, whereas the other
stations connected directly to the open Philippine Sea
showed AOA dominated by marine origin [13, 14]. Ocean
current may have a significant impact on the regional
marine ecosystem, as the Philippine Sea is a marginal sea of
the West Pacific and the Kuroshio Current, the largest
western boundary current of the Pacific Ocean [13]. The
importance of climatic events in the transport of terrestrial
microorganisms to the deep-sea sedimentary environments
is almost totally neglected previously. However, the present
study show that most AOA lineages have their closest
relatives in the northern SCS, indicating that these lineages
could be the endemic ones found in the western Pacific, not
only in the Philippines alone.

Okhotsk Sea represents of another type of deep-sea
sediments, which is a marginal sea located on the continental
slope offshore Sakhalin Island in the northwestern Pacific
Ocean and is one of the largest reservoir of methane hydrates
in the world [20]. Although the cold seep sediments may
have a limited O2 supply, archaeal amoA genes were detected
with lower diversity and abundance [15]. Through the
present comparative analysis, the diversity in this area was
similar to the SCS deep-sea sediments and higher than the
hydrothermal vent sediments (Fig. 6). In a former study,
AOA lineages from this area were affiliated to the GenBank
sequences originally obtained from deep-sea hydrothermal
vents and were proposed that the related AOA lineages
either have a wide range of temperature adaption or they
have a thermophilic evolutionary history in the modern cold
deep-sea sediments of the Okhotsk Sea [15]. This is
consistent with the current study in which the samples from
the hydrothermal vent sediments were clustered with the
other deep-sea habitats (Fig. 6). As in the former study, most
of the amoA sequences shared highest similarity with those
retrieved from these western Pacific areas in the present
study [15], especially the sequences from the Philippine
deep-sea sediments sequences (68.3%) [13], consistent with
the present study (Fig. 6). Though a few studies have
explored the ecology of AOA in the deep-sea sediments, the
physiology of AOA is less known in the O2-limited
environments, considering they are better known as the
aerobic AOA [12, 13, 15, 32, 34, 44, 63]. Another point is
that the hydroxylamine oxidoreductase encoding hao gene
responsible for the ammonia oxidation step is absent in the
genome of AOA [22, 23, 64], but the nitrite reductase gene
nirK has been identified widely in AOA [2, 55]. Based on
such information, recent available genomic data of Nitro-
sopumilus maritimus indicated that nitroxyl could also serve
as electron acceptor in a similar way as O2 to compensate for
the less availability which differs from the HAO employed in
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AOB [56, 64]. Additionally, a few endemic psychrophilic or
O2-repressed AOA lineages have been found, especially
from the Northern Japan deep sea showing larger genetic
distance with others from the water column/sediment clade,
indicating the psychrophiles could adapt to these habitats and
could provide evolutionary significance through adaptive
evolutionary analysis in future.

Conclusions

The marine water/sediment dominant distribution and a few
habitat-specific AOA subclades were identified in the AOA
clade of the phylogenetic tree. The distinctness of commu-
nity composition between shallow and deep-sea sediment
was observed, indicating the water depth and associated
temperature could be the main factors resulting in the
present phylogenetic diversity of AOA. Higher phyloge-
netic diversity was observed in the Philippines while lower
diversity in the hydrothermal vent habitat. Additionally,
current and other climate factors could also contribute to
the AOA distribution patterns based on comparison of
phylogenetic diversity. The current research provides a
comprehensive understanding the AOA in the western
Pacific and set an example for the study of the AOA in the
whole marine environments.

