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Abstract
Objective—Outcome and family history data differentiate children with severe mood
dysregulation (SMD), a syndrome characterized by chronic irritability, from children with
“classic,” episodic bipolar disorder (BD). Nevertheless, the presence of cognitive inflexibility in
both SMD and BD highlights the need to delineate neurophysiological similarities and differences
between the two patient groups. We used fMRI to examine neural correlates of cognitive
flexibility deficits in SMD and BD vs. healthy volunteers (HV).

Method—During fMRI, subjects completed a response reversal task that assesses cognitive
flexibility (N=22 SMD, 26 BD, 34 HV). We examined task effects in four regions of interest:
caudate, cingulate gyrus, inferior frontal gyrus (IFG), and ventromedial prefrontal cortex.

Results—Diagnosis-by-accuracy interactions emerged in caudate and IFG. In these regions, we
calculated the difference in activation between incorrect vs. correct trials. In caudate, this value
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was smaller in both SMD and BD than in HV. In IFG, however, this value was smaller in SMD
than in both BD and HV. Post-hoc analyses indicate that comorbid ADHD in patients may
influence the caudate findings. Exploratory whole-brain analysis confirmed the caudate and IFG
findings. In addition, other regions differentiating SMD and BD were identified (e.g., superior
parietal lobule/precuneus and inferior temporal gyrus).

Conclusions—In response to errors, similar perturbations occur in the caudate for SMD and BD
youth relative to HV youth. IFG deficits, in contrast, manifest in SMD, but not BD, youth.
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Introduction
Debate centers on whether severe chronic irritability is a developmental presentation of
bipolar disorder (BD). Leibenluft et al. operationalized severe mood dysregulation (SMD) to
capture children with chronic, non-episodic irritability1. Outcome and family history data2–4

differentiate youth with SMD from those with ‘classic,’ episodic BD. Nevertheless, the two
conditions share some neuropsychological deficits. For example, on behavioral measures of
face-emotion labeling and emotion regulation, SMD and BD patients both differ from
healthy volunteers (HV). Importantly, however, these shared behavioral deficits reflect
disorder-specific neural profiles5,6. The demonstration of disorder-specific neural
dysfunction, in the context of similar-appearing behavioral deficits, highlights the
importance of utilizing neuroimaging to probe differences between SMD and BD.
Examining neural activity in SMD and BD could isolate syndrome-specific dysfunction,
ultimately leading to better diagnosis and treatment.

Clinically significant irritability is common in both patient groups, although in SMD it is
persistent, whereas in BD it is episodic1. Irritability manifests as a low threshold for anger in
response to negative stimuli, and it can be precipitated by frustration7. Frustration occurs
when an action fails to elicit an expected outcome8. Individuals with deficits in adapting to
changing contingencies are at increased risk for frustration. Such deficits can be identified
using cognitive flexibility paradigms, including reversal learning tasks. In such tasks, two
stimuli, “A-B”, are presented, and participants learn by trial-and-error that “A,” but not “B,”
is rewarded (acquisition phase). Then, without warning, the stimulus/reinforcement
relationship reverses, so that participants must learn that now “B,” but not “A,” is rewarded
(reversal phase).

Behavioral deficits in reversal learning are prominent in BD youth and may occur in SMD
youth9–11. Prior work also finds frontal and parietal hyperactivation in BD vs. HV during
reversal learning12. However, since no imaging studies examine reversal learning in SMD,
research is needed comparing the neural correlates of reversal learning in SMD and BD.

Imaging studies focused on clearly-defined neuroanatomical circuits often use a region-of-
interest (ROI) approach, especially when examining psychopathology13–16. This approach
maximizes a study’s ability to identify between-group differences, and it directly extends
prior work linking behaviors to specific circuits across a range of species. The anatomical
circuit mediating reversal learning has been precisely mapped in humans, non-human
primates, and rodents. The circuit encompasses ventromedial prefrontal cortex
(vmPFC)8,17–23, cingulate gyrus22,24–27, inferior frontal gyrus (IFG)28–37, and caudate
nucleus28,38–40. In this circuit, the vmPFC represents reinforcement information28,41 and
encodes the value of actions42. The cingulate gyrus, IFG, and caudate act together to
respond to errors28. Specifically, the cingulate gyrus registers the need to resolve response
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conflict signaled by errors43, whereas IFG facilitates such conflict resolution through motor
response selection28, response inhibition44, and attention control45. The caudate nucleus
supports motor learning, thus allowing adaptation to errors46. Work implicating these four
regions in reversal learning justifies their selection in the current study as a priori ROIs.
Nevertheless, for completeness, we also report results from an exploratory whole-brain
analysis.

