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Abstract

Introduction: The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide
association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both
family-based and population-based samples, and can be extended to incorporate other effects in a straightforward and
rigorous fashion. Here, we present a complementary approach, called ‘GENMIX (genealogy based mixed model)’ which
combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA.

Subjects and Methods: We validated GENMIX using genotyping data of Danish Jersey cattle and simulated phenotype and
compared to the MMA. We simulated scenarios for three levels of heritability (0.21, 0.34, and 0.64), seven levels of MAF (0.05,
0.10, 0.15, 0.20, 0.25, 0.35, and 0.45) and five levels of QTL effect (0.1, 0.2, 0.5, 0.7 and 1.0 in phenotypic standard deviation
unit). Each of these 105 possible combinations (3 h2 x 7 MAF x 5 effects) of scenarios was replicated 25 times.

Results: GENMIX provides a better ranking of markers close to the causative locus’ location. GENMIX outperformed MMA
when the QTL effect was small and the MAF at the QTL was low. In scenarios where MAF was high or the QTL affecting the
trait had a large effect both GENMIX and MMA performed similarly.

Conclusion: In discovery studies, where high-ranking markers are identified and later examined in validation studies, we
therefore expect GENMIX to enrich candidates brought to follow-up studies with true positives over false positives more
than the MMA would.
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Introduction

Although most genome-wide association studies are based on

single-marker tests, haplotype based tests are expected to hold

more power, if properly applied [1–2]. Genealogy based haplotype

tests are potentially the most powerful. Any potential phenotype-

affecting mutation must have occurred on an ancestral lineage of a

local genealogy, i.e. it must lie on an edge of a local gene-tree. If

the local genealogies are known, they provide an optimal set of

hypotheses to test, much smaller than if all haplotypes in a region

were tested.

However, the true local genealogy is never known but must be

inferred. There is generally a trade-off in inference methods

between the accuracy and computational efficiency. The Blossoc

method [3–5] mainly aims for computational efficiency. It readily

analyses GWAS datasets in hours on a desktop computer, yet it

still infers local genealogies sufficiently well to out-compete single

marker tests in localization and ranking accuracy. An underlying

assumption in Blossoc, however, is that the samples are unrelated,

which is not always the case in human genetics and generally never

for livestock populations.

The state-of-the-art for dealing with multiple levels of

relationship among the samples is Yu et al. [6]’s unified mixed model.

This approach is very flexible, can be applied to both family-based

and population-based samples, and can be extended to incorpo-

rate other effects in a straightforward and rigorous fashion.

In this paper we present a new method, GENMIX (genealogy

based mixed model), which combines local genealogies with the

unified mixed model. We compare it with the current state-of-the-

art, unified mixed model [6], on simulated cattle data and show

that GENMIX provides a better ranking of markers: in 90% of

simulations, the highest ranked marker in GENMIX falls within

1Mbp of the true marker, compared to only 76% for the unified

mixed model. In discovery studies, where high-ranking markers

are identified and later examined in validation studies, we

therefore expect GENMIX to enrich candidates brought to
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follow-up studies with true positives over false positives more than

the unified mixed model would.

Methods

The DNA was extracted from semen samples from Danish

Jersey bulls for genotyping in a different project which has been

acknowledged, so no ethical approval was required for this study.

Pedigree and Marker Genotypes
We used the Danish Jersey population to simulate data. The

marker genotypes of Bos taurus chromosome 6 (BTA6) of 1,407

individuals sampled from the pedigree of Danish Jersey dairy cattle

were used for analyses. The pedigree was traced back as far as

records were available (1937) and contained 8,063 individuals.

Genotyping was done with the Illumina Bovine SNP50 BeadChip

(Illumina Inc.) at the Aarhus University, Research Center Foulum,

Department of Genetics and Biotechnology and at GenoSkan,

AgroBusiness Park, Foulum, Denmark. Markers were assembled

according to bovine genome assembly 4.0, Btau_4.0 [7]. Missing

markers and linkage phase were inferred using the software

fastPHASEnd [8]. SNP loci with a minor allele frequency of less

than 5% were omitted. After data editing for genotyping quality,

1,695 SNPs were used for final analysis. The total bracketed length

of the chromosome was 122 Mbp. The average distance between

SNPs was 71.98 kbp.

Simulated QTL and Phenotypes
We choose 7 SNPs randomly out of total 1,695 SNPs on BTA6

with minor allele frequencies 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and

0.45 as QTL. These 7 SNPs were spread across the chromosome

and therefore, they represent a broad spectrum of regional LD.

There were 5 levels of QTL effect 0.1, 0.2, 0.5, 0.7, 1.0 in

phenotypic standard deviation unit. The phenotypes were obtained

as the sum of a simulated QTL effect, a residual polygenic effect and

a random residual. The residual polygenic effects were generated in

two steps. First, polygenic values for the individuals with unknown

parent were sampled from a normal distribution with mean 0 and

variance of 1. The residual polygenic effects for the subsequent

generation were derived by summing half of the values of the sire

and dam residual polygenic values and a Mendelian sampling term.