Acknowledgements This research was supported in part by a Ph.D.
studentship (H-LC) from The University of Hong Kong and in part by
grants from Agriculture, Fisheries and Conservation Department of the
Hong Kong Government (J-DG), and National Natural Science Founda-
tion of China (41076095), Knowledge Innovation Key Project of the
ChineseAcademy of Sciences (KZCX2-YW-QN207) (Y-GH).Wewould
like to thank Ms. Jessie Lai and Dr. Zhen-ye Zhao for the laboratory
assistance at The University of Hong Kong and Dr. Jean-Christophe
Auguet from Centre d'Estudis Avançats de Blanes, CEAB-CSIC,
Accés Cala Sant Francesc, Girona, Spain to help calculate the mean
PD values.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Auguet JC, Barberan A, Casamayor EO (2010) Global ecological
patterns in uncultured archaea. ISME J 4:182–190

2. Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010)
Homologues of nitrite reductases in ammonia-oxidizing archaea:
diversity and genomic context. Environ Microbiol 12:1075–1088

3. Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and
in situ evidence for bacterial and archaeal nitrifiers in the marine
sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

4. Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing
archaea and bacteria in the sediments of a hypernutrified subtropical

estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol
72:7767–7777

5. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008)
Mesophilic Crenarchaeota: proposal for a third archaeal phylum,
the Thaumarchaeota. Nat Rev Microbiol 6:245–252

6. Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT (2007) Ammonia
oxidation and ammonia-oxidizing bacteria and archaea from
estuaries with differing histories of hypoxia. ISME J 1:660–662

7. Cao H, Hong Y, Li M, Gu J-D (2011) Lower abundance of
ammonia-oxidizing archaea than ammonia-oxidizing bacteria
detected in the subsurface sediments of the Northern South China
Sea. Geomicrobiol J (in press)

8. Cao H, Hong Y, Li M, Gu J-D (2011) Diversity and abundance of
ammonia-oxidizing prokaryotes in sediments from the coastal
margin to the South China Sea. Antonie van Leeuwenhoek.
doi:10.1007/s10482-011-9610-1

9. Cao H, Li M, Dang H, Gu JD (2011) Responses of aerobic and
anaerobic ammonia/ammonium oxidizing microorganisms to
anthropogenic pollution in coastal marine environments. In: Klotz
MG, Stein LY (eds) Methods in enzymology, part B: research on
nitrification and related processes, vol 496. Academic Press, San
Diego, California, pp 35–62

10. Cao H, Li M, Hong Y, Gu J-D (2011) Diversity and abundance of
ammonia-oxidizing archaea (AOA) and bacteria (AOB) in
polluted mangrove sediment. Syst Appl Microbiol. doi:10.1016/
j.syapm.2010.11.023

11. Church MJ, Wai B, Karl DM, DeLong EF (2010) Abundance of
crenarchaeal amoA genes and transcripts in the Pacific Ocean.
Environ Microbiol 12:679–688

12. Coolen MJ, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MM,
Wakeham SG, Sinninghe Damste JS (2007) Putative ammonia-
oxidizing Crenarchaeota in suboxic waters of the Black Sea: a
basin-wide ecological study using 16S ribosomal and functional
genes and membrane lipids. Environ Microbiol 9:1001–1016

13. Dang H, Li J, Zhang X, Li T, Tian F, Jin W (2009) Diversity and
spatial distribution of amoA-encoding archaea in the deep-sea
sediments of the tropical West Pacific Continental Margin. J Appl
Microbiol 106:1482–1493

14. Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and
spatial distribution of sediment ammonia-oxidizing Crenarchaeota in
response to estuarine and environmental gradients in the Changjiang
Estuary and East China Sea. Microbiology 154:2084–2095

15. Dang H, Luan XW, Chen R, Zhang X, Guo L, Klotz MG (2010)
Diversity, abundance and distribution of amoA-encoding archaea
in deep-sea methane seep sediments of the Okhotsk Sea. FEMS
Microbiol Ecol 72:370–385

16. De'Ath G (2002) Multivariate regression trees: a new technique
for modeling species-environment relationships. Ecology
83:1105–1117

17. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA
(2008) Cultivation of a thermophilic ammonia oxidizing archaeon
synthesizing crenarchaeol. Environ Microbiol 10:810–818

18. Faith DP (1992) Conservation evaluation and phylogenetic
diversity. Biol Conserv 61:1–10

19. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005)
Ubiquity and diversity of ammonia-oxidizing archaea in water
columns and sediments of the ocean. Proc Natl Acad Sci USA
102:14683–14688

