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Abstract

Background/Aims: Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that
independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the
interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells.

Methods: The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro
lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to
inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis.

Results: CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain
functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to
promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact.
Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury.

Conclusions: NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell
contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.
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Introduction

The liver is constantly exposed to food antigens, endotoxins,

and pathogens that are brought from the intestines via the portal

blood supply. As a result, the liver must generate vigorous immune

responses. This is accomplished by a large number of hepatic

Kupffer cells, natural killer (NK) cells and natural killer T (NKT)

cells, which are components of innate immunity. Meanwhile, the

liver maintains immune tolerance to avoid inappropriate immune

activation, e.g. orthotopic liver transplantation results in the long-

term allograft survival without immunosuppression [1]. One

important component of hepatic immune tolerance is represented

by lymphocytes with regulatory functions, including regulatory T

cells (Tregs) and NKT cells [2,3].

Tregs are a group of heterogenous T cells that belong to the

adaptive immune system and are actively engaged in the negative

control of a variety of immune responses, including transplant

tolerance [4], viral hepatitis [5], autoimmune hepatitis [6], and

hepatocellular carcinoma [7]. Tregs are usually CD4+CD25+ and

express forkhead box protein 3 (Foxp3), a specific marker and the

master transcriptional regulator of Treg development and function

[8]. In the liver, the over-regulation/suppression of Tregs has been

shown to contribute to chronic HBV/HCV infections [5,9] and

hepatocellular carcinoma [7]. In contrast, inadequate Treg

regulation contributes to autoimmune hepatitis [6], primary

biliary cirrhosis [10], and acute rejection of transplant grafts [11].

NKT cells are components of the innate immune system. They

recognize glycolipid antigens bound to the MHC class I-like

molecule, CD1d, noncovalently associated with b2 micro globulin

on various antigen presenting cells [12]. NKT cells respond to

antigen presentation by secreting large amounts of cytokines, which

in turn stimulate the proliferation and differentiation of a variety of

other immune cells that participate in the innate or adaptive

response [13]. In the liver, more than 95% of the NKT cells are

invariant NKT cells that predominantly express a conserved ab T

cell receptor [14,15]. These cells originate in the thymus, but

predominately accumulate in the liver, where they are thought to be

responsible for the regulatory function by secretion of both pro-

inflammatory and anti-inflammatory cytokines [16,17,18].

Previously, it has been shown that there is evidence of cross-talk

between Tregs and NKT cells [19]. NKT cells secrete IL-2 and

IL-4 that induce Tregs proliferation [20,21]. In addition, NKT
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cells also regulate the homing of Tregs to the liver [22].

Conversely, Tregs can also inhibit NKT cell proliferation and

cytokine production in vitro [23]. However, there is little evidence

of their interaction in the liver. There is also little knowledge of the

mechanism by which Tregs exert their regulatory role on NKT

cells. Thus, in the current study, we have examined the role of

Tregs in hepatic NKT cell regulation, including the mechanism of

regulation and in vivo implications of such regulation.

Methods

Ethics statement
All animal experiments fulfilled NIH and JHU criteria for the

humane treatment of laboratory animals and were approved by

the Johns Hopkins Animal Care and Use Committee

(MO07M195).

Animal experiments
Adult (age 6–8 week) male wild type (wt) C57BL6 mice were

purchased from Jackson Laboratories (Bar Harbor, ME). CD1d

knock out (CD1dko) mice were originated in Dr. Albert Bendelac’s

lab and back crossed to C57BL/6 background more than 10

generation. All mice were maintained in a temperature- and light-

controlled facility, and permitted ad libitum consumption of water

and pellet chow. To evaluate the role of IL-2 on Treg regulation,

some wt and CD1dko also received recombinant mouse IL-2

(26105 IU, i.p., BD Pharmingen) on days 1, 3, 5, 7, as previous

described [24], and were evaluated on day 8 for their hepatic and

splenic Treg contents. To activate NKT cell in vivo, wt mice were

injected either vehicle or 2 mg of a-galactosylceramide (a-Galcer,

ALEXIS Biochemical, San Diego, CA) via tail vein 3 days before

harvesting the liver and collecting the blood.

