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Abstract

This work shows that an overload of dietary cholesterol causes complete infertility in dyslipidemic male mice (the Liver X
Receptor-deficient mouse model). Infertility resulted from post-testicular defects affecting the fertilizing potential of
spermatozoa. Spermatozoa of cholesterol-fed lxr2/2 animals were found to be dramatically less viable and motile, and
highly susceptible to undergo a premature acrosome reaction. We also provide evidence, that this lipid-induced infertility is
associated with the accelerated appearance of a highly regionalized epididymal phenotype in segments 1 and 2 of the
caput epididymidis that was otherwise only observed in aged LXR-deficient males. The epididymal epithelial phenotype is
characterized by peritubular accumulation of cholesteryl ester lipid droplets in smooth muscle cells lining the epididymal
duct, leading to their transdifferentiation into foam cells that eventually migrate through the duct wall, a situation that
resembles the inflammatory atherosclerotic process. These findings establish the high level of susceptibility of epididymal
sperm maturation to dietary cholesterol overload and could partly explain reproductive failures encountered by young
dyslipidemic men as well as ageing males wishing to reproduce.
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Introduction

Cellular and plasma cholesterol levels are tightly controlled to

prevent excessive accumulation of cholesterol in tissues [1].

Dyslipidemia is on the rise in young people in both developed

and developing countries, with major effects on the incidence of

life-threatening conditions such as obesity and associated cardio-

vascular complications [2]. Perhaps less recognized but growing in

importance are effects of lipid disorders on reproductive fitness

[3,4,5]. Among transcription factors regulating cholesterol ho-

meostasis, Liver X Receptors a (LXRa – Nr1h3) and b (LXRb –

Nr1h2) play central roles in various cell types. Both are activated

by metabolic derivatives or oxidized forms of cholesterol, and have

been shown to control the expression of a wide spectrum of genes

that determine lipid and metabolic homeostasis, energy utilization,

differentiation, proliferation, inflammation, and reproduction

[6,7,8,9].

Male mice deficient for the two LXR isoforms (LXRa and

LXRb) become subfertile upon ageing and are totally infertile at

8–9 months, showing both a testicular phenotype and a caput

epididymidis phenotype restricted to the proximal caput

[10,11,12]. The caput epididymal tissue defect is characterized

by cholesteryl ester (CE) accumulation [12] and a luminal

compartment filled with amorphous material [10]. In addition,

mature spermatozoa retrieved from the cauda epididymidis of old

lxra;b-/2 animals show structural fragility at the head/midpiece

junction resulting in abundant broken sperm cells [10]. More

recently, we reported that lxr disruption provokes CE accumula-

tion in a particular cell subtype of the caput epididymidal

epithelium, the so-called apical cells, following down-expression

of the ATP-binding cassette transporter A1 (ABCA1) [11]. In

addition to the epithelial apical cell-located lipid accumulation,

peritubular CE accumulation was also observed in the proximal

caput epididymidis of lxra;b2/2 animals [11]. At 3–4 months of

age, LXR-deficient male mice are totally fertile and do not show

any phenotype at all [8,10]. Young LXR-deficient male mice are

thus a good model to address the question of how an excess of

dietary lipid affects reproductive functions in dyslipidemic animals.

Experimental Procedures

Animals
Lxr-knockout mice [7,13] were maintained on a mixed strain

background (C57BL/6:129Sv) and were housed in an animal

facility with controlled environment (22uC, 12 hr light/12 hr

dark). Under control conditions, mice were fed ad libitum a Global-

diet_2016S (Harlan, Gannat, France). Under high-cholesterol-diet

(HCD), 3-month-old males were fed for 4 weeks a lipid-enriched
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diet containing 1.25% cholesterol (Safe, Augy, France). Mouse

housing and manipulation were approved by the Regional Ethic

Committee in Animal Experimentation (authorization CE2-04).

For fertility tests, virgin 10-week-old SWISS females were used.

Wild-type (wt) and lxra;b2/2 male mice (hybrid line

C57BL6x129 SVJ) [14], were killed by decapitation.

Fertility
Six wt and lxra;b2/2 male mice at 4 months of age, fed a HCD

or control diet for 4 weeks, were each mated with 2 SWISS wt

females. The fertility test was made during the last 8 days of the

diet, food was removed during the 12 hr of dark (mating period, 1

male with 2 females in each cage). Males and females were

separated every day for the 12 hr of light, and HCD was given

only to the males. At the end of the 8-day mating period, males

were killed and the females housed in individual cages to follow

gestations and deliveries.

Sperm preparation
Epididymides were removed and, after dissection, the cauda

epididymidis was transferred to a small glass dish containing

500 mL of Whitten’s HEPES medium (WH) (20 mM HEPES,

pH 7.3, 100 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4,

1.2 mM MgSO4, 5.5 mM glucose, 1 mM pyruvic acid, 4.8 mM

lactic acid, Sigma, St Quentin Fallavier, France). To recover

sperm cells, repeated punctures with a 26-gauge needle were

made. After 5 min of incubation at 37uC to allow for sperm cell

dispersion, sperm suspensions were recovered.

