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Abstract

We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to
rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83
C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging
from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen
of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain
complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short
pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests
many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.
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Introduction

The C. elegans pharynx exhibits progressive restriction of cell fate

during development, ultimately resulting in the expression of

differentiation factors and structural proteins essential to its

function as a neuromuscular pump [1,2,3]. Seven different cell

types are specified during pharynx organogenesis; and within these

cell types, sub-specialization occurs producing distinct anterior to

posterior characteristics [4]. For example, eight different classes of

pharynx muscle differ in morphology, producing the distinct bi-

lobed pharynx that enables the worm to pump bacteria from the

environment and pulverize this food before it passes into the

intestine.

In C. elegans, pha-4 is an organ identity gene involved in the

specification and differentiation of all cells destined to become the

pharynx [5,6,7]. If pha-4 expression is eliminated through

mutation or RNA interference, the entire pharynx fails to develop;

ectopic expression of pha-4 in early embryos converts additional

cells to become pharynx cells [5,8]. The pha-1 gene allows for

initial development of pharyngeal precursor cells, but then affects

differentiation of all pharynx cells types after the 1K-fold stage of

embryogenesis when differentiation markers such as pharyngeal

myosin and intermediate filaments are normally activated [9].

While less dramatic, mutations in glp-1, tbx-35, or lag-1 result in a

loss of all pharynx cells derived from ABa or MS lineage, resulting

in formation of a half pharynx. In the cases of pha-4, glp-1, tbx-35,

and lag-1, the loss of pharynx cells is not cell-type specific, rather

entire regions of the pharynx are deleted such as the anterior ABa

derived-pharynx in glp-1 mutants [5,8,10,11,12,13].

Multiple genes have been identified that are expressed in

distinct pharyngeal cell types, such as myo-2 and ceh-22 in pharynx

muscle and intermediate filaments in marginal cells; however

only tbx-2 is essential to specify a particular cell fate, in this case,

anterior ABa derived pharynx muscle cells [6,14,15,16,17,18].

Interestingly, the posterior sets of pharynx muscle cells derived

from the MS blastomere form normally in the absence of TBX-2

and non-muscle ABa derived pharynx does not appear to require

TBX-2 function [14]. No gene has been found that is specifically

required for posterior pharynx muscle specification. Many

previously described pharynx genes have been found using

genetic screens, including alleles of genes pha-1, pha-2, pha-3, and

pha-4; however, these screens were not optimized for screening of

morphological changes in pharynx muscle [5,9,19]. The ability to

use Green Fluorescent Protein (GFP) expressed specifically in

pharynx muscle of larva has simplified the screening for

mutations that affect pharynx structure in live worms. Thus,

the initial goal of our mutagenesis screen was to isolate a gene

necessary for either all pharynx muscle, or posterior pharynx

muscle specification; however, we instead found phenotypes that

ranged from a short pharynx to pharynxes that are barely

distinguishable.

This report describes multiple classes of mutant pharynx

phenotypes isolated from an Ethyl Methanesulfonate (EMS)

mutagenesis screen for larvae with phenotypes such as short

pharynx, thin-cylindrical pharynx, non-adherent cells, anterior

pharynx absent, pharynx cells outside the basement membrane,

and pharynx unattached. This report provides an overview of the

results of the screen, and focuses on the mapping and
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characterization of short pharynx mutants and non-adherent

muscle cell pharynx mutants.

Results

We performed an EMS mutagenesis screen of ,10,000 haploid

genomes to identify the genes affecting posterior muscle fate in C.

elegans, using a myo-2::GFP reporter to visualize pharynx morphol-

ogy in L1s. Initially, the low-copy number myo-2::GFP (AZ217)

integrated reporter strain was used in mutagenesis; however, the

strain’s weak fluorescence made rapid identification of pharynx

abnormalities difficult under an epifluorescent stereomicroscope.

Substitution of AZ217 with the more robust myo-2::GFP fluores-

cence of PD4792 made identification of mutant phenotypes more

reliable; the pes-10::GFP expression was only seen in early embryos

and we did not observe the gut-specific enhancer GFP in larvae or

adults (Figure 1A, B). In total, we identified 83 possible pharynx

defective strains suggestive of abnormalities in cell adhesion, cell

fate, cell morphology, and migration in both anterior and posterior

pharynx regions (Table 1). SNP mapping of thirteen different lines

shows phenotypic alleles are present throughout the genome

(Table 2). All mutant lines isolated demonstrated recessive

phenotypes and behaved as single alleles. Interestingly, we did

not discover any obvious posterior pharyngeal phenotypes in

which MS-derived muscle was missing; however, many of the

observed phenotypes appear to be unreported.

The short-pharynx phenotypes
We identified 20 mutant lines that shared a similar phenotypic

trait, a short pharynx and rounded mouth similar to mutant strain

PAS77; nine are shown in Figure 1 (Figure 1B, F, G, H, K, O, R,

W, X). Some of these short pharynx mutants were viable to the

adult stage, while others died during larval development; four of

the short pharynx stains have been chromosomally mapped

(Table 2). Most had additional body defects, including a fat, round

head.

We have attempted characterization of the stain PAS77, which

has a rounded mouth and short, dumpy phenotype; the larva often

arresting during the L1 stage of development. Unlike wild-type

worm pharynxes which are exhibit clear distinction between the

procorpus, anterior bulb, metacarpus, and terminal bulb, PAS77

has indistinguishable anatomical regions, where the terminal bulb

is present but lacks the distinguishable metacarpus and procorpus

(Figure 1B). In addition, the isthmus in PAS77 is much shorter

compared to wild type. PAS77 homozygous worms are sterile,

often arresting at the L1 stage; worms that escape arrest have a

Dpy phenotype. Raising the worms on plates supplemented with

150 mM ethanol results in a slightly elevated percentage of worms

escaping L1 arrest, but not significantly (12% of control worms

escape, n = 250; 15% of ethanol treated).