Isolation and labeling of hepatic mononuclear cells
(HMNCs) and splenocytes

Mouse livers were perfused briefly with sterile saline solution to

remove blood cells, then carefully removed and minced. The liver

and spleen was homogenized and passed through a 70-micron

nylon mesh to remove connective tissue. HMNCs were then

isolated with Percoll gradient as previously described [25].

Splenocytes were isolated after removal of red blood cells. Cells

were then labeled with a CD1d tetramer (NIH tetramer facility)

loaded with a ligand (PBS-57, an analogue of a-GalCer) or anti-

mouse fluorescent antibodies against CD3, CD25, CD4, CD62L,

CD103 (Pharmingen, San Diego, CA). For apoptosis assays, cells

were stained with Annexin V and the vital dye 7-aminoactino-

mycin D (7-AAD). For intracellular staining, cells were labeled

with surface antibody, as described above, permeabilized and then

stained with antibodies against Foxp3 (eBioscience, San Diego,

CA), IL-2 or CTLA-4 (Pharmingen) according to the manufac-

turer’s instructions. After labeling, cells were evaluated by flow

cytometry (Becton Dickinson, Palo Alto, CA), and the data were

analyzed using Cell Quest software (Becton Dickinson). For

intracellular IL-2 staining only, cells were also pre-incubated with

a leukocyte activation cocktail first, which includes phorbol 1,2-

myristate 1,3-acetate (PMA, 50 ng/ml), ionomycin (500 ng/ml),

and GolgiPlug (1 ml/ml) for 5 hrs.

Cell purification and adoptive transfer
NKT cells were isolated from livers of wt mice. After isolation,

HMNCs were labeled with surface marker antibodies (anti-TCRb
and anti-NK1.1). NKT cells (NK1.1+, TCRb+) were isolated

through FACSVantage SE high speed sorter (Becton Dickenson).

The majority of those NKT cells (NK1.1+, TCRb+) were CD1d

tetramer positive, as shown in our previous study [17]. After

isolation, NKT cells were cultured with RPMI media supple-

mented with 2 mM L-glutamine. 100 U/ml penicillin, 100 mg/ml

streptomycin and 10% FCS. CD4+CD25+ Tregs and CD4+CD25-

effector T cells (Teffs) were isolated from the spleen of wt or

CD1dko mice by using a MACS regulatory T cell isolation kit

(Miltenyi Biotec, Auburn, CA). The purity of the cell separation

was ,95%, as assessed by flow cytometry.

After isolation, 1.56106 Tregs or Teffs were adoptively

transferred to each recipient wt mouse via tail vein injection.

24 hour after adoptive transfer, the recipient mice were injected

with 2 mg of a-Galcer or vehicle as described above to activate

NKT cells. Liver tissue and blood were collected 3 days later.

In vitro Treg suppression assays
Two types of Treg suppression assay were performed. In one

assay, purified wt and CD1dko Tregs were co-cultured with Teffs

(56104/well) that were stimulated with anti-CD3 (1 mg/ml) in the

presence of APCs (mitomycin C (50 mg/ml) treated splenocytes,

56104/well). In the other assay, purified wt and CD1dko Tregs

were co-cultured with purified NKT cells (56104/well) that were

stimulated with mitomycin C treated splenocytes (56104/well)

loaded with a-GalCer (100 ng/ml for 3 hrs. In both assays, APCs

(either treated with mitomycin-C alone for Teffs, or treated with a-

GalCer and mitomycin-C for NKT cells) were washed extensively

before co-cultured with either NKT cells or Teffs in the presence

of untreated Tregs in round-bottom 96-well plates with RPMI

medium. Cells were co-cultured for 3 days, at the last 18 h, 0.5 Ci

[3H] thymidine was added to the culture. Cell proliferation was

determined by incorporation of [3H] thymidine. Culture media

were collected for cytokine determination. In separate studies,

Tregs (26105/well) with APCs (26105/well) were placed in

transwell (Millipore, Billerica, MA) chambers and cultured with

NKT (26105/well) cells in the present of APCs (26105/well) as

described above.