Sperm counts
After dilution of the original cell suspension (1/50 in PBS),

spermatozoa were counted in a Malassez hemocytometer.

Motility
Computer-assisted sperm analysis parameters were determined

immediately after collection. Sperm tracks (300 frames) were

captured using a CEROS sperm analysis system (Hamilton

Thorne, Lisieux, France; software version 12).

Viability
Twenty mL of sperm suspension and 20 mL of eosin solution

(0.01 g.mL21) were mixed, thirty seconds later, 30 mL of nigrosin

suspension (0.07 g.mL21) were added and vortexed for 2 sec.

Then, 30 mL of the suspension were recovered and spread on a

glass slide. After drying at room temperature, sperm viability was

determined: dead and living spermatozoa had pink and white

colored heads, respectively. A minimum of 200 spermatozoa was

counted per sample.

Acrosomal status
Fifty mL of sperm suspension were diluted in 450 mL of WH

medium and were then fixed by slowly adding 500 mL PBS-

paraformaldehyde (PFA) 4% w/v and incubated for 30 min at

4uC. Cells were then centrifuged at 500 g for 5 min, washed twice

with PBS, finally diluted in PBS, spread on glass slides, air dried

and stored at 4uC until use. Acrosome staining was then

performed: after rehydrating the samples in PBS for 5 min at

room temperature, lectin-PNA-Alexa Fluor 488 conjugates

(50 mg/mL in PBS, Molecular Probes, Invitrogen, Cergy Pontoise,

France) were added for 30 min at 37uC, then slides were washed

for 5 min in PBS and mounted with coverslips using Vectashield

mounting medium with DAPI (Vector, AbCys, Paris, France) to

stain the sperm nuclei. Lectin-PNA binds to sugar moieties of the

outer acrosomal membrane, thus only staining the sperm cells that

did not undergo the acrosome reaction. Only cells showing a full

acrosome were considered as positive, and the % of acrosome-

reacted gametes was evaluated on at least 200 cells per slide and 3

different individuals were used for each condition.

Sperm morphology
After determination of the acrosomal status, slides were

examined using a phase contrast microscope and sperm cells

were classified into four categories: normal sperm, sperm with a

hairpin-shaped flagellum, sperm with an abnormally-angulated

flagellum, and broken sperm cells. A minimum of 200 cells was

counted per slide and 3 different individuals were used in each

condition.

Mayer’s haematoxylin staining for testicular histology
and elongated nuclei counts

Paraffin sections (5 mm) of testis from wt and lxra;b2/2 4-

month-old mice, fed with control or HCD, were stained by

immersion for 30 sec in Mayer’s haematoxylin. Slides were rinsed

for 5 min in running water and then mounted using cytoseal 60 as

a mounting medium (Electron Microscopy Sciences, Hatfield,

USA). Elongated nuclei corresponding to spermatids or sperma-

tozoa were then counted in a minimum of ten tubules per

individual, with 3 different individuals in each condition.

Oil red O staining
Cryosections (7 mm) were stained with Oil Red O (Sigma) as

previously described in [12], a method commonly used to stain

neutral lipids (triglycerides and cholesteryl esters).

Intra-testicular testosterone level measurements
Testosterone levels were measured with the direct Elisa Kit

‘‘The EiAsyTM Way Testosterone’’ (Diagnostics Biochem Canada

Inc.). Briefly, J of testis were crushed in 400 ml PBS-BSA1%.

Extracts were diluted to 1/60 and 1/100 before testosterone was

determined using the kit. Protein quantities were determined on

the same sample using BioRad protein Assay so as to express

results in ng of testosterone per mg of protein. Results are

expressed as the mean 6 SEM of duplicate points from 3 different

individuals in each condition.

Immunohistochemistry
Caput epididymides were fixed in 4% paraformaldehyde

(Sigma) in PBS and imbedded in paraffin. Seven-micrometer-

thick paraffin sections were mounted on SuperfrostH glass slides

and then deparaffinized with Histoclear for 40 min (National

Diagnostic, Merck Eurolab, Fontenay-sous-Bois, France), rehy-

drated through a graded series of ethanol solutions, and finally

rinsed in distilled water. Endogenous peroxidases were inhibited

(30 min in 0.3% H2O2 – Sigma – in water) and sections blocked

in PBS-bovine serum albumin (BSA) 1% (w/v, Euromedex,

Mundolsheim, France) for 30 min. Rabbit-polyclonal anti-cav-1

(1/5000, Sigma), anti F4/80 (1/100, macrophage marker, Novus

Biologicals, Interchim, Montluçon, France), anti-matrix-metallo-

protease-9 (1/100, Novus Biologicals), anti-smooth muscle a-

Actin (1/5000, Epitomics, Euromedex, Mundolsheim, France), or

anti-CD68 (1/50, Novus Biologicals) diluted in PBS-BSA 0.1%

w/v were incubated overnight at 4uC. Sections were washed

5 min in PBS and incubated 1 hr with biotin-SP conjugated

AffiniPure goat anti-rabbit IgG (H+L) antibodies (1/500 in PBS-

BSA 0.1% w/v, Jackson Immuno- research, Immunotech,

Marseille, France). After a wash in PBS, sections were incubated
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30 min with peroxidase-conjugated streptavidin (1/500 in PBS,

Jackson Immunoresearch). Color was developed with the Vector

NovaRED substrate kit for peroxidase (Vector). Unless indicated,

slides were counterstained with Haematoxylin QS (Vector),

dehydrated and then mounted with Cytoseal 60 mounting

medium (Electron Microscopy Sciences, Hatfield, USA) before

observation.

