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Mercedes–Benz water molecules near hydrophobic wall: Integral equation
theories vs Monte Carlo simulations
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Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz
model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients
using Percus-Yevick and soft mean spherical associative approximations. The results are compared
with Monte Carlo simulation data. It is shown that at higher temperatures both approximations sat-
isfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation
gives good agreement at low and at high densities while in at mid range densities, the prediction is
only qualitative. The formation of a depletion layer between water and hydrophobic surface was also
demonstrated and studied. © 2011 American Institute of Physics. [doi:10.1063/1.3644934]

I. INTRODUCTION

The investigation of the structure and properties of liquid
water near solid surfaces is a subject of great fundamental
and technological interest in electrochemical and biological
processes, ecological and geochemical sciences, corrosion
and heterogeneous catalysis, and many other studies. Since it
is difficult to obtain molecular level information from exper-
iments, microscopic studies based on statistical-mechanical
treatments play essential roles. For the last decades, the
different microscopical models for water and surface were
proposed for the description of surface-water interface by
computer simulation and integral equation techniques. There
are usually three types of models for water molecules used
for this aim. In first of them water molecules are modeled
by hard spheres with embedded multipoles. This model was
used for the description of the structure of water and aqueous
solutions at surfaces using the reference hypernetted chain
theory.1–4 In second type of models, so-called rigid models,
water molecules are considered as steric molecular frames
of potential centers with partial charges such as simple point
charge (SPC) model. This model was used for the description
of the structure of water and aqueous solutions at surfaces
by means of reference interaction site model (RISM)5, 6 and
the 3D reference interaction site model (3D RISM) integral
equation theories.7, 8 In the third type of models, so-called
flexible models, water molecules are considered as 2:1 binary
mixture of hydrogen and oxygen atoms with partial charges.
In result, this type of model can be handled by integral
equation theories for spherical particles.9, 10 The modeling of
solid surface can be done in different way from structureless
noncharged or charged hard walls to different more or less
realistic lattice models.6, 8

However, in spite of intensive investigation of water and
aqueous solutions near surface, even for simple structureless
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hydrophobic surface, our microscopic understanding is not
complete. One of the open questions is the roles of hydro-
gen bonding near surface. The main relevant result for the
behavior of water at a solid nonpolar interface is that with de-
creasing curvature of the surface water molecules close to the
surface sacrifice one hydrogen bond and flip over, in contrast
to small nonpolar surfaces where water conserves hydrogen
bonds by pointing those bonds in directions that straddle the
solute. This effect was observed in computer simulations on
realistic models11, 12 and on surface vibrational spectroscopy
experiments.13 The hydrogen bond contribution also plays an
important role in the formation of microscopically thin de-
pletion layer with low water density between hydrophobic
surface as was suggested by Stillinger.14 The effect of dry-
ing water molecules from the nonpolar surface was predicted
more recently also by Lum, Chandler, and Weeks.15 Since the
hydrogen bonding can be considered as some type of associ-
ation phenomena at the presence of hydrophobic surface, the
formation of this layer has the similar nature as in the case
of dimerising,16 chain,17 and network forming fluids18 near
surface.

In order to separate the hydrogen bonding effect from
others, it will be more convenient to use some simplified
model than realistic ones. The realistic models include many
geometrical details and types of interactions, including elec-
trostatic, hydrogen bonding, and van der Waals interactions,
which creates the difficulties in computational treatment and
interpretation of obtained results. One of the simplest model
for water is the so-called Mercedes–Benz (MB) model orig-
inally proposed by Ben-Naim 40 years ago.19–21 MB is a 2D
model in which each water molecule is modeled as a disk
that interacts with other such waters through: (1) a Lennard–
Jones (LJ) interaction and (2) an orientation-dependent hydro-
gen bonding interaction through three radial arms arranged
as in the MB logo. The hydrogen bonding interaction is a
Gaussian function of angle and distance. Bulk water has pre-
viously been studied in this model using NPT Monte Carlo
simulations21–25 and thermodynamic perturbation and integral
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equation techniques.26–28 Those studies have shown that the
MB model qualitatively gives many properties of real water,
including the density anomaly, the minimum in the isothermal
compressibility as a function of temperature, the large heat
capacity and the experimental trends for the thermodynamic
properties of non-polar solvation.21 MB model was also ap-
plied in NPT Monte Carlo simulations for studies of mecha-
nism of hydrophobic solvation which depends once on solute
radius.23 It was founded a very different mechanism for aque-
ous solvation of large nonpolar solutes (much larger than a
water) than for smaller solutes in total agreement with simula-
tions on realistic models and experiment.11–13 Two advantages
of the MB model, compared to more realistic water models,
are: (1) that well-converged computer simulations of thermo-
dynamic properties can be obtained in a reasonable amount
of time,21, 23 and (2) the underlying physical principles can be
more readily communicated and visualized in 2Ds.