Tregs and NKT cells conjugation assay
Va14+ mouse CD1d-specific NKT hybridoma (DN32.D3) were

labeled with CD1d tetramer, then incubated with freshly isolated

Tregs (1:1) from WT mice or CD1d ko mice that were labeled

with anti-CD25 mAb. After washing and fixation, cells were

analyzed by FACS. CD1d-tetramer+CD25+ cells indicated the

conjugation between NKT and Tregs. For CD1d blocking assays,

anti-CD1d mAb (10 mg/ml) were added to culture. In separate

Figure 1. Reduction of hepatic Tregs in CD1d deficient mice. Hepatic mononuclear cells (HMNC) and splenic cells were isolated from wt and
CD1dko C57BL6 mice. Tregs were identified by CD4, CD25, and Foxp3 staining. (n = 7 each group). A) Representative dot plots of Tregs (CD25+

Foxp3+ cells, gated CD4+ cells) from liver (upper panels) and spleen (lower panels). B) Mean (6SD) percentage of splenic and hepatic Tregs among
CD4 cells from wt and CD1dko mice. C) Representative histogram of intracellular IL-2 staining of HMNC from wt (open bar) and CD1dko (solid bar)
mice. D) Mean (6SD) value of intracellular IL-2 expression of total mononuclear cells (TMNC) in the liver and the spleen of wt and CD1dko mice. E)
Mean (6SD) level of IL-2 released from HMNC and splenic cells of wt and CD1dko mice measured by ELISA. F) Mean (6SD) percentage of IL-2 mRNA
expression in the liver and the spleen of wt and CD1dko mice determined by quantitative PCR. G) Mean (6SD) percentage of splenic and hepatic
Tregs in wt and CD1dko mice after they received recombinant IL-2. *p,0.05 vs wt mice.
doi:10.1371/journal.pone.0027038.g001
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experiments, purified NKT cells and Tregs were labeled with

20 mM CellTracker green dye and 5 mM CellTracker red dye,

respectively (Invitrogen, Eugene, OR), and were co-cultured for

24 hours in an incubator chamber connected to a confocal

microscope. The images were recorded every 30 min and

analyzed using velocity super-64 software (Improvision, PerkinEl-

mer). Pearson’s correlation coefficients described as the correlation

of intensity distribution between red and green channels were used

to assess NKT cell and Treg conjugation [26].

RNA Isolation and Evaluation of Hepatic Gene Expression
RNA was isolated as described previously [27,28]. cDNA was

synthesized from 5 mg of total RNA using oligo(dT) as a template

and the SuperScriptII kit (Invitrogen). Quantified PCR amplifi-

cations were performed using TagMan Gene Expression Assays

PCR Master Mix and primer sets (Applied Biosystems, Foster

City, CA). Negative controls were performed without cDNA in the

reaction mixture. The results were normalized against glyceralde-

hyde-3-phosphate dehydrogenase gene expression.

Liver Histology, serum alanine aminotransferase (ALT)
and ELISA

Thin slices of liver tissue were stained with hematoxylin. Serum

ALT was determined by the spectrophotometric method as

previously described [29]. IL-4, IFN-c and IL-2 levels in culture

media were measured with standard ELISA kits according to the

manufacture’s instruction (eBioscience).

Statistical analysis
All values are expressed as mean 6 SD. Treatment related

differences were evaluated by ANOVA. The paired-individual

means were compared by t-test. P values of less than 0.05 were

considered statistically significant.

Results

Reduction of hepatic Tregs in NKT deficient mice
There are several reports of cross talk between NKT cells and

Tregs [30,31,32]. However, there is little evidence of whether

NKT cell deficiency leads to a reduction in Treg number or

function. In this study, we first examined the basal number of

Tregs in NKT cell deficient (CD1dko) mice. There was a

significant decrease of Tregs in the livers of CD1dko mice (Fig. 1

A and B). However, the reduction in Tregs was limited to the liver.