20. Ginsburg GD, Soloviev VA, Cranston RE, Lorenson TD,
Kvenvolden KA (1993) Gas hydrates from the continental slope,
offshore Sakhalin Island, Okhotsk Sea. Geo-Mar Lett 13:41–48

21. Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than
bacteria control nitrification in two agricultural acidic soils. FEMS
Microbiol Ecol 74:566–574

22. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y,
Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF

Ammonia-oxidizing Archaea in Western Pacific 821

http://dx.doi.org/10.1007/s00248-011-9901-0
http://dx.doi.org/10.1016/j.syapm.2010.11.023
http://dx.doi.org/10.1016/j.syapm.2010.11.023


(2006) Genomic analysis of the uncultivated marine crenarchaeote
Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–
18301

23. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K,
Richardson PM, DeLong EF (2006) Pathways of carbon assimilation
and ammonia oxidation suggested by environmental genomic
analyses of marine Crenarchaeota. PLoS Biol 4:e95

24. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A,
Daims H, Wagner M (2008) A moderately thermophilic ammonia-
oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA
105:2134–21349

25. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic
measures of biodiversity. Am Nat 169:68–83

26. Herrmann M, Saunders AM, Schramm A (2009) Effect of lake
trophic status and rooted macrophytes on community composition
and abundance of ammonia-oxidizing prokaryotes in freshwater
sediments. Appl Environ Microbiol 75:3127–3136

27. Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V,
Ferdelman T, Finster K, Christensen FM, Rezende JR, Vandieken
V, Jørgensen BB (2009) A constant flux of diverse thermophilic
bacteria into the cold Arctic seabed. Science 325:1541–1544

28. Inagaki F, Takai K, Komatsu T, Kanamatsu T, Fujioka K,
Horikoshi K (2001) Archaeology of Archaea: geomicrobiological
record of Pleistocene thermal events concealed in a deep-sea
subseafloor environment. Extremophiles 5:385–392

29. Jackson CR,Weeks AQ (2008) Influence of particle size on bacterial
community structure in aquatic sediments as revealed by 16S rRNA
gene sequence analysis. Appl Environ Microb 74:5237–5240

30. Jia Z, Conrad R (2009) Bacteria rather than archaea dominate
microbial ammonia oxidation in an agricultural soil. Environ
Microbiol 11:1658–1671

31. Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C
(2010) RNA-based investigation of ammonia-oxidizing archaea in
hot springs of Yunnan Province, China. Appl Environ Microbiol
76:4538–4541

32. Kato S, Kobayashi C, Kakegawa T, Yamagishi A (2009) Microbial
communities in iron-silica-rich microbial mats at deep-sea
hydrothermal fields of the Southern Mariana Trough. Environ
Microbiol 11:2094–2111

33. Kembel S, Ackerly D, Blomberg S, Cowan P, Helmus M, Webb C
(2008) Picante: tools for integrating phylogenies and ecology.
Version 0.4.0. Available at http://picante.r-forge.r-project.org/

34. Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert
CJ, Amann R, Thamdrup B, Kuypers MM (2007) Linking
crenarchaeal and bacterial nitrification to anammox in the Black
Sea. Proc Natl Acad Sci USA 104:7104–7109

35. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011)
Pyrosequencing reveals highly diverse and species-specific microbial
communities in sponges from the Red Sea. ISME J 5:650–664

36. Li M, Cao H, Hong Y, Gu J-D (2011) Spatial distribution and
abundance of ammonia-oxidizing archaea (AOA) and ammonia-
oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol
Biotechnol 89:1243–1254

37. Liu Z, Huang S, Sun G, Xu Z, Xu M (2011) Diversity and
abundance of ammonia-oxidizing archaea in the Dongjiang River,
China. Microbiol Res. doi:10.1016/j.micres.2010.08.002

38. López-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects
of sponge bleaching on ammonia-oxidizing archaea: distribution
and relative expression of ammonia monooxygenase genes
associated with the barrel sponge Xestospongia muta. Microb
Ecol 60:561–571