In a recent paper,26–30 Wertheim’s theory for associating
fluids31, 32 was applied to the MB model of water through
a thermodynamic perturbation theory (TPT),31–34 and an in-
tegral equation theory (IET).31, 35, 36 We found that both of
these analytical approaches are in semi-quantitative agree-
ment with the Monte Carlo simulation results for the molar
volumes, isothermal compressibility, thermal expansion coef-
ficient, and heat capacity. IET also gives good prediction for
the pair correlation functions of MB model waters. The ad-
vantage of the TPT and IET theories is that they require much
less computer time than the Monte Carlo simulations. Our in-
terest in using the MB model is that it serves as one of the
simplest models of an orientationally dependent liquid, so it
can serve as a testbed for developing analytical theories that
might ultimately be useful for more realistic models.

In this paper, we describe a more analytical approach for
the description of water near hydrophobic surface in frame-
work of MB model for water molecules. For this aim, we used
Henderson–Abraham–Barker (HAB) approach37 which es-
tablishes the direct relation between bulk and surface proper-
ties. Holovko and Vakarin16 generalized this approach for the
description of associating fluids near the wall. The associa-
tive HAB was developed by inserting a non-associative giant
single particle into an associating fluid and using Wertheim-
Ornstein-Zernike (WOZ) equation. In the infinite dilution,
WOZ split up into two independent equations: the first for
the associative fluid and the second for fluid near surface. The
second uses the bulk fluid properties as input. We should men-
tion that the considering approach is enough general and does
not put any restrictions on the considering model. The inter-
action between the giant particle and fluid molecules is totally
independent from fluid-fluid interaction and in the limit of in-
finite large giant particle should be taken in the form of in-
teraction between fluid particle and wall. The associative ver-
sion HAB theory was applied for the description of dimerising
fluid near hard wall16 and near charged wall38 for chain and
network forming fluids.17, 18 The associative version of HAB
theory was also generalized for the description of different
types of associative fluids near crystalline wall.39–41

The perspectives of this article are as follows: After the
above-given introduction, we briefly review the model in
Sec. II. Following this, we present used theories in Sec. III.

Theoretical and simulation results are reported, compared,
and discussed in Sec. IV. The last section highlights the main
conclusions of this work.

II. THE MODEL

We study MB water that is close to nonpolar plane. Each
MB water molecule is a 2D Lennard–Jones disk with three
arms separated by an angle of 120◦ (see Fig. 1).19, 21 The in-
teraction potential between two MB particles is a sum of two
parts, a Lennard–Jones term and a hydrogen-bonding (HB)
term

U (
−→
Xi,

−→
Xj ) = ULJ(rij ) + UHB(

−→
Xi,

−→
Xj ), (1)

where rij is the distance between centers of particles i and
j , and

−→
Xi denotes the vector representing the coordinates and

the orientation of the ith particle. The Lennard–Jones part of
the potential is defined as

ULJ(rij ) = 4εLJ

((
σLJ

rij

)12

−
(

σLJ

rij

)6
)

, (2)

where εLJ is the well-depth and σLJ is the contact parameter.
The hydrogen bonding part of the interaction potential is

UHB( �Xi, �Xj ) =
3∑

k,l=1

Ukl
HB(rij , θi, θj ), (3)

where Ukl
HB describes the interaction between two arms of dif-

ferent molecules

Ukl
HB(rij , θi, θj ) = εHBG(rij − rHB)G(�ik �uij − 1)G(�jl �uij + 1).