Western Blots
Proteins were extracted from liquid nitrogen frozen epididymal

tissues stored at 280uC until use. Briefly, tissues were homogenized

in HEPES 20 mM, NaCl 0.42 M, MgCl2 1.5 mM, EDTA

0.2 mM, NP40 1%, phenylmethylsulfonyl fluoride 1 mM, Na3VO4

0.1 mM, NaF 0.1 mM and complete 16 (Roche Diagnostics,

Meylan, France). Lysates were centrifuged at 4uC for 15 min at

15000 g. Forty mg of total proteins were subjected to denaturing

SDS-polyacrylamide gel electrophoresis and transferred on nitro-

cellulose membrane (Hybond ECL, Amersham Biosciences,

Villejuif, France). Blots were blocked with Tris Buffered Saline

(TBS) (Tris 50 mM, NaCl 150 mM, pH 7.6) containing 10% w/v

low fat dried milk and 0.1% v/v Tween 20, and probed overnight at

4uC with anti-b actin (1/5000, Sigma, used as a loading control),

anti-cav-1 (1/5000, used as a marker of smooth muscle cell

function), anti-smooth muscle a-Actin (1/10000, used as a marker

of smooth muscle cell structure) or anti-CD68 (1/500, used as a

foam cell marker) diluted in 10% w/v low fat dried milk/0.1% v/v

Tween-20/TBS, or anti-Mmp9 (1/1000, Abcam, Cambridge, UK,

a metalloprotease produced by migrating smooth muscle cells in

pathological situations such as atherosclerosis) diluted in 3% w/v

low fat dried milk/0.1% v/v Tween-20/TBS. Secondary antibody

was a goat anti-rabbit horseradish peroxidase-conjugated (1/5000,

Amersham Biosciences), detected by the ‘‘ECL Western Blotting

Detection’’ kit (Amersham Biosciences) on hyperfilms (Amersham

Biosciences). Densitometric analyses were made with ‘‘Quantity

one’’ software (Biorad).

Statistical analysis
To determine whether differences were statistically significant,

Student’s t test was performed, using a two-tailed distribution. A p-

value of 0.05 or less was considered to be statistically significant.

Results

Post-testicular infertility induced in high-cholesterol fed
young lxra;b2/2 animals

Fertility and sperm parameters of 4-month-old wt or lxra;b2/2

male mice fed a control or lipid-enriched diet (thereafter referred

to as High-Cholesterol Diet (HCD)) for 4 weeks are presented in

Fig. 1. The delivery rate (percentage of mated females giving birth

to live offspring) indicated that HCD-fed lxra;b2/2 male mice

were totally infertile, as no gestating females and, consequently,

deliveries were observed (Fig. 1A). The presence of copulatory

plugs was similar between different groups (not shown), indicating

that infertility was not due to an impaired mounting behavior.

Sperm counts, following sperm retrieval from the cauda

epididymides, did not differ between wt and lxra;b2/2 mice fed

the control diet or HCD (Fig. 1B), suggesting that infertility was

not related to testicular spermatogenic efficiency. Sperm param-

eter analyses revealed that HCD provoked dramatic decreases in

sperm motility (Fig. 1C, 93% decrease; p,0.001) and viability

(Fig. 1D, 64% decrease; p,0.01) in the lxra;b2/2 mice

compared with controls. Measurements of the acrosomal status

revealed that HCD also provoked a premature loss of acrosome in

lxra;b2/2 males (Fig. 1E). Furthermore, the analysis of sperm

morphology showed that HCD caused a significant increase in the

percentage of broken cells only in lxra;b2/2 mice (Table 1).

Testicular sperm production was not affected by the
high-cholesterol diet

The above-presented results on sperm properties strongly

suggested epididymal defects. Thus, testicular sperm production

was evaluated to test this hypothesis. Haematoxylin staining did not

reveal any dramatic HCD-induced histological perturbation of the

testis as shown in Fig. 2A. The sperm production efficiency was not

affected as evidenced by counts of cauda epididymidis-retrieved

gametes (see above and Fig. 1B). This data was corroborated by

counts of elongated nuclei in the seminiferous tubules (correspond-

ing to elongated spermatids or spermatozoa, see arrowheads in the

higher magnification photomicrograph of Fig. 2A) that were similar

under all conditions (Fig. 2B). Furthermore, HCD did not affect

relative testicular weights; they even increased for the LXR-

deficient males when expressed as a percentage of the body weight

(however, this increase was related to a decrease in animal weight

associated with the metabolic effects of the feeding regimen, see

Fig. 2B). In summary, these data confirmed that the efficiency of

testicular sperm production was not affected by diet. To evaluate

whether the endocrine function of the testis was altered by diet, we

measured testicular testosterone levels and found them significantly

reduced in lxra;b2/2 animals fed HCD compared to lxra;b2/2

animals fed the control diet (Fig. 2C). In wt animals, the diet induced

a significant increase in intra-testicular testosterone level (Fig. 2C).