39. Lozupone C, Hamady M, Knight R (2006) UniFrac-an online tool
for comparing microbial community diversity in a phylogenetic
context. BMC Bioinforma 7:371

40. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR,
Stahl DA (2009) Ammonia oxidation kinetics determine niche

separation of nitrifying archaea and bacteria. Nature 461:976–
979

41. McArdle B (2001) Fitting multivariate models to community data:
a comment on distance-based redundancy analysis. Ecology
82:290–297

42. Molina V, Belmar L, Ulloa O (2010) High diversity of ammonia-
oxidizing archaea in permanent and seasonal oxygen-deficient
waters of the eastern South Pacific. Environ Microbiol 12:2450–
2465

43. Mosier AC, Francis CA (2008) Relative abundance and diversity
of ammonia-oxidizing archaea and bacteria in the San Francisco
Bay estuary. Environ Microbiol 10:3002–3016

44. Nakagawa T, Mori K, Kato C, Takahashi R, Tokuyama T (2007)
Distribution of cold-adapted ammonia-oxidizing microorganisms
in the deep-ocean of the northeastern Japan Sea. Microbes
Environ 22:365–372

45. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence
of soil pH on the diversity, abundance and transcriptional activity of
ammonia oxidizing archaea and bacteria. Environ Microbiol
10:2966–2978

46. Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB,
Kikuchi T, Kazama H, Hosoi-Tanabe S, Nakamura K, Kinoshita
M, Hirayama H, Inagaki F, Tsunogai U, Ishibashi J, Takai K
(2010) Archaeal diversity and distribution along thermal and
geochemical gradients in hydrothermal sediments at the Yonaguni
Knoll IV hydrothermal field in the Southern Okinawa trough.
Appl Environ Microbiol 76:1198–11211

47. Oksanen J, Kindt R, Legendre P, O'hara B, Simpson GL, Stevens
MHH (2008) Vegan: community ecology package. Version 1.11.14.
Available at http://vegan.r-forge.r-project.org

48. Offre P, Nicol GW, Prosser JI (2011) Community profiling and
quantification of putative autotrophic thaumarchaeal communities in
environmental samples. Environ Microbiol Reports. doi:10.1111/
j.1758-2229.2010.00217.x

49. Prosser JI, Nicol GW (2008) Relative contributions of archaea and
bacteria to aerobic ammonia oxidation in the environment.
Environ Microbiol 10:2931–2941

50. Rogers DR, Casciotti KL (2010) Abundance and diversity of
archaeal ammonia oxidizers in a coastal groundwater system.
Appl Environ Microbiol 76:7938–7948

51. Sahan E,Muyzer G (2008) Diversity and spatio-temporal distribution
of ammonia-oxidizing archaea and bacteria in sediments of the
Westerschelde estuary. FEMS Microbiol Ecol 64:175–186

52. Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts
in the relative abundance of ammonia-oxidizing bacteria and
archaea across physicochemical gradients in a subterranean
estuary. Environ Microbiol 10:1068–1079

53. Santoro AE, Casciotti KL, Francis CA (2010) Activity, abundance
and diversity of nitrifying archaea and bacteria in the central
California Current. Environ Microbiol 12:1989–2006

54. Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn
S, Sharma S, Wilke BM,Matthies M, Smalla K, Munch JC, Amelung
W, Kaupenjohann M, Schloter M, Schleper C (2009) Dynamics and
functional relevance of ammonia-oxidizing archaea in two agricultural
soils. Environ Microbiol 11:446–456

55. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of
uncultivated archaea. Nat Rev Microbiol 3:479–488

56. Schleper C, Nicol GW (2010) Ammonia-oxidising archaea-
physiology, ecology and evolution. Adv Microb Physiol 57:1–41

57. Schloss PD, Handelsman J (2006) Introducing SONS, a tool for
operational taxonomic unit-based comparisons of microbial
community memberships and structures. Appl Environ Microbiol
72:6773–6779