The number of Tregs in the spleen of CD1dko mice was similar to

those of wt mice (Fig. 1A and B). Because liver has a high

percentage of IL-2 producing NKT cells, which is necessary for

Treg development [20], we next evaluated hepatic IL-2 expression

in CD1dko and wt mice. Intracellular cytokine staining showed a

slightly decrease in IL-2 expression among HMNC from CD1dko

mice, while IL-2 expression in the spleens of wt and CD1dko mice

was similar (Fig. 1C and D). There was a trend of reduction in IL-

2 transcription and translation level, as shown by qPCR and

ELISA (Fig. 1E and F), although they didn’t reach statistical

significance. Hepatic Treg number returned to normal levels after

CD1dko mice received exogenous IL-2 (Fig. 1G). Taken together,

it is likely that local IL-2 secretion controlled by NKT cells

regulates the accumulation of Tregs in the liver and leads to

decreased hepatic Tregs in CD1dko mice.

Tregs display CD1d dependent NKT cell suppression
A previous study has shown that human Tregs suppress NKT

cell proliferation and cytokine production [23]. To better

understand the mechanism by which Tregs regulate NKT cell

function, we performed lymphocyte suppression assays using

freshly isolated Tregs. CD4+ CD25+ Tregs were sorted from the

spleens of either wt or CD1dko mice. Given that Foxp3 represents

a single definitive Treg marker [8], we determined its expression

on isolated CD4+ CD25+ Tregs and found that the majority of

these cells in both groups were Foxp3+ cells (Fig. S1A). Other

functional markers such as CTLA-4, CD62L and CD103 were

also similarly expressed on Tregs from either wt or CD1dko mice

(Fig 2A). Notably, Tregs from wt mice express CD1d, which was

absent on Tregs from CD1dko mice (Fig. S1B). Nevertheless both

groups displayed a similar ability to suppress conventional T cell

proliferation (Fig 2B). Next, we evaluated whether Tregs can also

suppress NKT proliferation. Purified wt NKT cells were cultured

with a-Galcer-loaded splenocytes in the presence or absence of

Tregs from either wt or CD1dko mice. Tregs from wt mice

demonstrated much stronger inhibitory capacity on NKT cell

proliferation than those from CD1dko mice (Fig 2C). Because wt

Tregs express CD1d (Fig. S1B), to rule out the possibility that

NKT cells maybe stimulated by wt Tregs in association of either

endogenous or exogenous ligands (a-Galcer) presented by CD1d

molecules, NKT cells were cultured with wt Tregs in the absence

of splenocytes. No NKT cell proliferation was observed (data not

shown). In addition, the a-Galcer-pulsed splenocytes were washed

extensively to remove the residual a-Galcer before being added to

the culture system. These results indicate that Tregs alone cannot

effectively stimulate NKT cells. Furthermore, when NKT cells

were activated by anti-CD3 mAbs, which do not require CD1d-

mediated ligand presentation, a similar inhibitory effect was

observed on NKT cells proliferation by wt Tregs but much less by

CD1dko Tregs (Fig. S2). Taken together, these results demonstrate

that Tregs inhibit activation-induced NKT cell proliferation in a

CD1d-dependent manner.