High-cholesterol diet altered the caput epididymal
epithelium in a segment and cell-specific manner in
young lxra;b2/2 animals

To test the hypothesis that sperm defects recorded in LXR-

deficient males on HCD were mainly caused during post-testicular

maturation, histological and immunohistological aspects of the

epididymides of these animals were compared with those of LXR-

deficient males fed a control diet and wild type males fed either a

control or high-cholesterol diet (Fig. 3). Caput epididymidal

cryosections were stained with Oil Red O to evaluate neutral lipid

accumulations. Lipid droplets were clearly visible in segments 1 and

2 of lxra;b2/2 mice (see Fig. 3A for classical mouse epididymal

segmentation), and they were significantly increased in HCD-fed

animals (Fig. 3B). Only segments 1 and 2 are illustrated, because

there was no epididymal macroscopic change distal to segment 2.

These accumulations were not observed in wt animals and were

essentially peritubular involving smooth muscle cells (SMC) lining

the epididymal tubules (see Fig. S1 for higher magnifications). In

accordance with increased tissue lipid deposition HCD provoked a

large elevation of plasma LDL in both wt and lxra;b2/2 mice (Fig.

S2A). In agreement with a SMC localization of lipid droplets,

immunodetection with functional and structural SMC markers

(respectively, cav-1 for caveolin-1 and sma-actin for smooth muscle

alpha-actin) revealed a decrease of both markers in peritubular

SMC of the caput segment 1 of HCD-fed lxra;b2/2 mice only

(Fig. 3C, arrowheads in higher magnification microphotographs of

the lower panel). This phenotype was also observed in segment 2

(Fig. S3) but not in the more distal segments of the epididymis (not

shown). The defects recorded in caput segments 1 and 2 in HCD-

fed young LXR-deficient males were also associated with a

reduction in epithelial height (6.660.7 mm vs. 20.961.9 mm,

p,0.05) and a loss of luminal cilia, normally visible as a non-

specific signal with the anti-sma-actin immunostaining (see Fig. 3C),

two known characteristics of the epididymal phenotype observed in

old lxra;b2/2 animals [10,11].

Dietary Cholesterol-Induced Infertility
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High-cholesterol diet and ageing alter proximal caput
epididymis SMC markers in LXR-deficient male mice

SMC markers were investigated in infertile 9-month-old

lxra;b2/2 animals fed a standard diet. Similarly to what was

observed in younger animals fed a HCD, it appeared that the

characteristic peritubular staining of cav-1 and sma-actin (Fig. 4A,

arrows) also decreased in caput epididymidis segments 1 and 2

(Fig. 4A, arrowheads), whereas no abnormality was seen in

posterior segments illustrated here only for segment 3 (Fig. 4A,

arrows). The loss of luminal cilia was also visible in these tissues.

The quantitative decrease of caveolin-1 started as early as 6

months of age, although not in a significant manner, and became

significant in the caput epididymidis of 9-month-old animals as

revealed by immunoblotting (Fig. 4B). This decrease, occurring in

Figure 1. Post-testicular infertility induced in high-cholesterol diet-fed young xra;b2/2l animals. (A) Delivery percentage obtained for 4-
month-old wt or lxra;b2/2 male mice (n = 6 for each group), each mated with 2 SWISS wt females. Animals were fed for 4 weeks either a control or
high-cholesterol diet (HCD) containing 1.25% cholesterol. (B) Number of cauda epididymidis retrieved spermatozoa per epididymis. Bar graphs
display means 6 SEM, n = 6. (C) Total motility percentage (Computer Assisted Sperm Analysis) of cauda epididymidis-retrieved spermatozoa. Bar
graphs display means 6 SEM, n = 3. (D) Viability percentage of cauda epididymidis-retrieved spermatozoa. Bar graphs display means 6 SEM, n = 6. (E)
Percentage of spontaneously acrosome-reacted sperm cells determined on cauda epididymidis-retrieved spermatozoa. Bar graphs display means 6

SEM, n = 6, *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0026966.g001
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older LXR-deficient animals on a standard diet, is triggered by

HCD already in 4-month-old lxra;b2/2 animals (Fig. 4C).

Overall, these results show that 4-month-old lxra;b2/2 animals

after 4 weeks on HCD display a phenotype normally occurring in

ageing males. A decreased accumulation of cav-1 level in the caput

epididymidis can thus be considered as a molecular marker of the

SMC degenerative phenotype.