Chromosomal and Interval SNP mapping with polymorphisms

on Chromosome III placed the PAS77 mutant allele between

genetic regions 25 and 23 m.u. relative to the center of the

Linkage Group III (LG.III) (Figure 2A, orange lines). To further

narrow the range of possible loci for PAS77, we completed genetic

complementation with the following strains having chromosomal

deletions between the genetic regions of 212.6 cM and 21.46 cM

from the center of LG.III: BC4637, BC4697, CB4681, MT690,

MT696, MT699, NG2618, and TY1353 (Figure 2A, blue lines).

All genetic crosses produced males in the F1 generation and

mutant phenotypes in the F2 generation; however, only the

NG2618 cross-produced the PAS77 phenotype in the F1

generation. The non-complementation of NG2618, along with

the complementation of the adjacent deficiency strains MT696

and MT696 refines the genetic mapping on the near left arm of

Chromosome III, 24.47 cM and 22.78 cM from the center of

LG.III.

Interestingly, the PAS77 mutant allele mapped nearby a gene

named mor-1, mapping at III: 1.64+/21.55 cM (WormBase

release 226), although two previous releases of WormBase have

shown mor-1 mapping ,5 cM and ,2 cM to the left of its current

predicted genetic position (WormBase Release WS180:

III:26.45+/25.225 cM; WS170, III:23.81+/23.920 cM) [20].

mor-1 homozygous mutants also have a noticeably rounded mouth

and head [21]. Complementation mapping of PAS77 and mor-

1(e1071) worms showed complete complementation, suggesting

that PAS77 is not an allele of mor-1 (n = 105 progeny counted).

In addition, we selected 39 genes predicted to result in L1 arrest

were selected to screen by bacterial feeding RNAi as a method to

narrow down the possible loci that could be responsible for the

PAS77 mutant phenotype. glp-1 was used as a positive control for

this experiment because it has a dramatic Anterior Pharynx

Defective (Aph) phenotype that is easily identified in the PD4792

strain (Figure 2B). Multiple RNAi bacterial strains resulted in

pharynx phenotypes (Table 3). The C35D10.5 RNAi resulted in

many embryos with a short pharynx phenotype; interestingly,

C35D10.5 encodes a predicted ubiquinol cytochrome c reductase

assembly protein (Figure 2C). RNAi of M88.2, a mitochondrial

ribosomal protein, also produced L1 arrested larvae with a short

pharynx phenotype (Figure 2D). While not a PAS77 phenotype,

the R74.3 (xpb-1) dsRNA bacterial vector resulted in a near-

complete absence of myo-2::GFP without apparent loss of pharynx

muscle as seen in DIC imaging (Figure 2E).

Epitopes recognized by the KT10, KT16, KT17 KT19, KT20

and KT36 antibodies all appeared similar in expression pattern to

wild type; the epitopes of these antibodies is unknown however

(data not shown) [22]. A test of the MH27 adherens junction

antibody (AJM-1) staining showed the presence of normal

junctions between epithelial cell types in both wild-type embryos

and the pharynx of PAS77 embryos, although all regions of the

pharynx are shorter in the anterior-posterior orientation

(Figure 2F, G). The MH4 monoclonal antibody to recognize

intermediate filament shows that marginal cells are present, and

appear similar to wild type (Figure 2H) other than for the

compressed shape of the pharynx (Figure 2I).

Like PAS77, the PAS252 phenotype is homozygous recessive

and results in an indistinct procorpus and anterior bulb-structure

that is more dramatic than PAS77 (compare Figure 1B and 1X).

PAS252 worms invariably arrest at the L1 stage, with a short body

and tail defects.

The strains PAS120 and PAS154 also share the short pharynx

phenotype, however, despite their morphological defects, both are

viable and fertile as homozygotes (Figure 1F, K). The larvae of

both mutant lines are shorter in length and lethargic in

comparison to wild type. They do not appear Dpy; the body size

is small, but proportional; however, their heads do not taper

toward the mouth as in wild type worms. In both PAS120 and

PAS154, the procorpus and isthmus fail to undergo elongation;

this effect is more pronounced in the PAS120 strain. Furthermore,

both of these phenotypes mapped to a nearly identical region of

LG.V. Genetic complementation analysis of PAS120 and PAS154

demonstrate that they are alleles of the same gene (n = 27).

Interestingly, sma-1 maps nearby at 3.54 cM relative to the center

of LG.V and encodes a spectrin homolog with a similar pharynx

phenotype [23]. Complementation analysis of both PAS120 and

PAS154 heterozygous worms with the homozygous sma-1(e30)

worms produced 50% mutant phenotypes in the F1 generation

(n = 99), suggesting these mutant strains represent new sma-1

Pharynx Phenotype Screen
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alleles. To verify that the sma-1 locus is altered worms, we

sequenced the 17,060 bp region of Chromosome V encoding sma-

1 and found a C to T transition on Chromosome V, genomic

position 11905104 [20], which results in the nonsense conversion

of a glutamine to a stop codon in the reading frame of the 6th exon

in PAS154 sma-1(lfc1) worms.

PAS126, PAS129, PAS159, PAS196, and PAS241 also exhibit

the short pharynx phenotype; although the primary the defect is a

failure for the procorpus to elongate (Figure 1G, H, O, R, W). The

PAS126 mutant progeny feed and mature into an adults; however,

they are infertile. In contrast PAS196 is homozygous recessive and

viable, with a less severe pharyngeal phenotype with a distinct

terminal bulb, isthmus, and a partially developed metacarpus.

PAS196 worms have a body length of similar size to wild type,

although the head is slightly wider. Finally, the PAS241 phenotype

results in an extremely wide head and Dpy body with an extremely

short pharynx lacking distinct regions (Figure 1W).