The residual variance was sampled to achieve three levels of

heritability of 0.21, 0.34, and 0.64. These three levels of heritability

were chosen to match the data from Yu et al. [6].

For each dataset one SNP, out of the seven SNPs selected based

on MAF, was considered as a QTL. The SNP assigned as QTL

was removed from the marker sets analyzed so the total number of

markers used for each analysis was 1,694. The additive genetic

variance due to the QTL was calculated as 2p (1 - p) a2; where a is

allele substitution effect of the QTL and p is the minor allele

frequency at the locus. In each simulation setting, a was adjusted

based on the allele frequencies of the SNP in the pedigree to

obtain each of the QTL explained a predefined proportion of the

phenotypic variance. The phenotype of an individual was the total

sum of the QTL effect, the residual polygenic effect and the

random residual. The total number of analyses was 2,625 (3 levels

of heritability x 7 MAFs x 5 effect sizes x 25 replications).

Grouping Haplotypes Based on Location on an Edge of
the Genealogy Tree

The genome is first segmented into (overlapping) regions that

can be explained by a single rooted binary tree topology, using the

four-gamete test. For each such region, a tree explaining the

genealogy of the region can then be constructed using the perfect

phylogeny method very efficiently. Local genealogies were inferred

by Blossoc [5], and translated in to explanatory factors for the

linear model by bi- or trisecting the tree (Figure 1). The first level

of tests was done by bisecting the tree at the root. All haplotypes

descending from the same branch from the root node were

grouped into one factor level. Subsequently, factors were

generated by trisecting the tree at the second level and third level

nodes. Each of these trisections resulted in three factor levels, one

corresponding to haplotypes linking to the trisected node through

the branch leading to the node’s parent node, and two

corresponding to haplotypes descending from the node through

its branches to its offspring nodes. This generates a total of seven

explanatory factors for each tree genealogy generated through

Blossoc. We did not consider further down the tree (below third

level) as the number of haplotypes in a lineage will decrease and

might lead to numerical instability for analysis.

Genealogy Based Mixed Model (GENMIX)
We split the tree at the top (one set of two clusters), the second

level (two sets of three clusters) and at the third level (four sets of

three clusters) as presented in Figure 1. Successively each clustering

of haplotypes was included as a fixed effect in the model for analysis:

yi~mzaizb1qh1 izb2qh2izei

where yi is the phenotype of individual i, m is the population mean, ai

is the additive polygenic effect with E(ai) = 0 and Var(a) = Asa
2, A is

the numerator relationship matrix calculated based on pedigree

records; sa
2 is the additive polygenic variance; qh1i and qh2i are the

counts of the number occurrences of one or two of the haplotypes in

individual i. For a bisection qh1i is the count of h1i (0, 1 or 2), b2

being constrained to 0. The count of the other haplotype is 2{qh1i.

Figure 1. Illustration of generation of factor levels by bi- or trisection of the genealogies. The red mark illustrates the node where the
genealogy is cut. Cutting at level 1 generates two haplotype clusters (1, 2), cutting at levels 2 and 3 generates three haplotype clusters (1, 2, 3).
Cutting at levels 1, 2 or 3 generates 1, 2 and 4 clustering each, respectively.
doi:10.1371/journal.pone.0027061.g001
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For a trisection (level 2 and 3; Figure 1) qh1i and qh2i are the counts

of haplotypes h1i and h2i (0, 1 or 2 subject to the constraint

0ƒqh1izqh2i
ƒ2), the count of the third haplotype in individual i

being 2{qh1izqh2i
. b1 and b2 are the substitution effects of the

haplotypes. Finally, ei is a random residual. Variance component

analyses were carried out using the software DMU (http://www.

dmu.agrsci.dk/).

The significance of the SNP association was tested by testing

whether the relevant regression coefficients are zero. This was tested

using a Wald test. For testing the significance of a factor a vector of

the two free factor levels, b̂b0~ b̂b1 b̂b2

� �
is obtained from the DMU

output. REML estimates b̂b will asymptotically be distributed as

b̂b~
b̂b1

b̂b2

 !
eN b,Vbð Þ;

where b is the true value the regression coefficients and Vb is the

estimation variance-covariance matrix, also obtained from the

DMU output. Under the null hypothesis H0:b~0 we have

asymptotically that

b̂b0V{1b̂b e x2
fð Þ;

where f is the number of degrees of freedom. f = 1 for a bisection (b2

being constrained to 0), f = 2 for a trisection. The alternative

hypothesis HA:b=0 was tested against this. If the null hypothesis

was rejected we have evidence for a non-zero effect when clustering

according to this particular partitioning of the genealogy.