Peritubular SMC of the epididymis transdifferentiate into
foam cells

Looking closer at the caput epididymidis phenotype, we

observed in several locations peritubular cells involved in an

infiltration-like process through the epididymal epithelium. These

cells were SMC as they were positively stained with anti-cav-1 and

anti-sma-actin (Fig. 5A, arrows). Concomitantly, oil-red-O

staining of cryosections from the same samples revealed that the

peritubular accumulations of lipid droplets concerned SMC

fusiform cells that were also present in the infiltrations (Fig. 5B,

arrowheads). Since these features resembled alterations seen in

atherosclerotic vascular cell walls, we tested for the expression of

CD68 and Mmp-9, respectively, which are markers of foam cells

[15] and extracellular matrix degradation [16], in proximal caput

epididymidis of both 9-month-old LXR-deficient animals on a

control diet and 4-month-old lxra;b2/2 males on HCD for 4

weeks. We observed that an anti-CD68 antibody clearly identified

peritubular foam cells in 9-month-old lxra;b2/2 proximal

epididymis (Fig. 5C, left). A quantitative western blot evaluation

of CD68 showed its accumulation in caput epididymidis protein

extracts of 9-month-old lxra;b 2/2 animals (Fig. 5C, right). CD-

68 positive cells were also present in the peritubular compartment

of 4-month-old lxra;b2/2 males fed the HCD for one month

(Fig. 5D).

To define whether the CD68 positive cells could arise from

circulating macrophages, we performed immunoperoxidase stain-

ing for a specific macrophage marker, F4/80, and for CD68 on

adjacent sections of caput epididymidis from 9-month-old

lxra;b2/2 animals (Fig. 6A). Three types of cells were

represented, i.e. either cells exclusively positive for CD68

(arrowheads) or F4/80 (stars), respectively, or cells positive for

both markers (arrows). The foam cells in caput epididymidis from

9-month-old lxra;b 2/2 males thus originated from both SMC

transdifferentiation and macrophage infiltration. The same

experiments were performed in young lxra;b 2/2 males on

HCD (Fig. 6B); no double-stained cells were observed, indicating

that the foam cells had originated from transdifferentiating SMC

only.

Matrix degradation processes accompanied the presence of

foam cells as we could observe considerable accumulation of

Mmp-9 in cells surrounding the tubules in the caput epididymidis

from 9-month-old LXR-deficient animals (Fig. 7A). The expres-

sion levels of Mmp-9 in caput epididymidis protein extracts of 9-

month-old LXR-deficient animals was highly increased compared

to 4-and 6-month-old animals (Fig. 7C), in accordance with the

loss of SMC seen by the drop in cav-1 levels at the same age.

Mmp-9 showed a tendency to increase in caput epididymidal

protein extracts of young lxra;b2/2 males on HCD (Fig. 7D), as

confirmed by immunoperoxidase staining (Fig. 7B).

Discussion

This work indicates that Liver-X-Receptors are key actors in

post-testicular sperm maturation processes in the proximal

epididymis. These receptors are involved in the maintenance of

(i) epididymal cholesterol balance and (ii) epididymal structure,

especially in animals fed a lipid-enriched diet. In addition to the

ABCA1-mediated accumulation of cholesteryl esters in apical cells

of the lxra;b2/2 proximal epididymal epithelium reported

previously [11], we showed here that smooth muscle cells

surrounding the epididymal tubules also had impaired function

in LXR-deficient animals. Lxra;b2/2 animals progressively lose

SMC function in the proximal caput epididymidis segments 1 and

2 as illustrated by the decrease of caveolin-1, a marker of SMC

contractility [17], suggesting that peristaltic contractions and,

consequently, sperm progression in the lumen of the tubule may

be impaired, perturbing the finny orchestrated process of

spermatozoa epididymal maturation. This is in agreement with

our earlier observation that the tubules of the ageing lxra;b2/2

animals are filled with amorphous material [10]. The participation

of cav-1 in intracellular cholesterol movements and efflux to

extracellular acceptors [18,19] could explain CE accumulations as

cav-1 decreases in epididymal SMC. The description that a

dominant negative mutation of cav-1 leads to neutral lipid storage

in lipid droplets supports this hypothesis [20]. SMC within the

proximal caput epididymidis of lxra;b2/2 animals were also

found to transdifferentiate into foam cells that migrated across the

epididymal epithelium towards the lumen. These cells have

acquired known characteristics of foam cells, i.e. cytoplasm filled

with lipid droplets and CD68 overexpression. This is quite similar

to the situation encountered in mouse aortic SMC, in which a

decrease in sma-actin, lipid droplet accumulation and an increase

in CD68 are markers of their transdifferentiation into a

macrophage-like state, a critical step in the atherosclerotic process

[15]. SMC have also been described as a source of foam cells in

human coronary atherosclerosis [21] and in atheromatous lesions

of human aortas [22]. In our epididymal context, the CD68-

positive cells were shown to have two potential origins in 9-month-

old males, as some were also F4/80 positive, a macrophage

specific marker (Fig. 5), suggesting macrophage infiltration from

blood vessels. In the 4-month-old lxra;b2/2 males fed the HCD,

only CD68-positive cells were observed (Fig. 6B), perhaps

indicating two different kinetics of the sclerotic development. This

was associated with a significant increase in Mmp-9 levels that was

more obvious in the 9 month old lxra;b2/2 males than in

younger animals on HCD. The inflammation process may be

more involved in the development of the pathology in older males

under control diet, whereas SMC transdifferentiation may be

more relevant in younger HCD-fed animals, a hypothesis that will

need further testing. In human and mouse atherosclerotic lesions,

Mmp-9 has been shown to participate in SMC migration [23].