A mutant with pharynx muscle cells that do not appear
to adhere

PAS136 mutant progeny exhibit pharyngeal disorganization

and misshapen cells in both anterior and posterior portions of the

pharynx (Figure 1I). There are also gaps between pharynx muscle

cells, which are not normally present. Aside from pharyngeal

defects, the organism appears normal but mutant organisms arrest

in the L1 stage of development so additional defects are possible.

PAS158 and PAS237 display similar phenotypes (Figure 1N, U).

SNP mapping localizes the PAS136 phenotype to LG.I between

1 cM and 8 cM on the right side of the chromosome (Figure 3A,

green circle). The combined data from the complementation

analyses from deletion strains MT2179, DC1079, KR2838, and

SL536 refined the region to be approximately between the 4.64

and 9.25 cM on the right arm of LG.I (Figure 3A, red circle).

From these analyses, we have evidence that PAS136 genetically

maps between 4.64 cM and 8 cM from the genetic center.

To screen genes in the mapped region as candidates for

PAS136, we used RNAi to screen for phenocopy of the pharynx

phenotype with bacterial feeding RNAi using the PD4792 myo-

2::GFP reporter strain. Within the region of PAS136 mapping,

there are 322 genes; 39 were chosen for screening using recorded

L1 arrest as a necessary parameter; experiments showing pharynx

phenotypes are listed (Table 4). A partially penetrant phenotype

similar to that of PAS136 resulted from lam-3 (T22A3.8) RNAi

and blmp-1 (F25D7.3) RNAi (Figure 3C and D); the laminin gene

lam-3 has previously been shown to affect the extracellular matrix

and pharynx cohesion, while blmp-1 is described as a homolog of

the B lymphocyte-induced maturation protein 1 on WormBase

[24,25]. Other pharyngeal phenotypes were observed that did not

mimic PAS136, such as the Pun phenotypes of mom-5 (T23F8.1)

and hmr-1 (W02B9.1) (data not shown and Figure 3E).

The phenotype of lam-3 RNAi had the most prominent

characteristics of the PAS136 phenotype; therefore genetic

complementation analysis was conducted using the lam-3(n2561)

allele in the MT6550 strain. lam-3 homozygotes are L1 lethal,

starved, uncoordinated, and have defective pharyngeal basement

membranes. When crossed with PAS136, no F1 phenotypes were

seen, although the expected F2 PAS136 phenotype was present in

23% of worms (n = progeny of 6 successful matings). Sequence

analysis of the entire 12,963 bp lam-3 locus of DNA isolated from

PAS136 homozygous larva showed no changes from wild type as

well.

Table 1. Summation of pharynx phenotypes.

Phenotype* Number

Anterior bulb morphology 18

APH (anterior pharynx absent) 5

Pharynx basement membrane defect 11

Short pharynx 20

GFP-expressing cells outside of pharynx 14

Isthmus defect 11

Pha (pharynx absent) 1

Pharynx asymmetric 21

Pharynx GFP weak/nearly absent 6

Posterior bulb defect 9

Procorpus defect 29

Pun (Pharynx unattached) 7

Thin, cylindrical pharynx 25

*Worm strains may have overlapping phenotypes.
doi:10.1371/journal.pone.0026594.t001

Table 2. Chromosomal linkage of 13 isolated mutant strains.

Mutant Strain Linkage Phenotype

PAS77 LG. III Short pharynx

PAS100 LG. X Anterior bulb morphology

PAS101 LG. III Pun

PAS120 LG. IV Short pharynx

PAS132 LG. V Thin, cylindrical pharynx

PAS136 LG. I Amorphous pharynx

PAS138 LG. I Amorphous pharynx

PAS154 LG. IV Short pharynx

PAS170 LG. III Posterior bulb defects

PAS192 LG. IV Anterior pharynx defects

PAS202 LG. III Short pharynx/thin pharynx

PAS252 LG. X Short pharynx

PAS262 LG. X Short pharynx

doi:10.1371/journal.pone.0026594.t002

Figure 1. Variety of phenotypes observed from EMS mutagenesis screen. Brightfield/DIC columns 1 and 3; GFP columns 2 and 4. (A)
PD4792 wild-type phenotype with distinct procorpus, anterior bulb, isthmus, and posterior bulb. (B) PAS77 short pharynx phenotype. (C) PAS100 thin
pharynx with less anterior GFP expression than wild type. (D) PAS101 pharynx unattached. (E) PAS117 anterior bulb diminished in size. (F) PAS120
short pharynx and bulbous head. (G) PAS126 short pharynx. (H) PAS129 short pharynx with head defects. (I) PAS136 pharynx muscle cells do not
adhere to each other. (J) PAS147 cylindrical pharynx with diminished anterior bulb. (K) PAS154 short pharynx phenotype. (L and M) PAS157 pharynx
asymmetry with indistinct isthmus and anterior bulb. (N) PAS158 Diminished GFP expression and asymmetric anterior pharynx. (O) PAS159 short
pharynx. (P) PAS163 disorganized pharynx with unattached GFP-expressing cells. (Q) PAS178 Pun or Aph phenotype. (R) PAS196 short pharynx. (S)
PAS233 larva with posterior cell displacement. (T) PAS236 short isthmus and posterior defects. (U) PAS237 pharynx muscle cells unattached. (V)
PAS241 Pun phenotype. (W) PAS241 short pharynx. (X) PAS252 short pharynx.
doi:10.1371/journal.pone.0026594.g001
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Figure 2. PAS77 mapping and pharynx markers. (A) Probable location of the PAS77 pharynx phenotype allele is between 24.47 cM and
23.1 cM relative to the genetic center of LG.III (red circle) derived by mapping with DraI specific SNPs corresponding to DNA clones Y71H2B, F45H7,
and F56C9 (orange lines) and complementation with deficiency strains with overlapping chromosomal deletions (blue lines). (B) glp-1 RNAi resulted in
an Aph phenotype in .50% of larvae; serving as a control for RNAi effectiveness. Arrow shows region missing anterior pharynx cells. (C and D)
C35D10.5 RNAi or M88.2 RNAi results in a short pharynx phenotype. (E) xbp-1 (R74.3) RNAi eliminates GFP expression in pharynx. (F) wild-type MH27
AJM-1 adherens junction antibody staining shows four distinct regions in the pharynx (arrows). (G) PAS77 MH27 antibody staining shows four
compressed pharynx regions (arrows). (H) Wild-type MH4 Intermediate Filament antibody staining showing three sets of marginal cells (arrows). (I)
PAS77 MH4 antibody staining showing less distinct marginal cell boundaries (arrows). Bar is ,10 mM.
doi:10.1371/journal.pone.0026594.g002