We tested the hypothesis that neural activity during reversal learning differentiates SMD,
BD, and HV youths. Given evidence of reversal-learning deficits in SMD and BD9,11, we
examined the diagnosis-by-phase-by-accuracy interaction to test for group differences in
response to reversal errors. Additionally, we modeled the diagnosis-by-phase interaction to
investigate group differences across the reversal phase, including both correct and incorrect
trials. Finally, given reports of abnormal error signals47 and contingency-learning deficits in
pediatric BD10,48, we examined the diagnosis-by-accuracy interaction to elucidate group
differences in response to errors regardless of phase.

Method
Data from 82 subjects were included: 22 SMD, 26 BD, and 34 HV (15 BD and 15 HV
published previously12). Subjects provided informed consent/assent. Full recruitment and
diagnostic methods are described previously1,5.

Childhood Depression Rating Scale (CDRS)49 and Childhood Global Assessment Scale
(CGAS)50 were administered to patients. Young Mania Rating Scale (YMRS)51 was
administered to BD, but not SMD as hypo/mania is exclusionary. The Wechsler Abbreviated
Scale of Intelligence (WASI)52 and Tanner self-report measure53,54 were administered to all
subjects.

In-Scanner Task
This probabilistic response reversal task elicits fronto-striatal activity12,56 using six 6.5-
minute, 135-trial runs. Each 2500ms trial (1600ms stimulus presentation, 900ms feedback)
presented objects in pairs, and subjects were instructed to choose the “correct” object.
Subjects were told that one object would tend to be correct but that the contingencies might
reverse, as detailed previously12,56 (and see Supplement 1, available online).

Behavioral Analysis
We used a three (diagnosis: SMD, BD, HV) by two (phase: acquisition, reversal) repeated-
measures ANOVA for accuracy. ANOVA also compared groups on number of non-response
trials.

MR Imaging
Images were acquired on a 1.5-T GE scanner using gradient echo-planar imaging
(TR=2500ms, TE=30ms, 24×24 FOV, flip angle=90°) and 29 4-mm slices, across 147 time-
points. A high-resolution scan was acquired (1.5-mm slices, 3-dimensional FSPGR, 20° flip
angle, 256×192 matrix, 24cm FOV).

fMRI Analysis
Analysis used Analysis of Functional Neuroimages (AFNI)57. Preprocessing involved (1)
despiking, (2) alignment, (3) anatomical coregistration, (4) spatially smoothing data (6mm
rms deviation Gaussian blur), (5) masking, and (6) intensity-scaling, producing data in
Talairach space. TRs with extreme motion were censored, and motion parameters were
included as covariates. TRs n and n-1 were censored if the normed motion vector between
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time-points was greater than 2mm. Subjects with more than 10% of TRs censored were
excluded. SMD had a higher percentage of censored TRs than BD (p=0.005) or HV
(p=0.003).

As detailed elsewhere12,56, trials were categorized by phase (acquisition or reversal),
accuracy (correct or incorrect, based on subject response), and reinforcement (reward or
punishment), yielding nine events: (1) acquisition correct win (“acquisition correct”); (2)
acquisition correct lose; (3) acquisition incorrect win; (4) acquisition incorrect lose
(“acquisition incorrect”); (5) reversal correct win (“reversal correct”); (6) reversal correct
lose; (7) reversal incorrect win; (8) reversal incorrect lose (“reversal incorrect”); (9) no
response. For parsimony, correct trials with lose feedback and incorrect trials with win
feedback are excluded; therefore, correct-win trials are referred to as “correct,” and
incorrect-lose trials as “incorrect.” Individual modeling was performed using a GAM model
for each event type regressor plus motion parameters. Beta coefficients and associated t-
statistics were calculated for each voxel and each regressor. We were interested in four
regressors: acquisition correct, acquisition incorrect, reversal correct, and reversal incorrect.