The finding of Mmp-9 overexpression in our study agreed with the

observation, that LXR down-regulated Mmp-9 expression in

mouse peritoneal and bone-marrow-derived macrophages [16].

Table 1. Percentages of morphologically normal and
abnormal sperm cells.

Group Normal Hairpin Angulated Broken

wt 25.363.6 63.162.5 6.361.2 5.362.4

wt HCD 25.864.0 56.466.4 6.961.2 1161.5

lxra;b2/2 37.565.6 51.766.6 7.660.1 3.261.1

lxra;b2/2 HCD 19.268.5 49.666.7 6.861.2 24.461.5a,b

Results are presented as means 6 SEM.
a = p#0.05 compared to lxra;b2/2;
b = p#0.05 compared to wt on a high-cholesterol diet.
doi:10.1371/journal.pone.0026966.t001
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Figure 2. Testicular function in high-cholesterol diet fed young mice. A. Paraffin sections of testis from wt (upper panel) and lxra;b2/2
(lower panel) 4-month-old mice fed a control and high-cholesterol diet, respectively, were stained by Mayer’s haematoxylin. A higher magnification is
presented for each condition. Scale bars represent 20 mm. B. Elongated nuclei corresponding to spermatids or spermatozoa (arrowheads) were
counted in a minimum of ten tubules per individual, with 3 different individuals in each condition. Results are presented in the table below, together
with relative testis weight (% of the whole body) and animal weights (g), and are expressed as mean 6 SEM. a = p,0.05 compared to wt; b = p,0.05
compared to wt; c = p,0.05 compared to lxra;b2/2; d = p,0.05 compared to wt high-cholesterol diet. C. Intratesticular testosterone quantification
of control and high-cholesterol diet-fed 4-month-old wild type and lxra;b2/2 animals. Bar graphs are expressed as a normalized value of the
expression level in high-cholesterol diet-fed animals versus an arbitrary value of 1 in the control-fed animals. Each value is the mean 6 SEM using
protein level as internal standard. Bar graphs display means 6 SEM, n = 5. **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0026966.g002
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Our data regarding the LXR-mediated effect on SMC also agrees

with reports showing that a lack of LXR impairs mouse uterine

contractility [24]. Therefore, SMC of the proximal caput

epididymidis appear to be another target of LXR action and loss

of peritubular SMC in lxra;b2/2 animals has been associated

with reduction in epithelium height, particularly visible in the two

Figure 3. Effect of high-cholesterol diet on caput epididymidis tissue in a segment and cell-specific manner in young lxra;b2/2
animals. (A) Schematic representation of the adult mouse epididymis. Caput, corpus and cauda designate the 3 main regions of the mammalian
epididymis from its proximal extremity connected to the efferent duct to its distal extremity connected to the vas deferens (not illustrated). Sub-
regions 1 to 10 identify the various epididymis segments that are anatomically separated by connective tissue septa [33]. (B) Oil Red O staining of
segments 1 (S1) and 2 (S2) caput epididymidis of 4-month-old wt or lxra;b2/2 fed for 4 weeks a control diet or high-cholesterol diet (scale bars
represent 10 mm, n = 3). (C) Caveolin-1 and sma-actin immunoperoxidase stainings in segment 1 caput epididymidis from wt and lxra;b2/2 mice at 4
months of age fed for 4 weeks a control diet or high-cholesterol diet. The lower panel displays higher magnifications of the region included in the
box of the second panel (lxra;b2/2 animals). Inset represents negative control. Scale bars represent 10 mm, n = 3.
doi:10.1371/journal.pone.0026966.g003
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first segments of 9-month-old lxra;b2/2 mice or younger

lxra;b2/2 animals fed a lipid-enriched diet. SMC do not appear

to undergo apoptosis, as they were TUNEL negative [11]. It is

thus likely, that their migration towards the epididymal lumen

caused the structural changes in the epithelium. As found in aortic

SMC transdifferentiation after cholesterol loading [15], we showed

here that the ageing lxra;b2/2 epididymal phenotype could be

triggered in younger animals by feeding a cholesterol-enriched

diet. Most importantly, the appearance of the phenotype was

associated with complete male infertility, which was unlikely

caused by direct effects of the diet on testicular functions. Indeed,

normal testicular activity was supported by several observations:

epididymal sperm counts were not different between wt and

lxra;b2/2 animals independent of diet (Fig. 1B), testicular sperm

production was similar in the four groups, and no decrease in

testicular weight was noticed (Fig. 2B). The slight increase in

relative testicular weight observed in lxra;b2/2 males is related to

the global weight loss of the animals also reported in Fig. 2B.