Table 3. RNAi Phenotypes observed in candidate genes genetically near PAS136.

Gene Name Location Phenotype Protein Class

mom-5 I: 4.12 Pharynx Unattached Frizzled family of seven transmembrane receptors

blmp-1 I: 4.99 Amorphous pharynx Transcription factor

sec-8 I: 5.04 Compressed isthmus Exocyst complex subunit

phi-56 I: 5.06 Anterior bulb/isthmus merged, long, thin procorpus Signal peptidase subunit

lam-3 I: 5.06 Amorphous pharynx Laminin alpha-2

Y52B11A.10 I: 6.41 Pharynx thin and asymmetric High osmolarity signaling pathway

hmr-1 I: 6.61 Short pharynx Classical cadherin

rsr-1 I: 7.25 Pharynx asymmetry Splicing co-activator

F56G4.4 I: 7.96 Pharynx asymmetry Spliceosomal protein

doi:10.1371/journal.pone.0026594.t003
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PAS136 mutants exhibit severe disorganization of the pharynx

and appear to have misshapen cells. To investigate the possible

lack of adhesion of individual muscle cells, we used the monoclonal

antibody MH27 to visualize adherens junctions were present in

the mutant organisms. In wild-type worms, the adherens junctions

of the pharynx are clearly discernible from those in the

Figure 3. PAS136 mapping and pharynx markers. (A) Probable location of the PAS136 pharynx phenotype allele is between 6 cM and 8 cM on
LG.I relative to the genetic center of the chromosome (green circle) derived by mapping with DraI or EcoRI specific SNPs corresponding to DNA
clones D1007, K02B12, B0205, and F58D5 (orange lines) and between 4.64 cM and 9.2 cM (red circle) using complementation with the deficiency
strains MT2179, DC1079, KR2838 and SL536 with overlapping chromosomal deletions (blue lines). (B) pha-4 RNAi used a positive control for pharynx
phenotypes, arrow shows lack of myo-2::GFP in most of the head. (C) lam-3 (T22A3.8) RNAi showing a phenotype similar to PAS136 with non-adherent
cells (arrow). (D) blmp-1 (F25D7.3) RNAi has a less severe PAS136 phenotype (arrow denotes cell disconnected from the pharynx). (E) hmr-1 (W02B9.1)
RNAi results in a Pun phenotype with diminished anterior pharynx cells (arrow). (F) Wild-type MH27 AJM-1 adherens junction antibody staining
showing pharynx (ph) and intestine (it) localization. (G) PAS136 embryo with weak and disconnect AJM-1 staining in the pharynx (ph) and more
normal AJM-1 in the intestine (it). (H) Wild-type Intermediate Filaments showing three sets of marginal cells (arrows). (I) PAS136 embryo with three
sets of marginal cells (arrows). Bar is ,10 mM.
doi:10.1371/journal.pone.0026594.g003

Table 4. RNAi Phenotypes observed in candidate genes genetically near PAS77.

Gene Location Phenotype Protein Class

C26E6.6 III: 22.34 Body morphology variant

C35D10.5 III: 22.42 Short Pharynx, large head Ubiquinol cytochrome c reductase assembly protein

rnp-4 III: 23.18 Pharynx asymmetry RNA-binding protein

dcn-1 III: 23.19 Body morphology variant UBA-like ubiquitin ligase

M88.2 III: 23.12 Short Pharynx, Slightly Dpy Mitochondrial ribosomal protein

xbp-1 III: 23.70 myo-2::GFP expression limited bHLH transcription factor

ccdc-55 III: 23.72 Pharynx asymmetry Uncharacterized conserved protein

wht-3 III: 23.79 Short Pharynx, Slightly Dpy ATP-binding cassette (ABC) transporter

doi:10.1371/journal.pone.0026594.t004
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hypodermis and other areas because of increase intensity at the

buccal cavity, metacorpus and terminal bulb in the wild-type

worms (Figure 3F) (n = 11). Mutants did not show any definitive

pharyngeal adherens junction staining; however, the adherens

junctions of the hypodermis are clearly visible (Figure 3G) (n = 8).

Antibody stains of PAS136 with an intermediate filament antibody

MH4 revealed marginal cell morphology defects; however,

intermediate filaments and marginal cells are clearly present in

both wild type and mutants (Figure 3H, I) (WT n = 4, PAS136

n = 4), although not in the normal long, smooth and uniformly

shaped morphology of wild-type 3-fold embryos (Figure 3H).

PAS136 mutants have a wild type number of pharynx
muscle cells

The mutant worms of the PAS136 strains appear to have gaps

between muscle cells that are not normally present, which could be

the result of some muscle cells not be present at all. To determine

if all muscle cells were present in the mutant worms, we introduced

a myo-2:GFP:H2B nuclear reporter gene into the PAS136 strain

background. Compared to the organized and consistent wild-type

pharynx, the nuclei appeared in random locations throughout the

mutant pharynx; however, counts of nuclei showed no significant

difference between the numbers of muscle cells seen in the two

phenotypes (n = 19 mutant, n = 9 wild type, p = 0.82).