Upon stimulation NKT cells rapidly produce many cytokines,

including IFN-c and IL-4. Next, we evaluated whether Tregs

could also suppress activation-induced cytokine production by

NKT cells. NKT cells were co-incubated with a-Galcer loaded

APC in the presence of Tregs isolated from either wt or CD1dko

mice. Co-culture supernatants were harvested and cytokine

production was measured by standard cytokine ELISA. We found

that, in addition to their ability to inhibit NKT cell proliferation,

Figure 2. CD1d deficient Tregs have a reduced capacity to suppress NKT cells. Tregs (CD4+ CD25+) were isolated from the spleen of wt and
CD1dko mice. NKT cells (NK1.1+, TCRb+) and Teffs (CD4+ CD25-) were isolated from the liver and the spleen of wt mice, respectively. A) Representative
dot plots of isolated Tregs from each animal of one experiment. Mean (6SD) results were listed on the graph. Tregs from wt and CD1dko mice share
similar Treg surface markers. B) Tregs suppress Teff proliferation assay. Teffs (56104/well) were co-cultured with different amount of either wt or
CD1dko Tregs as labeled on the graph in present of APC (mitomycin C-treated wt splenocytes, 56104/well) and anti-CD3. Mean (6SD) results were
graphed. C) Tregs suppress NKT cell proliferation assay. NKT cells (56104/well) were co-cultured with different amount of either wt or CD1dko Tregs
as labeled on the graph in present of APC (a-Galcer-loaded and mitomycin C-treated wt splenocytes, 56104/well). The APCs were washed extensively
to remove excessive a-Galcer before added to the co-culture. Mean (6SD) results were graphed. *p,0.05 vs wt mice. E, F) Tregs suppress NKT cell
function assays. NKT cells were isolated and co-cultured with APCs and Tregs from wt and CD1dko mice, as described above. IFN-c (E) and IL-4 (F)
released to the culture media were determined by ELISA. Mean (6SD) results were graphed. (B–F, n = 3/exp, and the experiments were repeated
three times). *p,0.05 vs wt mice.
doi:10.1371/journal.pone.0027038.g002
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Figure 3. CD1d dependent conjugation of Tregs and NKT cells. Tregs were isolated and co-cultured with either NKT cell hybridomas (A and
B) or purified primary NKT cells (C-E). A) Representative dot plots of cells after co-culture for 60 minutes. CD25 represents Treg marker and CD1d
tetramer represents NKT cell marker. CD25+ CD1d tetramer+ cells indicated conjugation of Tregs and NKT cells. B) Time course of Treg and NKT cell
conjugation after co-culture. C, D) NKT cells and Tregs were labeled with green and red dye, respectively, and co-cultured while their co-localization
was measured with confocal microscopy. C) Representative cofocal images showed at the beginning and the end of culture. NKT cells only
conjugated with wt Tregs as indicated as yellow colored double labeling. D) Pearson’s correlation coefficients were used to determine the
conjugation. The coefficient of .0.5 indicated conjugation and ,0.5 indicated no conjugation. E) NKT cell proliferation assays similar to those
described in Fig. 2C except the Tregs were placed in transwells. NKT:Treg = 1:1, (B – E, n = 3/exp, and the experiments were repeated three times).
doi:10.1371/journal.pone.0027038.g003
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CD1d expressing Tregs also are much more effective at

suppressing NKT cell function, compare to CD1d deficient Tregs

(Fig. 2D, E).

The suppression of Tregs by NKT cells requires CD1d
mediated cell to cell contact

CD1d molecules present ligands to NKT cells via conjugation

with an invariant T cell receptor. Our results indicated that the

suppressive function of Tregs on NKT cells was CD1d-dependent.

We co-incubated Va14+ NKT hybridoma with Tregs from wt

mice and CD1dko mice to examine whether Tregs suppression of

NKT cells requires conjugation and cell to cell contact. After co-

culturing NKT hybridoma and Tregs, there was dual-expression

of both Treg and NKT markers, indicating their conjugation

(Fig. 3A, B). Importantly, we found that only Tregs from wt mice,

not CD1dko mice, conjugated with NKT hybridoma. Further-

more, conjugate formation was blocked by the addition of anti-

CD1d mAb (Fig. 3A, B). To further confirm the conjugation

between NKT cells and Tregs, we labeled purified primary NKT

cells and Tregs with green and red dye, respectively, and co-

cultured them while measuring their co-localization with confocal

microscopy (Fig. 3C). Using Pearson’s correlation coefficients as

described previously [26], we found that NKT cells conjugated

with wt Tregs (.0.5), but not with CD1d deficient Tregs (,0.5)

(Fig. 3D). In addition, we examined whether Treg mediated

suppression of NKT cell function was contact dependent. We

found that when Tregs were placed in transwells and cultured

above primary NKT cells, their ability to suppress NKT cells was

abolished (Fig. 3E). These data provide some indication that the

suppression by Tregs of NKT cells is both CD1d and cell-contact

dependent.

Tregs induce NKT cell apoptosis
It has previously been described that Treg based suppression