Testicular histology did not reveal any visible alterations, the

opposite of what was seen in caput epididymidis, reinforcing the

idea that the epididymis is affected early in a situation of

cholesterol overload. This is supported by the results obtained

for sperm morphology, sperm motility, sperm viability and

acrosome integrity, that were severely impaired in high-cholesterol

Figure 4. Modification of proximal caput epididymal SMC markers in relation to age and diet. (A) Caveolin-1 and sma-actin
immunoperoxidase staining in segment 1 (S1), segment 2 (S2) and segment 3 (S3) of the caput epididymidis from wt and lxra;b2/2 mice at 9 months
of age. Arrows indicate the positive staining and arrowheads indicate places where the staining is not present in S1 and S2 of the lxra;b2/2 mice.
Scale bars represent 10 mm, n = 3. (B) Relative levels of caveolin-1 protein in the caput epididymidis from wt and lxra;b2/2 mice at 4, 6 and 9 months
of age. Bar graphs display means 6 SEM using b-actin as an internal standard for quantification, n = 3, **p,0.01. (C) Relative protein levels of
caveolin-1 in the caput epididymidis of 4-month-old wt or lxra;b2/2 animals fed a control or high-cholesterol diet for 4 weeks. Bar graphs display
means 6 SEM using albumin (Ponceau red) as an internal standard for quantification, n = 3, **p,0.01.
doi:10.1371/journal.pone.0026966.g004
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Figure 5. Transdifferentiation of epididymal peritubular SMC into foam cells in 9-month-old lxra;b2/2 animals as well as in high-
cholesterol diet-fed 4-month-old lxra;b2/2 animals. (A) Caveolin-1 (left panel) and sma-actin (right panel) immunoperoxidase staining in
segment 1 of the caput epididymidis from 9-month-old lxra;b2/2 mice showing smooth muscle invaginations (arrows) through the epididymal
epithelium. Scale bars represent 10 mm. (B) Oil Red O stains of segment 1 of the caput epididymidis of 9-month-old lxra;b2/2 mice show neutral lipid
accumulation in smooth muscle cells (arrowheads), foam cells and protruding cells (arrows). Scale bars represent 10 mm, n = 3. In A and B,
abbreviations are: AP = apical pole, E = epithelium, L = lumen, spz = spermatozoa, V = blood vessels. (C) Immunoperoxidase staining (left panel) of
CD68 in 9-month-old wt (upper left picture) and lxra;b2/2 mice, not counterstained. Scale bars represent 10 mm, the arrow indicates a foam cell and
arrowhead indicates a transdifferentiating SMC. Relative protein levels (right panel) of CD68 in 9-month-old wt and lxra;b2/2 mice, n = 3,
***p,0.001. (D) Immunoperoxidase staining of CD68 in 4-month-old lxra;b2/2 mice fed a control (upper left picture) or high-cholesterol diet, not
counterstained. Scale bars represent 10 mm, n = 3.
doi:10.1371/journal.pone.0026966.g005
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diet lxra;b2/2 animals. However, it is possible that at least a part

of the impairment of sperm quality may be related to dysfunction

in the last steps of spermatogenesis, the spermiogenesis process, a

point that will need further investigation. Due to its similarities to

atherosclerosis, we propose the observed phenotype to be referred

to as ‘‘epididymosclerotic’’.

Knowing that LXR deficiency somehow establishes a state of

hypo-androgeny in aged animals [8], the observed decrease in

intra-testicular testosterone levels in HCD-fed lxra;b2/2 animals

came as no surprise. One might argue that this decrease was

responsible for the epididymal phenotype triggered by HCD,

because it is known that the epididymal physiology is largely

independent of systemic androgens, i.e. androgens in the

epididymis originate from the testis as a lumicrine factor. The

generation and analysis of the PEARKO mouse model [25], in

which androgen signaling had been altered in accessory sex organs

including the prostate and the epididymis, showed that the animals

presented with slight histological defects only in corpus and cauda

epididymis, which was the opposite to our model (i.e., caput-

restricted defects). More recently, two groups have reported new

informative data concerning the roles of androgens in the

proximal caput epididymidis via the generation of a selective

knockout of the androgen receptor in the proximal caput

epithelium [26,27]. In both models, the knockout resulted in

severe abnormalities of the initial caput epididymidis segment,

leading to male infertility due to obstructive azoospermia, a

Figure 6. Foam cells originate either from the transdifferentiation of epididymal peritubular SMC or from macrophages.
Immunoperoxidase staining of CD68 and F4/80 in adjacent paraffin sections of (A) 9-month-old lxra;b2/2 mice and (B) 4-month-old lxra;b2/2 mice
fed 1 month with high-cholesterol diet. Positive cells for CD68 only are indicated by an arrowhead, positive cells for F4/80 only are indicated by a star
(*) and positive cells for both markers are indicated by an arrow, scale bars represent 10 mm, n = 3.
doi:10.1371/journal.pone.0026966.g006

Dietary Cholesterol-Induced Infertility

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e26966



situation that is again different to what we report here. The

infertility in our lxra;b2/2 animals was mainly due to sperm

impairment as attested by the high number of broken cells in the

cauda epididymidis, even though the cauda sperm counts were

similar, which also did not indicate an obstruction of the

epididymal duct. The observed decrease in intratesticular

testosterone rather resembles that of orchidectomy in the adult.