PAS77 feed better than PAS136 or PAS252
To investigate the larval lethality PAS77 and PAS136 progeny,

we performed a functional assay using OP50 food mixed with

fluorescent beads of approximately the same size as the E. coli [26].

PAS77 phenotype worms that fed on Fluoresbrite beads for two

hours exhibited beads in both their pharynx and intestine,

demonstrating their ability to ingest food normally (Figure 4A,

B). However, PAS252 mutant worms with a very similar

phenotype did not have beads present in either their pharynx or

intestine (Figure 4C, D). Unlike PAS77 worms, in which 12% of

worms develop to the L2–L4, PAS252 worms invariably arrest as

L1 larvae. The PAS136 phenotype suggests these animals would

be incapable to using muscle contractions to ingest food

(Figure 4E). Consistent with that hypothesis, no fluorescent beads

were found in the intestines of PAS136 larvae (Figure 4F).

Other pharynx phenotypes
Mutant PAS87, PAS100, PAS117, PAS132, PAS147, PAS155,

and PAS197 are among the strains that manifest a tube-like

pharynx (Figure 1C, E, J, and not shown). PAS100, which

genetically maps to the right arm of chromosome X near 8 cM,

may be missing the cells that makeup the procorpus (Figure 1C).

PAS117 and PAS155 also exhibit a notched head phenotype

(Figure 1E and not shown). PAS147 lacks of a distinct anterior

bulb, but otherwise has generally symmetric pharynx morphology

(Figure 1J).

The PAS101 strain frequently generated larvae with unattached

pharynxes and was mapped between 27 cM and 21 cM on

LG.III (Figure 1D). Similarly to PAS101, PAS241 possess a PUN

phenotype and the mutant allele is also mapped to LG.III;

however, some progeny also demonstrated the short pharynx

phenotype (Figure 1V, W).

The PAS117, PAS147, PAS157, PAS158, PAS163, and

PAS236 mutant phenotypes show extensive loss of anterior

pharynx muscle morphology (Figure 1E, J, L, M, P, T).

Discussion

The initial goal of this project was to determine the genes

involved in posterior pharyngeal muscle fate. Previous studies have

shown that the transcription factor, TBX-2, mediates anterior

muscle fate. The loss of tbx-2, however, does not result in loss of

posterior pharyngeal muscle [14,15]. To address this finding, we

carried out a mutagenesis screen using EMS to with the target of

isolating the gene or genes responsible for posterior muscle

specification. This mutagenesis screen resulted in 83 observed

pharyngeal mutant strains of a variety of classes.

Unexpectedly, we were unable to produce any mutants

manifesting dramatic posterior muscle loss. We believe that the

mechanisms orchestrating posterior muscle fate may occur

through functionally redundant genes. Typically, the frequency

that a loss-of-function or reduction-of-function allele occurs

following EMS mutagenesis is 1/2000 mutagenized C. elegans

gametes [27]. Therefore, the probability of inducing two loss-of-

function alleles, in redundant genes, is 1/4,000,000. Nonetheless,

we have managed produce a host mutants yielding morpholog-

ically defects in the pharynges.

Surprisingly, 20 of the 83 pharyngeal mutants were homozy-

gous recessive mutants that expressed the short pharynx and

rounded mouth phenotype. While the short pharynx phenotype

was classified as a pharynx that does not undergo proper

pharyngeal elongation; there was variability in the body length

among these strains ranging from those with a normal body length

to Dpy worms.

We analyzed the short pharynx mutant strain PAS77, which

exhibits defects in the metacorpus, procorpus, and manifests a short

isthmus. Also, PAS77 usually developmentally arrests and dies during

the L1 stage of development, because while the overall proportions of

the pharynx are consistent, the length is greatly diminished.

Moreover, seeing that the pharynx is essential for the grinding and

ingestion of food, it is possible that PAS77 dies due to starvation.

Former research has found that the failure of the isthmus to

elongate may be the result of cells not acquiring the proper signals.

Figure 4. Fluorescent Microsphere Feeding Assay. GFP (left
column) and Texas Red (right column) epi-fluorescent photography of
live worms after being allowed to feed on fluorescent microspheres
mixed with OP50. Dotted lines depict the shape of the worm in each
panel. (A) PAS77 mutant phenotype with poorly defined pharynx
regions. (B) PAS77 animals are able to ingest fluorescent microspheres
(arrows). (C) PAS252 has a similar phenotype as PAS77. (D) PAS252
mutants do not ingest fluorescent microspheres. (E) PAS136 mutant
phenotype. (F) PAS136 mutant larvae do not show evidence of
ingesting food or beads. Some gut auto-fluorescence is detectable.
doi:10.1371/journal.pone.0026594.g004
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For instance, pha-2 mutants (pha-2 encodes a homeodomain

transcription factor protein) manifest a short isthmus [26].

Normally, the region between the metacorpus and terminal bulb

have a tight localization of adheren junctions, however worms

mutant for pha-2 show scattered adheren junctions between the

metacorpus and the terminal bulb [26]. The inability to form tight

junctions within the isthmus suggests that cells are unable undergo

correct elongation, ultimately stopping any isthmus growth.

However, our mapping of PAS77 shows that it cannot be pha-2

because pha-2 was mapped to the far left-arm of chromosome X,

while PAS77 mapped to chromosome III. It could be possible that

these genes, mor-1 and pha-2, work in a similar genetic pathway.

Interestingly, past research has shown that the mor-1 gene also

results in the rounded pharynx mouth phenotype seen in many of

the short pharynx mutants and is located within the same region

on chromosome III as PAS77 [21]. While the complementation

analysis did not result in a PAS77 phenotype; the mor-1(e1071)

allele obtained from the C. elegans Genetics Center did not display

a rounded mouth phenotype, suggesting the strain may not

contain a useful allele for complementation studies. Because mor-1

has not been cloned, it was not possible to test the phenotype by

RNAi either.