AFNI’s GroupAna was used to run a 3×2×2 ANOVA: diagnosis (SMD, BD, HV) X phase
(acquisition, reversal) X accuracy (correct, incorrect). The following interactions were
examined: 1) diagnosis-by-phase-by-accuracy; 2) diagnosis-by-phase; 3) diagnosis-by-
accuracy. Given extensive prior literature, group-level analyses adopted two approaches58.
First, we examined four ROIs: caudate, cingulate gyrus, IFG, and vmPFC, delimited with
bilateral masks created using the Talairach dataset in the AFNI Draw Dataset tool, re-
sampled to 3×3×3mm, and thresholded at p<0.005. Monte Carlo simulation determined
cluster-extent thresholds at p<0.05 corrected in each ROI: caudate: 7; cingulate: 23; IFG: 23;
vmPFC: 20. Because we were interested in event-specific between-group differences, we
decomposed the interactions. Mean BOLD signal in each significant cluster was extracted
for each subject for all event types of interest. Difference scores for activity to specific
events were compared across groups.

As in previous studies, an exploratory whole-brain analysis using a lower statistical
threshold than the ROI analyses15 was also conducted. Criteria for statistical significance
included individual voxel height intensity of p<0.005 and cluster extent threshold of k>20
voxels59.

Finally, because of a main effect of diagnosis on the number of total correct trials, we re-ran
the primary ROI ANOVAs as ANCOVAs, with total correct trials as a covariate. Using
Spearman’s correlations, we examined correlations between accuracy and activation.

Post-Hoc Analyses: Comorbidity, Mood, Pubertal Effects, and Age
Given high rates of comorbid Attention Deficit Hyperactivity Disorder (ADHD) and
anxiety, and the difference in the rate of Oppositional Defiant Disorder (ODD) between
patient groups, we examined possible effects of comorbidity using post-hoc repeated-
measures ANOVAs. Again, we decomposed significant interactions by calculating
difference scores and comparing them with independent t-tests. We also examined possible
effects of puberty and mood on the primary results by conducting Spearman correlations
using average Tanner60, mood (CDRS, YMRS) and impairment (CGAS) scales correlated
with signal extractions from the significant clusters. As we did not have a priori hypotheses
for these analyses, these correlations were Bonferroni-corrected. Because of the subjects’
large age range, we ran Spearman correlations between activation and age across all subjects
and in each diagnostic group separately, comparing the latter with Fisher r-to-z
transformations.
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Results
Participants

Groups did not differ in age, IQ, or gender (Table 1). Groups tended to differ on Tanner
scores (ANOVA p=0.096), with lower scores in SMD vs. HV (p=0.062) and BD (p=0.053).
SMD had higher rates of ODD (p=0.008) and tended to be more impaired on CGAS
(p=0.09) than BD. All SMD and 16 BD were euthymic (YMRS<12, CDRS<40). SMD had
lower CDRS scores than BD (p=0.043).

Behavior
Groups did not differ in non-responses. Repeated measures ANOVA revealed no diagnosis-
by-phase interaction. There was a main effect of diagnosis (p=0.005); SMD had fewer total
correct trials than HV (p=0.001) or BD (p=0.027).

Imaging
ROI—No clusters exhibited diagnosis-by-phase-by-accuracy or diagnosis-by-phase
interactions. Two clusters exhibited diagnosis-by-accuracy interactions (Figures 1, 2): right
caudate (459mm3, p=0.002) and right IFG (621mm3, p=0.001).

Diagnosis-by-accuracy
In caudate, the interaction reflected smaller difference scores (incorrect – correct) in SMD
(p<0.001) and BD (p=0.007) relative to HV (Figure 1b); SMD and BD did not differ. In
IFG, the interaction reflected an abnormal response only in SMD. Specifically, SMD had
smaller difference scores than both BD (p=0.035) and HV (p<0.001; Figure 2b). HV and BD
did not differ (p=0.073). In the ANCOVA co-varying for total number of correct trials, both
diagnosis-by-accuracy interactions remained significant (caudate: p=0.007, IFG: p=0.006),
suggesting that performance differences did not account for the between-group activation
differences.