involved both inhibition of target cell proliferation and induction

of apoptosis of target cells [33]. Thus, we evaluated whether Tregs

also induce apoptosis in activated NKT cells. Primary NKT cells

were activated with a-Galcer loaded APC, and then co-cultured

with Tregs from either wt or CD1dko mice, as previously

described. We then used Annexin-V staining to evaluate the level

of NKT cell apoptosis by simultaneously incubating the cells with

7-AAD to assess cellular necrosis. Apoptotic NKT cells were

Figure 4. CD1d-mediated Treg-induced NKT cell apoptosis. NKT cells and Tregs were isolated and co-cultured as described in Figure legend
2. NKT cell apoptosis was measured by AnnexinV staining with concurrent incubation of 7-AAD to assess cell necrosis. A) Representative dot plot of
NKT cell (gated on CD1d-tetramer+ cells) apoptosis assay after co-cultured for 3 days. Apoptotic NKT cells are defined as Annexin-V+/7-AAD2. B)
Time-course analysis of NKT cell apoptosis induced by Tregs isolated from wt and CD1dko mice. (n = 3 each group). C) Blocking of CD1d engagement
completely abrogated Treg-mediated NKT cell apoptosis. Purified Tregs from wt mice were first incubated with anti-CD1d mAb or isotype control
(10 g/ml, 1B1 clone, BD Biosciences) for 2 hours. After extensive washing, the Tregs were then co-cultured with NKT cells for 72 hours as described
above. Mean (6SD) of three experiments were graphed. (n = 3/exp, and the experiments were repeated 3 times) *p,0.05 vs isotype control.
doi:10.1371/journal.pone.0027038.g004
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defined as Annexin-V+/7-AAD2. There was a significant increase

in the apoptosis of NKT cells induced by wt Tregs, whereas NKT

cells apoptosis was less frequent with Tregs from CD1dko mice

(Fig. 4A). Treg induced NKT cell apoptosis increased with time

(Fig. 4B) and could be blocked by anti-CD1d mAb (Fig. 4C).

These results further illustrated that Tregs may exert their

regulatory function on NKT cells via a CD1d dependent

mechanism.

Tregs inhibit NKT cell mediated hepatitis
NKT cells are known to mediate several forms of hepatitis

[34,35]. To evaluate whether the Tregs-induced suppression of

NKT cells has any biological relevance, wt mice were injected with

a-Galcer to elicit hepatitis, then splenic Tregs from wt or CD1dko

mice were adoptively transferred into these mice. Our previous

study shows homing of transferred Tregs in the liver using the

same method [36]. Wt Tregs, but not CD1dko Tregs, nor Teff,

significantly reduced hepatic inflammation induced by a-Galcer as

reflected by liver histology (Fig. 5A) and serum ALT levels

(Fig. 5B). These studies indicate that Tregs play an important

biological role in the regulation of NKT cell activation and NKT

cell mediated inflammation. In addition, these data demonstrate

that Treg mediated suppression of NKT cells is CD1d dependent

in vivo.

Discussion

Tregs and NKT cells are two distinct lymphocyte subsets. NKT

cells are enriched in the liver where they are the major component

of the innate immune defense. They recognize glycolipid antigens

presented by CD1d and respond to infections or inflammation

prior to the conventional adaptive immune responses. Hepatic

NKT cells include groups of functionally distinct subsets that can

both promote and suppress immune responses, and have been

implicated in the pathogenesis of a wide variety of autoimmune

and inflammatory diseases [37,38]. The regulatory function of

NKT cells is thought to be due to their ability to produce large

amounts of cytokines, particularly IL-4, IL-10 and IL-13 [39].

Here we show that NKT cells are likely to also promote the Treg

population in the liver, possible through IL-2, because NKT cell

deficient CD1dko mice have reduced IL-2 level and less Tregs in

the liver (Fig. 1). This provides another mechanism by which NKT

cells can regulate the immune response.

As a part of the adaptive immune response, Tregs recognize

antigens bound to MHC class-II molecules and mediate tolerance

through contact-dependent suppression of effector-cell prolifera-

tion [40]. Dysfunction of Tregs has been linked to autoimmune

hepatititis [41]. Cross-talk between NKT cells and Tregs has also

been described [19]. In fact, hepatic NKT cell number appears to

be increased in association with decreased hepatic Treg number in

some autoimmune liver diseases [10,42]. These observations

suggest that the dysregulation of NKT cell and Treg interactions

may contribute to the pathogenesis of autoimmune liver disease.

However, the mechanism of NKT cell and Treg cross regulation

has not been well characterized.

In this manuscript, we use both an in vivo animal model and an

in vitro cell culture system to study immune regulation and CD1d-

dependent cross-talk between NKT cells and Tregs in the liver.