58. Sonthiphand P, Limpiyakorn T (2011) Change in ammonia-oxidizing
microorganisms in enriched nitrifying activated sludge. Appl Micro-
biol Biotechnol 89:843–853

822 H. Cao et al.

http://picante.r-forge.r-project.org/
http://dx.doi.org/10.1016/j.micres.2010.08.002
http://vegan.r-forge.r-project.org
http://dx.doi.org/10.1111/j.1758-2229.2010.00217.x
http://dx.doi.org/10.1111/j.1758-2229.2010.00217.x


59. Spang A, Hatzenpichler R, Brochler-Armanet C, Rattei T, Tischler
P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010)
Distinct gene set in two different lineages of ammonia-oxidizing
archaea supports the phylum Thaumarchaeota. Trends Microbiol
18:331–340

60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S
(2011) MEGA5: molecular evolutionary genetics analysis using
likelihood, distance, and parsimony methods. Mol Biol Evol.
doi:10.1093/molbev/msr113

61. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and
CanoDraw for Windows User's Guide: Software for Canonical
Community Ordination (Version 4.5). Microcomputer Power, Ithaca

62. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D,
Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE,
Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J,
Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers
YH, Smith HO (2004) Environmental genome shotgun sequencing
of the Sargasso Sea. Science 304:66–74

63. Wang S, Xiao X, Jiang L, Peng X, Zhou H, Meng J, Wang F
(2009) Diversity and abundance of ammonia-oxidizing archaea in
hydrothermal vent chimneys, Juan de Fuca Ridge. Appl Environ
Microbiol 75:4216–4220

64. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp
DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollabgir A, Hemp

J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T,
Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM,
Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus
maritimus genome reveals unique mechanisms for nitrification
and autotrophy in globally distributed marine Crenarchaea. Proc
Natl Acad Sci USA 107:8818–8823

65. Wankel SD, Mosier AC, Hansel CM, Paytan A, Francis CA (2011)
Spatial variability in nitrification rates and ammonia-oxidizing
microbial communities in the agriculturally-impacted Elkhorn
Slough Estuary. Appl Environ Microbiol 77:269–280

66. Weidler GW,Gerbl FW, Stan-Lotter H (2008)Crenarchaeota and their
role in the nitrogen cycle in a subsurface radioactive thermal spring
in the Austrian Central Alps. Appl Environ Microbiol 74:5934–5942

67. WuY,XiangY,Wang J, Zhong J, He J,WuQ (2010) Heterogeneity of
archaeal and bacterial ammonia-oxidizing communities in Lake
Taihu, China. Environ Microbiol Reports 2:569–576

68. Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W,
Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS,
Shock EL, Hedlund BP (2008) Global occurrence of archaeal
amoA genes in terrestrial hot springs. Appl Environ Microbiol
74:6417–6426

69. Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI
(2010) Autotrophic ammonia oxidation by soil thaumarchaea.
Proc Natl Acad Sci USA 107:17240–17245

Ammonia-oxidizing Archaea in Western Pacific 823

http://dx.doi.org/10.1093/molbev/msr113

	Phylogenetic Diversity and Ecological Pattern of Ammonia-oxidizing Archaea in the Surface Sediments of the Western Pacific
	Abstract
	Introduction
	Materials and Methods
	Sampling and Molecular Experiments
	Phylogenetic and Statistical Analyses
	Comparative Analyses between the SCS and Other Habitats in the Western Pacific
	Nucleotide Sequences Accession Numbers

	Results
	Environmental Parameters and the Diversity and Richness of amoA Gene Sequences
	Phylogenetic Analysis of Archaeal amoA Gene in the SCS Surface Sediments
	Community of AOA Based on Phylogenetic Diversity in the Western Pacific

	Discussion
	Molecular Ecological Pattern of AOA in the Northern SCS
	General Features of AOA in the Western Pacific
	Shallow Marine AOA in the Western Pacific
	Deep-cold Sea Lineages in the Western Pacific

	Conclusions
	References