Across all subjects, total-number correct correlated with difference score in both ROIs (IFG:
Spearman’s r=0.30, p=0.007; caudate: Spearman’s r=0.35, p=0.001). Thus, engagement of
IFG and caudate relates to task performance.

Exploratory Whole-Brain Analysis—Significant clusters were evident for diagnosis-
by-phase-by-accuracy, diagnosis-by-phase, and diagnosis-by-accuracy interactions (Table 2
and Table S1, available online).

Diagnosis-by-phase-by-accuracy
Diagnosis-by-phase-by-accuracy interactions were evident in three parietal regions,
reflecting aberrant responses in SMD during incorrect reversal trials. In these three regions,
SMD had greater activation than HV to incorrect reversal trials; SMD also showed
hyperactivation vs. BD in two of these regions. There was also a three-way interaction in
superior temporal gyrus (STG)/insula, where SMD and BD showed hyperactivation relative
to HV during incorrect acquisition trials.

Diagnosis-by-phase
Diagnosis-by-phase interactions were found in five temporal regions and right middle
frontal gyrus. Difference scores (acquisition minus reversal) were greater for SMD than HV
in every region (e.g., see Figure 3), and in SMD than BD in all regions except left STG/
insula.
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Diagnosis-by-accuracy
Diagnosis-by-accuracy interactions were found in frontal and cerebellar regions and right
caudate. Generally, as in the ROI analyses, while HV response differentiated incorrect vs.
correct trials, response in SMD did not differentiate incorrect vs. correct trials (in four of
five regions), and the pattern in BD was mixed. Notably, the diagnosis-by-accuracy
interactions identified in right caudate and right IFG in the ROI analyses were replicated in
the whole-brain analysis (as shown in bold in Table 2). Specifically, in caudate, both SMD
and BD difference scores (incorrect minus correct) were smaller than those of HV (p<0.001
and p=0.017, respectively). However, in IFG, SMD difference scores were lower than those
of both BD and HV (p=0.016 and p<0.001, respectively).

Post-Hoc Analyses—All post-hoc analyses were conducted on the results in caudate and
IFG from the primary ROI analysis.

Anxiety
Repeated measures ANOVAs used three groups: HV (n=34), SMD and BD participants with
anxiety (+Anx, n=22 [12 BD, 10 SMD]), SMD/BD without anxiety (−Anx, n=26 [14 BD,
12 SMD]). There were group-by-accuracy interactions in both regions (caudate: p=0.003;
IFG: p=0.002). In caudate, +Anx and −Anx had smaller difference scores than HV (p=0.008
and p<0.001, respectively); +Anx and −Anx did not differ. In IFG, +Anx and −Anx again
had smaller difference scores than HV (p<0.001 and p=0.050, respectively); +Anx and
−Anx did not differ. Therefore, group differences in our primary analyses were not driven
by comorbid anxiety disorders.

ODD
Repeated measures ANOVAs used three groups: HV (n=34), SMD and BD patients with
ODD (+ODD, n=24 [8 BD, 16 SMD]), SMD/BD patients without ODD (−ODD, n=24 [18
BD, 6 SMD]). There were group-by-accuracy interactions in both regions (caudate:
p=0.003; IFG: p=0.004). In caudate, both +ODD and −ODD had smaller difference scores
than HV (p=0.003 for both comparisons); +ODD and −ODD did not differ. In IFG, +ODD
and −ODD had smaller difference scores than HV (p=0.002 and 0.025, respectively); +ODD
and −ODD did not differ. These findings suggest that between-group differences in our
primary analyses were not driven by comorbid ODD in patients.