The PAS154 mutant phenotype is a result of a new allele
of sma-1

Through our forward genetic screen we also isolated two other

mutants that exhibit similar short pharynx phenotypes: PAS120

and PAS154. Interestingly, in spite of their morphological defect

both are viable. Even more, these mutants were chromosomally

mapped to chromosome V. Worms with a loss-of-function

mutation for sma-1 manifest a short pharynx phenotype similar

to that of PAS120 and PAS154. In addition, sma-1 mutants are

viable and map to closely to PAS120 and PAS154 on chromosome

V [20].

The sma-1 allele encodes a homolog of b-H spectrin, which is a

heterodimeric molecule composed of a, b, and bH subunits [23].

In C. elegans the bH-spectrin is a part of the cytoskeletal network

within the inner cell membrane. bH-spectrin works by providing

the cell with structural stability and is required for proper

embryogenesis and pharyngeal morphogenesis [28]. Sequence

analysis confirmed PAS154 is a novel allele mutant for bH-

spectrin, previously documented alleles of sma-1 share the sma-

1(lfc1) phenotype of a small body phenotype and short, fat

pharynx [23].

The PAS136 amorphous pharynx phenotype
We hypothesize the extreme disorganization of the pharyngeal

muscles and marginal cells of PAS136 homozygous L1 progeny

are caused by a mutation in a gene responsible for morphology

and cell adhesion. Through genetic mapping techniques

including SNP mapping, complementation analysis and RNA

interference, the location and function of the PAS136 allele to a

4.6 cM interval on the right arm of Chromosome I, a region with

322 predicted genes. After using RNAi to test 39 genes with

predicted L1 lethality in this region, we found a candidate gene,

lam-3, with a nearly identical phenotype [29]. lam-3 encodes

laminin a-2 ortholog, and has been shown to be integral to

remodeling of the extracellular matrix [24]. Although comple-

mentation of PAS136 and lam-3 worms and DNA sequence of the

PAS136 lam-3 allele does not support lam-3 as the cause of the

disorganized pharynx phenotype; it is possible another nearby

gene involved in extracellular matrix organization may be

involved.

PAS136 mutant organisms exhibit abnormal pharyngeal
adherens junctions

The AJM-1 adherens junction protein that is present in the

basal domain of the C. elegans apical junction along with DLG-1

[30]. These basal domains of the apical junctions are known to

regulate adhesion in the pharynx [31]. The lack of consistent

staining AJM-1 antibody in the pharynx of PAS136 embryos

suggests that a disruption to the adherence of one cell to another is

contributing to the mutant phenotype, specifically in the pharynx

since adherens junction staining in other areas of the embryo is

nearly normal. This implies that the allele mutated in PAS136 may

be specific to the pharynx, although it is possible that AJM-1 or

accessory proteins such as DLG-1, LET-413, or HMP-1 are

specifically missing pharyngeal enhancers necessary for tissue

specific expression1 [30]. In addition, it is likely that there is some

redundancy in the proteins involved in adhesion complexes in C.

elegans. This hypothesis is supported by the hmp-1, hmp-2, and hmr-1

mutants that demonstrate a variety of non-identical adhesion

defective phenotypes that differ throughout the worm [30,32].

This suggests that there must be other proteins that are sufficient

to maintain the adhesion complexes in the absence of other vital

proteins. Since PAS136 appear to only suffer adhesion defects in

the pharynx, it is likely the mutation of a gene crucial for pharynx

adherens junctions but redundant in those in the hypodermis and

other tissues is causing the phenotype.

PAS136 mutants are not lacking pharynx muscle cells
The C. elegans pharynx is made up of exactly twenty muscle cells

with 37 distinct nuclei as a result of the fusion of adjacent cells in

many muscle groups during development [4]. Counting the nuclei

using myo-2::GFP::H2B allowed us to determine if the PAS136

mutant worms were missing pharynx muscle cells compared to

wild-type worms. There was no significant difference between the

number seen in the wild-type worms’ pharynxes compared to the

mutant pharynxes, indicating that the mutant worms are likely not

lacking any myo-2 expressing muscle cells. As expected, myo-

2::GFP::H2B nuclei appear randomly positioned in the mutant

pharynx as compared to the wild-type pharynx, consistent with the

hypothesis that abnormal morphology and adhesion are the key

defects in PAS136 animals.

A genetic screen optimized for rapid identification of
pharynx mutant phenotypes

The genetic screen described in this paper was unique in the

approach to observing pharynx morphology phenotypes. Because

we focused on discovering changes in cell fate or morphology, we

used a chromosomally integrated myo-2::GFP transgene to facilitate

mutant detection using a dissecting microscope equipped with a

GFP fluorescence filter. Although alleles of genes such as pha-1,

pha-2 and pha-3, and pha-4 were found in previous mutagenesis

screens; many of these alleles were isolated in screens that did not

focus on pharynx structure [5,9,19]. In the case of pha-1, the pha-

1(e2123) allele was identified in a screen looking for non-viable

eggs at 25uC by visible-light microscopy. Other pha-1 alleles were

isolated by crossing mutagenized male worms with genetically

marked pha-1(e2123) hermaphrodites [9]. In both cases, the

screens were not targeting detecting diverse pharynx phenotypes.

The isolation of pha-2, pha-3, and various Eat mutants was

facilitated by using an unc-31 genetic background to identify slow

growing, starved, and abnormally pumping worms under a

dissecting microscope [19]; while most pharynx abnormalities will

result in slow growth or larval arrest, many genes responsible for

these phenotypes are not specific to the pharynx.
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pha-4 alleles have been isolated in numerous screens; although

most were not designed to isolate pharynx phenotypes specifically.