In that case, it was shown that sperm cells lacked and that

epididymal cells underwent apoptosis, something that was not

observed in our animals (confirmed in [11]). Furthermore,

Figure 7. Transdifferentiation of SMC is associated with matrix-metalloprotease-9 (Mmp-9) expression. Immunoperoxidase staining of
Mmp-9 in caput epididymidis segment 1 of (A) 9-month-old wt (upper left picture) or lxra;b2/2 mice and (B) 4-month-old lxra;b2/2 mice fed 1
month with the control diet (upper left panel) or the high-cholesterol diet. Arrowheads indicate Mmp-9 positive cells in 4-month-old lxra;b2/2 mice.
Scale bars represent 10 mm, n = 3. (C) Relative Mmp-9 protein levels in the caput epididymidis from wt and lxra;b2/2 mice at 4, 6 and 9 months of
age. Bar graphs display means 6 SEM using b-actin as an internal standard for quantification, n = 3, **p,0.01; ***p,0.001. (D) Relative protein levels
of Mmp-9 in the caput epididymidis of 4-month-old wt or lxra;b2/2 animals fed a control or High-cholesterol diet for 4 weeks. Bar graphs display
means 6 SEM using albumin (Ponceau red) as an internal standard for quantification, n = 3.
doi:10.1371/journal.pone.0026966.g007
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orchidectomy-dependent epididymal alterations can be restored

by testosterone replacement, except for the changes in the initial

segment, and we previously demonstrated that testosterone

replacement did not restore the epididymal phenotype of the

lxra;b2/2 animals [10]. Data published by other groups also

showed that a drop in intratesticular testosterone level as early as

2.5 months of age in lxra;b2/2 animals does not trigger any

infertility at that age [8]. Moreover, it was also reported in 10-

month-old wild type mice that testosterone levels similar to those

recorded here had no noticeable effects on fertility [28].

Considering all these data, we cannot exclude a role of decreased

testosterone levels in the epididymal phenotype. However, we

show here the very peculiar sensitivity and the regionalized pro-

inflammatory behavior of the proximal caput epithelium in

response to a dietary cholesterol overload. The diet had the

opposite effect in wt animals, i.e. it provoked a significant increase

in intra-testicular testosterone levels (Fig. 2C). This could be

explained by the ability of steroidogenic tissues to increase

hormone production when the substrate, cholesterol from

lipoproteins, is available in higher quantities, which is the case

here (Fig. S2). It has previously been correlated with an increase in

steroidogenic acute regulatory (StAR) mRNA and protein levels,

the shuttle taking cholesterol in the mitochondrial matrix for

steroid synthesis [29].

The infertility phenotype is associated to an impaired motility

and the appearance of an increased number of broken sperm cells

in lxra;b2/2 animals fed the HCD. It will thus be necessary to

undergo in-vitro fertilization protocols in order to evaluate the real

impact of these alterations on the fertilization capacities of the

sperm cells. This will help determine whether the altered sperm

functions rely on motility disorders, oocyte recognition and

fertilization, or both. These aspects are currently under investiga-

tion.

This study highlights the sensitivity of the post-testicular

compartment, i.e. the epididymis, with its maturing and stored

pools of spermatozoa, to dietary cholesterol overload. It may help

to understand human infertility in male dyslipidemic patients

[3,30,31] and link paternal obesity to defective sperm parameters

[4,32]. This work clearly shows that the epididymis is an early

target of lipid-induced infertility and that its function can be

dramatically altered upon dietary cholesterol overload. Thus, the

regulation of epididymal lipid and cholesterol homeostasis via

LXR appears to be a critical factor in maintaining fertility in both

ageing males and in younger males with lipid disorders.

Supporting Information

Figure S1 Neutral lipid accumulation in peritubular
smooth muscle cells from LXR-deficient 4-month-old
animals fed the control diet (upper panel) or with the
high-cholesterol diet for 1 month (lower panel). Oil red O

staining of 7 mm cryosections revealing neutral lipids in red

(triglycerides and cholesteryl esters). Highly lipid-loaded smooth

muscle cells as well as protruding cells are visible in the lower

panel. Scale bars represent 10 mm.

(DOC)

Figure S2 Plasma LDL increases in high-cholesterol
diet treated mice and in ageing lxra;b2/2 mice. Plasma

cholesterol, triglycerides, HDL and LDL concentrations were

measured (as described in Text S1) in (A) wt and lxra;b2/2 4-

month old mice fed the control or the high-cholesterol diet and (B)

wt and lxra;b2/2 ageing mice at 4, 6 and 8 months of age.

Histograms are expressed as mean 6 SEM, n = 3. *p,0.05;

**p,0.01.

(DOC)

Figure S3 Modification of caput epididymidal segment
2 SMC markers in high-cholesterol diet-fed 4-month-old
lxra;b2/2 animals. Caveolin-1 and sma-actin immunoperox-

idase staining are decreased (arrowheads in the bottom panel

microphotographs) in segment 2 (S2) of the caput epididymidis

from lxra;b2/2 mice at 4 months of age after four weeks of high-

cholesterol diet. Inset represents negative control, scale bars

represent 10 mm, n = 3.

(DOC)
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