ADHD
Repeated measures ANOVAs compared three groups: HV (n=34); SMD and BD
participants with ADHD (+ADHD, n=31 [14 BD, 17 SMD]); SMD/BD participants without
ADHD (−ADHD, n=17 [12 BD, 5 SMD]) (Figure 4). There were group-by-accuracy
interactions in both regions (p<0.001). In caudate, +ADHD had smaller difference scores
than both HV (p<0.001) and −ADHD (p=0.030); −ADHD tended to have smaller difference
scores than HV (p=0.084). In IFG, +ADHD had smaller difference scores than HV
(p<0.001) but did not differ from −ADHD; −ADHD tended to have a smaller difference
scores than HV (p=0.085).

We also used independent-sample t-tests (without correction for multiple comparison) to
compare the difference scores of SMD and BD subgroups based on ADHD comorbidity:
SMD with ADHD (SMD+ADHD, n=17), SMD without ADHD (SMD−ADHD; n=5, given
small N, this group was excluded from analyses), BD with ADHD (BD+ADHD, n=14), BD
without ADHD (BD−ADHD, n=12). SMD+ADHD and BD+ADHD did not differ in
caudate, but there was a trend difference in the IFG (p=0.076) (Figure 4). Additionally,
SMD+ADHD also tended to have smaller IFG difference scores than BD−ADHD
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(p=0.068). BD patients with and without ADHD did not differ from each other in either
ROI. These results suggest that comorbid ADHD is not likely to be driving the observed
differences between SMD and BD in the IFG.

Mood, Impairment, Puberty, and Age
There were no correlations between mean Tanner, CDRS, YMRS, or CGAS scores and
activation to correct or incorrect trials in either ROI.

There were no correlations between age and difference scores in caudate, whether this was
analyzed across all subjects or separately by group. However, IFG difference scores
correlated with age across all subjects (Spearman’s r=0.34; p=0.002), and similar
correlations were seen in each group separately (Spearman’s r between 0.29–0.40, p’s
between 0.044–0.096). Fisher r-to-z transformation showed that the group correlation
coefficients did not differ (all p’s>0.65).

Discussion
This is the first study comparing brain function during reversal learning in SMD, BD, and
HV. We examined diagnosis-by-phase-by-accuracy, diagnosis-by-phase, and diagnosis-by-
accuracy interactions. In the ROI analyses, only the diagnosis-by-accuracy interaction
resulted in significant clusters; subsequent analyses demonstrated that the most salient
neural differences between SMD, BD, and HV were in response to errors, regardless of
phase. To elucidate these findings, the difference in activation during incorrect vs. correct
trials was calculated. In caudate, this value was smaller in SMD and BD than in HV. In IFG,
however, this value was smaller in SMD than in both BD and HV. Post-hoc analyses
indicated that comorbid ADHD might influence these findings, particularly in caudate.
Whole-brain analysis confirmed the IFG and caudate findings.

Behaviorally, SMD made more errors across the entire task than did the other two groups;
their deficit was not limited to the reversal phase. Some out-of-scanner work in larger
samples demonstrates specific reversal-learning deficits in both SMD and BD9–11; thus, our
study resembles others that, across a variety of paradigms, find intact in-scanner
performance despite in-clinic deficits56,61. Taken together, current and prior data suggest
that behavioral deficits observed in the scanner in SMD and in out-of-scanner testing in
SMD and BD9,11 reflect deficient engagement of IFG in SMD and of caudate in both SMD
and BD following errors. Neither SMD nor BD exhibited the normative increase in caudate
activity to incorrect trials, suggesting both have difficulty learning from errors, an important
caudate function46 that could reflect dopamine dysfunction. Dopamine signaling modulates
reward-based38 and feedback-dependent62 learning; such learning deficits can result in
perseveration63.

Unlike caudate dysfunction, which manifested in both groups, SMD, but not BD, failed to
show the expected, normal increase in IFG activity during incorrect trials. Thus, while
caudate dysfunction characterized both SMD and BD, frontal dysfunction was unique to
SMD. Frontal projections modulate striatal activity, so IFG and caudate are part of a circuit
that adjusts behavior following an error28,64. IFG also mediates functions necessary for
response selection, including attention maintenance and representation of contingencies,
context, and goals. Right IFG plays an important role in response inhibition44, and a recent
study indicates that IFG activity is modulated by the response control demands of a motor
task65.