These include a screen of lethal mutations linked to either fog-2 or

unc-51 rol-9 [5]; a non-specific L1 lethal screen, and a screen that

was looking for deficiencies that suppress the lin-26 phenotype. In

the last study, embryos were stained with the monoclonal antibody

MH27 to look for hypodermal defects in a lin-26 genetic

background [33]. Because MH27 stains adherens junctions, which

are easily detected in the pharynx, the lack of a pharynx was

obvious in the chromosomal deficiency ozDf2, which deletes pha-4

[33]. However, use of adherens junctions antibodies is labor

intensive, and the ajm-1::GFP expressing strains we have observed

do not express strongly and show GFP artifacts. In contrast, the

myo-2::GFP strain used in our study fluoresced brightly and

provided a very distinctive pharynx shape that could be recognized

as wild type of mutant immediately.

Materials and Methods

Nematode strains and culturing
C. elegans strains were obtained from the Caenorhabditis Genetics

Center (CGC) or colleagues and maintained on NGM plates

seeded with the OP50 E. coli strain as described in [34], except as

indicated for RNAi experiments. The following genetic strains

were used in this work: AZ217 (unc-119(ed3) rulIs37[unc-119(+)

partial myo-2 promoter::GFP] III, [35]), BC4637 (sDf130(s2427) unc-

32(e189) III; sDp3 (III;f)) [36],BC4697 (sDf121(s2098) unc-32(e189)

III; sDp3 (III;f)) [36] CB30 (sma-1(e30) V) [34], CB1071 (mor-

1(e1071) III) [21], CB4681 (nDf17/qC1 dpy-19(e1259) glp-1(q339)

III) [37], CB4856 (Hawaiian isolate) [38], SL536 (dxDf2/spe-

9(eb19) unc-101(m1) I.), DC1079 (ces-1(n703) qDf8/hT2[bli-4(e937)

let-?(q782) qIs48] (I;III)), KR2838 (hDf17/hIn1[unc-54(h1040)] I),

MT2179 (nDf25/unc-13(e1091) lin-11(n566) I), MT6550 (lam-

3(n2561)/dpy-5(e61) unc-75(e950) I) [39], MT690 (nDf6/unc-

93(e1500) dpy-17(e164) III), MT696 (nDf12/unc-93(e1500) dpy-

17(e164) III) [40], MT699 (nDf15/unc-93(e1500) dpy-17(e164) III)

[40], MT6550 lam-3(n2561)/dpy-5(e61) unc-75(e950) I), NG2618

(yDf10 unc-32(e189)/qC1 dpy-19(e1259) glp-1(q339) III) [41],

PD4972 (mIs11 IV (myo-2::GFP, pes-10::GFP, gut::GFP)), SL536

(dxDf2/spe-9(eb19) unc-101(m1) I) [42], TY1353. (yDf10 unc-

32(e189)/unc-93(e1500) dpy-17(e164)III) [41]. All except CB4856

were derived from the reference strain, N2 (Bristol). PAS identifies

C. elegans strains isolated from an EMS mutagenesis screen.

Mutagenesis screen
The mutagenesis protocol was modified from Brenner (1974)

[34]. PD4972 worms were grown to the L4 stage and washed off

plates with M9 buffer solution into 15 mL conical tube. Worms

were centrifuged at low speed for 1 minute and the supernatant was

removed. The worm pellet was resuspended with 3.0 mL M9 buffer

and spun again for 1 minute. 1 mL 0.1 M EMS (Ethyl Methane-

sulfonate) was administered to the 3.0 mL worm suspension. The

conical tube was placed on a rocker for 4 hours at room

temperature. Following the mutagenesis protocol, worms were

washed twice with M9 buffer and transferred to plates seeded with

E. coli OP50 in M9 buffer. Healthy looking L4 worms (P0

generation) were picked 1–2 hours post-mutagenesis to new plates

and incubated at varying temperatures to control growth periods.

PAS77, PAS120, PAS126, PAS136, PAS154, PAS170, and PAS240

were backcrossed 4–8 times with non-mutagenized PD4792 worms.

SNP mapping
SNP mapping was adapted from Davis et al. with the following

modifications [43]. SNP mapping was performed in two phases:

chromosome and interval mapping by crossing 10 CB4856 males

with 10 heterozygous mutant-line hermaphrodites. After 24 hours,

hermaphrodites with copulatory plugs were isolated. For chromo-

somal mapping, fifty N2 mutant phenotype F2 worms and 50 wild-

type F2 worms were picked into separate 1.5 mL tubes, each

containing 900 mL worm lysis buffer (50 mM KCl, 10 mM Tris

pH 8.3, 2.5 mM MgCl2, 0.45% IGEPAL CA-630, 0.45% Tween-

20, 0.01% (w/v) gelatin, 60 mg/mL proteinase K. Polymerase

Chain Reaction was performed as described in Davis et al. [43]

using primers described in that paper.

For interval mapping, the previous protocol was followed with

the following exceptions, ninety-six F2 generation phenotypically

mutant worms were placed into one well of 96-well PCR plate

containing 10 mL of proteinase K (6 mg/mL) diluted 1:10 with

worm lysis buffer. 2 mL of forward primer and reverse primers

(100 mM) for specific SNPs were added to 600 mL of the 2X Taq

Mastermix (NEB) and 600 mL of Nanopure water; reactions of

10 mL of mix and 0.5 mL of individual worm DNA were

thermocycled in 96-well plates as described in chromosomal

mapping. All primers are identical to Davis et al, 2005 [43] except

for the addition of 2.8 LG.I, with the forward primer sequence

59TCAAATTTGGCACGTCATCAG39 and reverse primer se-

quence 59CTCCATTTTGGAACTCCCAG39. All regions were

cut with DraI (NEB) to identify SNPs, except for 2.8 LG.I the DNA

was digested EcoRI-HF (NEB).