Significance Tests
The significance threshold was determined using a Bonferroni

correction for multiple testing. Testing was conducted at a

nominal level of 5%. Test thresholds for individual tests were

determined by correcting for 7 tests (1 bisection and 6 trisections)

at each SNP. The smallest p value amongst the 7 tests for a SNP

was considered QTL-SNP association. Correction was done for

1,694 SNPs. Thus the number of tests corrected for in the

Bonferroni correction was 11,858. The significance threshold for

the individual tests was there for 4.261026.

Unified Mixed Model Analyses
Following Yu et al. [6] a polygenic genetic effect was fitted as a

random effect and single SNPs were successively included as fixed

effect in the model. Significance of the haplotype substitution effect (a)

each marker’s was tested using a Wald-test against a null hypothesis

H0: a = 0. The significant threshold was fixed at 5% level after

Bonferroni correction for multiple testing for 1,694 simultaneous

tests, resulting in a threshold on the individual test being 3.061025.

Results

Ranking
We tested the ability of GENMIX to rank the true positive

markers against MMA. We define the rank of a marker as its

position in a list of all the marker values sorted by ascending p

values, the highest rank being assigned to the most significant

markers. In case of two markers getting exactly the same rank, we

randomly decide which of them gets the highest rank. Figure 2

shows the distribution of the highest rank marker within 1 Mbp of

the QTL polymorphism for the simulated replications. There were

27 markers in the interval surrounding the QTL. The results in

Figure 2 show that GENMIX is far more likely to have a highly

ranked marker close to the QTL than MMA is. The GENMIX

outperformed MMA with respect to ranking of close markers when

MAF was low (e.g. 0.10 and 0.15). However, this difference in

ranking performance was not observed for MAF 0.05, as the power

to detect QTL for scenarios with MAF 0.05 was extremely low for

both methods (Figure 3). Besenbachar et al. [3] had reported that

genealogy based method (QBlossoc) was more likely to have a high

scoring maker closer to the causative locus than single-marker

analysis. In single marker based analysis, the chance of a marker

with similar allele frequency with QTL (in strong linkage

disequilibrium) resulting in strong association signal irrespective of

its distance from the QTL is higher compare to haplotype-based

analysis. Because, in haplotype based analysis a number of markers

are considered jointly and it is highly unlikely that a haplotype

located at a distance from the QTL will have similar allele frequency

as the QTL and therefore, will not show strong association.

Power
We considered a simulated QTL as having been detected if any

haplotype within 2.5 Mbp was significant after Bonferroni

correction. In general, GENMIX outperformed MMA when the

QTL effect was small and the MAF at the QTL was low. In

scenarios where MAF was high or the QTL affecting the trait had

a large effect both GENMIX and MMA performed similarly.

Powers of QTL detection for the two methods for three levels of

heritability each for five levels of QTL effects are presented in the

Figure 3 for MAFs 0.10 and 0.45. With MAF = 0. 10 scenarios,

GENMIX had higher power when the QTL effects were between

0.1 to 0.7 phenotypic SD. However, when MAF was 0.45, both

methods performed similarly.

Discussion

We have presented GENMIX, a genealogy-based method

that achieves higher power and better ranking than the current

state-of-the-art, the unified mixed model analysis introduced by

Figure 2. Distribution of the highest-ranking marker within a 1
Mbp radius of a quantitative trait nucleotide with MAF = 0.10
for 375 replicates (3 h2 x 5 QTL effects x 25 replicates).
doi:10.1371/journal.pone.0027061.g002
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Yu et al. [6]. GENMIX combines advantages from two powerful

association-mapping methods: genealogy-based haplotype group-

ing and unified mixed model analysis. Genealogy-based methods

perform better than single-marker analysis, as haplotype ap-

proaches can combine sets of common markers to identify a rare

haplotype in strong LD with a rare causative variant [3,5,9]. The

SNP density was relatively low (1 per 72 kbp) compared with most

GWA studies in human and other species. Therefore, the

haplotype grouping approach might not capture all the informa-

tion contained in the local genealogy in this study. We expect that

GENMIX may perform better than observed in the present study

with the SNP higher density available now for many species. The

mixed-model approach allows the incorporation of multiple levels

of relatedness in the model instead of pre-correcting the data for

pedigree. Even when exact relationships are unknown this

combination of properties will stay advantageous as unknown

relationships can be inferred based on the markers. Future large-

scale association studies will analyze thousands of samples from

multiple populations in an effort to detect common genetic

variants of weak effect [10]. GENMIX provides a powerful

approach to analyze such combined data. The GENMIX software

is available on request to the authors.

Running time
The computer time required to analyses a chromosome with

1000 marker using GENMIX was ,2.5 h in a IBM HS22 blade

servers equipped with one Intel Xeon X5570 2.93 GHz CPU and

48 GB RAM.
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