Speculatively, chronic SMD symptomatology may result from persistent fronto-striatal
dysfunction, while episodic impairment in BD may reflect intermittent prefrontal
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dysfunction. SMD exhibited IFG and caudate dysfunction, as well as fewer correct trials
than the other groups. In BD, on the other hand, IFG response and task performance are
more similar to HV; perhaps intact IFG function enables BD subjects to compensate for
basal ganglia dysfunction. Most patients were euthymic when scanned; while IFG
dysfunction is amongst the most consistently reported finding in BD, a recent metaanalysis
suggested such IFG dysfunction may be present during mania but not euthymia or
depression66. Future longitudinal studies of BD patients in different mood states are required
to test this possibility.

Our results are consistent with prior work. Using the stop signal task in a partially
overlapping sample, we found that, relative to controls, BD had hypoactivation in IFG and
striatum during unsuccessful attempts to inhibit motor responses47 (i.e., in response to
error). Thus, using first a motor inhibition task in BD47 and then a response reversal task in
BD and SMD, we identified neural dysfunction that may compromise the ability of both
groups to adapt their behavior in response to changing contingencies, causing an increased
propensity to experience frustration and irritability67.

Post-hoc analyses suggest that comorbid ADHD may contribute to our caudate findings:
patients with ADHD differed from those without ADHD in response to incorrect vs. correct
trials, and patients without ADHD more closely resembled controls. In IFG, patients with
ADHD did not differ from those without ADHD in response to incorrect vs. correct trials,
rendering it less likely that the between-group differences we observed were secondary to
ADHD. Our caudate results here are consistent with our previous stop signal findings, where
we could not rule out the role of comorbid ADHD in the aberrant neural responses of BD
patients during unsuccessful inhibition47. A study using the same response reversal
paradigm as here and a different analytic strategy found no neural deficits in ADHD
patients56, but other data suggest abnormal activation in ADHD during related cognitive
tasks (e.g., behavioral deficits and aberrant IFG and caudate activity in ADHD during
response inhibition68–70).

The role of ADHD in our findings is difficult to ascertain because ADHD is present in 77%
of the SMD sample; SMD inclusion criteria require three “hyperarousal” symptoms
common to ADHD and mania. However, it is unclear whether the pathophysiology of
ADHD in the context of SMD or BD is the same as that of ADHD without irritability.
Studies report different neural activity5 and neurological symptoms71 in SMD or BD
(including those with comorbid ADHD) vs. ADHD alone, again suggesting the importance
of using behavioral and neuroimaging data, in addition to symptoms, to differentiate
syndromes. Importantly, the current study was not designed to ascertain explicitly the
impact of ADHD on the pathophysiology of SMD or BD, since to do so one would need to
compare patients with “pure” ADHD without comorbid irritability to patients with SMD,
BD, and HV5.

A major strength of this study is the comparison of two clinical populations to each other
and a healthy group. Most psychiatric imaging studies compare one clinical population to a
healthy group, and thus cannot differentiate disease-unique and disease-common
abnormalities in diagnoses with overlapping symptoms. The extent to which SMD and BD
children differ from controls but resemble each other indicates overlapping disease
substrates. Here, both disorders exhibit striatal dysfunction. On the other hand, differences
between clinical groups may indicate disorder-specific abnormalities with important
diagnostic and treatment implications; here, we found differences between patient groups in
prefrontal cortex function. However, there may be a dimensional component to IFG
dysfunction in this task: like SMD, BD may not increase IFG response to incorrect trials as
much as HV; the comparison between BD and HV is at a trend level and therefore
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equivocal. Nonetheless, direct comparison between SMD and BD indicates a categorical
between-group difference in IFG activity.

Exploratory whole-brain analyses confirmed the IFG and caudate ROI findings and
identified dysfunction in other regions. Like the ROI results, whole-brain results suggest
dysfunction in SMD in regions that mediate detecting and learning from errors and
executing an alternative response (e.g. superior/medial frontal gyrus72,73, right IFG,
caudate). Also similar to the ROI analyses, the whole-brain analysis found that dysfunction
was more consistent and pervasive in SMD than BD. Comparing BD and HV, our results are
similar to Dickstein et al., who used a partially overlapping sample12. Specifically, in BD vs.
HV, both studies found parietal hyperactivation during incorrect reversal trials and
hyperactivation to all incorrect trials in superior frontal gyrus.