Map positions are measured in centimorgans (cM) and both

map positions and physical locations in this article correspond to

WormBase release WS226 [20].

Complementation analysis
Complementation analysis of PAS136 was performed using the

following deletion strains: MT2179, DC1079, KR2838, SL536

and MT5990. Known PAS136 heterozygous hermaphrodites were

mated with each strain and F1 generation offspring were screened

for mutants; verifying that GFP expression and male progeny were

present in the F1 generation. For gene identification, PAS120 and

PAS154 were mated with CB30; PAS136 was mated with

MT6550; and PAS77 was mated with CB1071.

RNA interference (RNAi)
RNA interference was performed using bacterial feeding RNAi

clones from the Ahringer/Geneservice Ltd. feeding library of

16,757 clones [44,45]. Feeding RNAi was performed as described

previously [46] with the following modifications. Bacterial strains

were grown 12–16 hours in LB media containing 12.5 mg/mL of

tetracycline hydrochloride and 100 mg/mL of ampicillin. Worm

plates for RNAi were NGM agar with 0.8 mM IPTG (Amresco)

and 150 mg/ml ampicillin (Sigma). 250 mL RNAi bacteria culture

was incubated on NGM RNAi plates overnight, and multiple

PD4297 L4-stage worms were placed on each feeding plate. After

24 hours, the worms were transferred to a fresh RNAi plate.

Progeny were allowed to develop for 1–2 days before phenotypes

were scored. Bacteria expressing pha-4, glp-1 or empty pL4440

vector were used as controls for RNAi.

DNA sequence analysis
DNA from 50 PAS136 mutant L1s, 50 PAS154 mutant L1s,

and 50 PD4792 worms was isolated as described in Interval

Mapping. PCR products of 24 overlapping sections of the lam-3

locus in PAS136 and PD4792 and 26 overlapping sections of the

sma-1 locus in PAS154 and PD4792 using custom primers (Table

S1 and Table S2) were compared for size on an agarose gel and

the PAS136 PCR products were then sequenced in both directions

by Functional Biosciences (Madison). Sequence data was assem-
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bled into a contig and compared to wild type sequences in

WormBase (wormbase.org) [20].

Feeding assay
Fluoresbrite polychromatic 0.5 mm microspheres (Polysciences,

Inc.) were diluted 1:100 with M9 buffer and 200 mL of the mixture

was pipetted onto a 60 mm plate previously seeded with 200 mL of

OP50 E. coli. The E. coli with the Fluoresbrite bead mixture was

rubbed gently to mix on the plate. Mutant or wild-type L1 worms

were transferred to the plate and allowed two hours to feed. Fed

worms were transferred to a 4% agarose pad and photographed

using a Zeiss Axiovert 100 microscope using epifluorescence with a

Texas Red filter set.

Immunocytochemistry
Staining with MH4, MH27, KT10, KT16, KT17 KT19,

KT20, KT36, and aGFP monoclonal antibodies was performed

using standard procedures with the following parameters: embryos

were incubated in 2% paraformaldehyde in TNB solution

[100 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% blocking

reagent] for 20 minutes with a cover slip before wicking away

excess solution. Slides were frozen on dry ice before quick removal

of the coverslip. The slides were then incubated in methanol for

60 seconds followed by a series of acetone washes (modification of

[5,47]). Slides were incubated at 15uC for 12–18 hours using

primary antibodies diluted in TNB/NGS: MH3 (1:3) [12,48],

MH27 (1:100) [49], KT10, KT16, KT17 KT19, KT20, and

KT36 (1:2–1:10) [22] and aGFP mAB3580 (1:100) (Chemicon).

Slides were washed three times in TBS+0.5% Tween20, before

addition of donkey anti-mouse Cy-2 or Cy-3-conjugated antibod-

ies (1:200 dilution, Jackson ImmunoReseach) for two hours. Slides

were washed 3x in TBS+Tween20 and mounted in 50.0%

glycerol, 0.006 M Na Citrate, 0.05 M NaH2PO4, 0.5 mg/ml 49,6-

diamidino-2-phenylindole (DAPI), 25 mg/ml 1,4-diazobicyclo-

[2.2.2]-octane (DABCO). The slides were viewed under a Nikon

Eclipse TE2000-U microscope and photographed with a Photo-

metrics camera using Metamorph imaging software.

Pharynx muscle nuclei counts
Nuclearly localized myo-2::GFP worms were maintained by

microinjecting 0.05 ng/mL myo-2::GFP::His2B, 40 ng/ml pRF4,

and 60 ng/ml herring sperm DNA into N2 hermaphrodite and

screening for rolling progeny. PD4792 males were mated with

known heterozygous PAS136 hermaphrodites. The F1 male

progeny were mated with myo-2::GFP::His2B expressing transgenic

worms. After 24 hours the rolling hermaphrodites were moved to

individual plates. The F2 offspring of this experiment were

screened for mutant organisms possessing myo-2::GFP. Wild type

and mutants L1 larvae were viewed under the Zeiss Axiovert 100

microscope and photographed in 8–10 vertical sections to record

muscle cell nuclei.

Microscopy
Mutagenized worms were analyzed under a Leica MZ16F

compound microscope using Leica EL6000 compact light source.

To obtain digital images worms were mounted on 1% agarose

pads, with a drop of M9 solution, and covered with a coverslip.

Images were acquired using the Motic AE31 microscope with

MHG-100B fluorescence attachment and Diagnostic Instruments

Spot Camera. Worms were also observed using the Nikon

TE2000-U compound microscope using DIC optics or epi-

fluorescence to visualize GFP. Metamorph imaging software was

used to attain images.

Supporting Information

Table S1 Oligonucleotide pairs used to amplify and sequence
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