We show that NKT cells induce or recruit Tregs to the liver,

because NKT cell deficiency (CD1dko mice) results in a reduction

in the population of hepatic Tregs. The decrease in Tregs in the

liver of NKT cell deficient mice are likely due to decreased hepatic

IL-2 and IL-4, major cytokines secreted by NKT cells. We also

demonstrated that Tregs express high levels of CD1d molecules on

their surface. Furthermore, we found that Tregs effectively

inhibited NKT cell proliferation through the induction of

apoptosis. This inhibitory effect was CD1d dependent, since

CD1dko Tregs have normal inhibitory activities on classical

effector T cells, while their inhibitory activities on NKT cells were

diminished and this effect could be blocked with CD1d-specific

mAbs. The inhibitory effect was also cell-cell contact dependent.

These observations provide insights to the pathogenesis of many

autoimmune related liver diseases. From a clinical point of view,

Figure 5. Tregs inhibit NKT cell mediated hepatitis. Tregs (CD4+ CD25+) and Teff (CD4+CD252) were isolated from the spleen of either wt or
CD1dko C57BL6 mice and adoptively transferred (1.56106 Tregs for each recipient mouse) into wild-type C57BL6 mice. 24 hour after adoptive
transfer, the recipient mice were injected with a-Galcer to induce hepatits. Liver tissue and blood were collected 3 days later. A) Representative H&E
stain of liver histology. B) Mean (6SD) serum ALT levels of four experiments, *p,0.01 vs other groups treated with a-Galcer.
doi:10.1371/journal.pone.0027038.g005
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many infection or inflammation can result in hepatic NKT cell

activation and proliferation as part of the innate immune response.

Once activated, NKT cells secrete IL-2 and IL-4 to recruit or

induce Tregs to the liver as part of the adaptive immune response,

which, in turn, inhibits NKT cell proliferation and promote NKT

cell apoptosis to limit the NKT cell mediated inflammatory

response. This feedback mechanism prevents excessive inflamma-

tion. Any dysregulation of NKT cell and Treg cross-talk may

contribute to the pathogenesis of immune mediated liver diseases.

Our animal model, with NKT cell-mediated hepatitis, indicates

the importance of this cross-talk and regulation. However, the

molecular mechanism of Treg and NKT cell interaction is still

unclear. The receptor complex and intracellular signaling pathway

that mediate Treg and NKT cell interaction are still under

investigation.

It should be noted that, although the suppressive ability of wt

Tregs was much higher than that of CD1dko Tregs, the latter still

exerted some inhibitory effects on NKT cells (Fig 3). Multiple

mechanisms behind Tregs suppressive function have been

proposed, including contact-dependent suppression of effector-cell

proliferation involving IL-10 and transforming growth factor

(TGF)– b [40], and modulation of dendritic cell maturation and

function [43]. Therefore, it is possible that other suppressive

mechanisms in addition to the CD1d mediated-cell to cell contact

also play role in the cross-talk between Tregs and NKT cells.

These other mechanisms are currently under investigation.

In summary, we show that NKT cells and Tregs, two major

regulatory sub-populations of lymphocytes that belong to the

innate and adaptive immune system, interact with each other in

the liver to generate an effective, but tightly-regulated immune

response. This provides a novel concept of hepatic immune

regulation and the possible pathogenesis of immune mediated liver

diseases.

Supporting Information

Figure S1 A) Representative histogram of Foxp3 intracellular

staining that showed the majority of isolated CD4+ CD25+ cells

are Tregs with similar distribution between wt and CD1dko mice.

B) Representative histogram of CD1d staining on Tregs from wt

and CD1dko mice. Tregs from wt mice express CD1d, which was

absent on Tregs from CD1dko mice.

(TIF)

Figure S2 NKT cells were isolated from the liver of wt mice.

Tregs (56104/well) were purified from the spleen of either wt or

CD1dko mice, and co-cultured with NKT cells (56104/well) in

the present of anti-CD3 mAb and mitomycin C treated

splenocytes (56104/well). NKT cell proliferation was determined

by incorporation of [3H] thymidine. Mean (6SD) results of

triplicates experiments were graphed. ap,0.01 vs no-Treg group,
bp,0.01 vs CD1dko-Treg group.

(TIF)
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