The study has limitations. First, though larger than those in most pediatric fMRI studies, the
sample sizes used here are small. Second, we did not obtain frustration ratings in the
scanner, and therefore cannot correlate activation and affective response. Adding such
measures would have limited comparability with other studies and altered the psychological
processes engaged, perhaps activating top-down regulatory regions. Studies suggest that
caudate and IFG mediate switching responses after negative feedback28,64, but we cannot
rule out the possibility that the between-group differences we observed are associated with
psychological processes not measured by the task, such as increased frustration in response
to negative feedback or decreased motivation in patients vs. controls. Also, because we lack
dimensional symptom measures for comorbid disorders such as ADHD and ODD, we
cannot correlate such symptoms with activation. Finally, many patients were medicated;
ethical concerns preclude withdrawing ill children from medication for research. However,
data suggest that medication may increase noise, rather than bias towards false positive
errors74. While not all subjects were euthymic, most were, and post-hoc analyses suggest
that mood state does not account for our findings (see supplement 1, avaliable online).
Although post-hoc analyses suggest that the higher ADHD comorbidity, higher error rates,
and slightly younger age of the SMD group are not driving between-group differences, these
three factors may have interacted to influence the results.

This study is the first to examine the neural underpinnings of response reversal in children
with SMD and BD compared to controls, finding deficits in both groups in response to
errors. Hypoactivation during incorrect responses occurs in caudate in both SMD and BD
and in IFG in SMD. Such hypoactivation to errors may reflect deficits in response inhibition
signaling or new response selection, which may result in increased frustration and
irritability. Future work should elucidate the role of comorbid ADHD, specifically in the
caudate, in error-processing deficits in SMD and BD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagnosis-by-accuracy interaction in right caudate: (A) location (peak: 11, 11, 2; images in
radiological convention, left=right); (B) mean responses to correct and incorrect trials. Note:
BD=Bipolar Disorder; HV=Healthy Volunteers; SMD=Severe Mood Dysregulation.
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Figure 2.
Diagnosis-by-accuracy interaction in right inferior frontal gyrus (IFG): (A) location (peak:
44, 26, 11; images in radiological convention, left=right); (B) mean responses to correct and
incorrect trials. Note: BD=Bipolar Disorder; HV=Healthy Volunteers; SMD=Severe Mood
Dysregulation.
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Figure 3.
Diagnosis-by-phase interaction from whole-brain analysis in right superior temporal gyrus:
(A) location (peak: 32, 23, -31; images in radiological convention, left=right); (B) mean
responses to acquisition and reversal trials. Note: BD=Bipolar Disorder; HV=Healthy
Volunteers; SMD=Severe Mood Dysregulation.
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Figure 4.
Difference scores (incorrect minus correct trials) in (A) right caudate and (B) right inferior
frontal gyrus (IFG). Note: BD−ADHD=Bipolar Disorder without comorbid Attention
Deficit Hyperactivity Disorder; BD+ADHD=Bipolar Disorder with comorbid Attention
Deficit Hyperactivity Disorder; HV=healthy volunteers; SMD+ADHD=Severe Mood
Dysregulation with Attention Deficit Hyperactivity Disorder.
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Table 1

Study Subject Demographics

Healthy
Volunteers (n=34)

Bipolar Disorder
(n=26)

Severe Mood
Dysregulation

(n=22)

Mean ± SD Mean ± SD Mean ± SD

Gender 17 male (50%) 14 male (53.8%) 17 male (77.3%)

Age 14.17 ± 2.33 14.34 ± 2.59 13.25 ± 2.07

Tanner stagea,b 3.72 ± 1.19 3.81 ± 1.47 3.00 ± 1.38

IQ 111 ± 15.10 109 ± 16.33 109 ± 10.61

Young Mania Rating Scale --- 10.12 ± 6.42 ---

Childhood Depression Rating Scalea,c --- 28.81 ± 11.18 22.05 ± 10.57

Childhood Global Assessment Scalea,d --- 53.74 ± 14.01 47.73 ± 8.74

No. Comorbid Diagnoses --- 1.92 ± 1.55 2.36 ± 1.53

N (%) N (%) N (%)

Bipolar Disorder-I --- 23 (88.5) ---

Bipolar Disorder-II --- 3 (11.5) ---

Mood State

  Euthymice --- 16 (61.5) 22 (100)

  Depressed --- 4 (15.4) 0 (0)

  Hypomanic/Manic --- 8 (30.8) ---

  Mixed --- 2 (7.7) ---

Medication

  Unmedicated --- 6 (23.1) 8 (36.4)

  Lithium --- 6 (23.1) 3 (13.6)

  Antidepressant --- 5 (19.2) 5 (22.7)

  Stimulant --- 9 (34.6) 9 (40.9)

  Non-Stim ADHD Med --- 2 (7.7) 3 (13.6)

  Antipsychotic --- 13 (50) 8 (31.8)

  Anti-epileptic --- 12 (46.2) 8 (36.4)

  Anxiolytic/Sedative --- 2 (7.7) 1 (4.5)

  Other --- 5 (19.2) 6 (27.3)

Comorbid Diagnoses

  Any Anxiety Disorder --- 12 (46.2) 10 (45.5)

  Major Depressive Disorder --- --- 3 (13.6)

  Obsessive Compulsive Disorder --- 2 (7.7) 2 (9.1)

  Attention Deficit Hyperactivity Disorder --- 14 (53.8) 17 (77.3)

  Oppositional Defiant Disorderf --- 8 (30.8) 16 (72.7)

  Post-Traumatic Stress Disorder --- 3 (11.5) 0 (0)

  Conduct Disorder --- 2 (7.7) 0 (0)

Note:

J Am Acad Child Adolesc Psychiatry. Author manuscript; available in PMC 2012 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Adleman et al. Page 19

a
Scores unavailable for Tanner: 5 healthy volunteers (HV), 5 bipolar disorder (BD), 1 severe mood dysregulation (SMD); Childhood Depression

Rating Scale (CDRS): 2 SMD; Childhood Global Assessment Scale (CGAS): 3 BD.

b
Analysis of Variance p=0.096

c
Between-group p=0.043

d
Between-group p=0.091

e
Fisher’s exact test p=0.001

f
Fisher’s exact test p=0.008

J Am Acad Child Adolesc Psychiatry. Author manuscript; available in PMC 2012 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Adleman et al. Page 20

Table 2

Exploratory Whole Brain Results

Cluster Region (Brodmann Area) No. voxels in
cluster

(Vol. in mm3)

Talairach Coords
of Cluster Peak

x y z

Diagnosis-by-phase-by-accuracy:

R SPL/Precuneus (7/19) 56 (1512) 29 −73 50

L STG (22) and Insula (13) 30 (810) −49 −13 −7

L SPL/Precuneus (7) 25 (675) −25 −67 56

R SPL/Precuneus (7/19) 21 (675) 26 −64 59

Diagnosis-by-phase:

R STG (38) 62 (1674) 32 23 −31

L STG/insula (22/13) 56 (1512) −46 −16 −13

R ITG/MTG/fusiform (20/21) 35 (945) 62 −19 −19

L ITG/MTG/fusiform (20/21) 30 (810) −49 −10 −31

R MFG (6) 29 (783) 35 2 53

R ITG/MTG/fusiform (20/21) 27 (729) 47 −4 −28

Diagnosis-by-accuracy:

R/L superior/medial frontal gyrus (6) 92 (2484) 2 14 65

R IFG/insula (45/13) 51 (1377) 35 20 5

L fusiform/declive (18) 25 (675) −19 −88 −22

R cerebellum 23 (621) 53 −58 −28

R caudate 23 (621) 8 11 2

Note: Clusters indicated in bold are similar to the two clusters identified from the region of interest (ROI) analysis. ; ITG=Inferior Temporal Gyrus;
L=left; MFG=Middle Frontal Gyrus; MTG=Middle Temporal Gyrus; R=right; SPL=Superior Parietal Lobule; STG=Superior Temporal Gyrus.
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