(4)

By writing down the scalar products explicitly, we obtain the
following form of the HB potential

Ukl
HB(rij , θi, θj ) = εHBG(rij − rHB)

×G

(
cos

(
θi + 2π

3
(k − 1)

)
− 1

)

×G

(
cos

(
θj + 2π

3
(l − 1)

)
+ 1

)
,(5)

where k and l stands for the different arms and G(x) is an
unnormalized Gaussian function

G(x) = exp

(
− x2

2σ 2

)
. (6)

Further, εHB = −1 is an energy parameter and rHB = 1 is a
characteristic hydrogen bond length. −→uij is the unit vector
along −→rij and

−→
ik is the unit vector representing the kth arm

of the ith particle, where θi is the orientation of the ith parti-
cle. The strongest hydrogen bond occurs when an arm of one
particle is collinear with the arm of another particle and the
two arms point in opposing directions. The LJ well-depth εLJ

is 0.1 times, the HB interaction energy εHB and the Lennard–
Jones contact parameter σLJ is 0.7rHB.
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In the present work, we model the interactions between
the MB molecules and the walls as

φ(z) = 4εw

((
σw

z

)9

−
(

σw

z

)3
)

, (7)

where εw = εLJ and σw = σLJ are the parameters of the
Lennard–Jones (9,3) wall-particle potential.

III. THEORY

A. Monte Carlo simulations

Computer simulations for MB water close to Lennard–
Jones adsorbing surfaces were performed in the (N, V, T) en-
semble. Simulations were made for MB water between two
parallel plates with such distance between plates that we have
bulk phase in middle. Therefore, the two walls did not inter-
fere with each other.

In N, V, T, we simulated from 500 to 1000 MB parti-
cles between two walls. At each step, one randomly chosen
water molecule is moved. We used periodic boundary condi-
tions and the minimum image convention. The starting con-
figuration of each phase point was selected at random, and
the first 1 × 106 moves were discarded as the system equili-
brated. Statistics were gathered over the next 1 × 107 moves.
In these simulations, the liquid water density was fixed at bulk
density at a particular temperature. The point of doing these
simulations at constant density is simply to study the water
structures at different densities.

B. Integral equation theory

Application of the integral equation approach to a de-
scription of the interface is based on the associative HAB in-
tegral equation16, 17, 37, 38

hαw(r) = cαw(r) +
∫

cbulk
αμ (r ′)σμνhνw(|�r − �r ′|)d�r ′, (8)

where hαw(r) and cαw(r) are the partial total and direct wall-
particle correlation functions and the values σμν are the den-
sity parameters which correspond to different bonded states
of MB molecules. The cbulk

αμ (r) are the bulk partial direct cor-
relation functions which are calculated using the following
procedure.26 The multidensity OZ equation for bulk is ex-
pressed as

ĥ(k) = ĉ(k) + ĉ(k)ρĥ(k), (9)

where ĥ(k) and ĉ(k) are the matrices whose elements are the
Fourier transforms of the partial correlation functions hbulk

ij (r)
and cbulk

ij (r). We use partial correlation functions which re-
main finite upon decrease of the temperature.26 In Eq. (9),
ρ represents the matrix which replaces the Wertheim’s den-
sity parameters σ and contains the partial number densities.
Here we restrict ourselves to the so-called “ideal network”
approximation.35, 36 This means that we neglect the compo-
nent of the correlation that is responsible for formation of the
ring-like structures.36 The OZ equation involves the matrices
c, h, and ρ of dimensionality 5 × 5. By taking into account

the equivalence of the bonding arms we obtain

ẑ(k) =
(

ẑ00(k) ẑ01(k)
ẑ10(k) ẑ11(k)

)
, ρ =

(
ρbulk 3ρbulk

3ρbulk 6ρbulk

)
,

(10)
where lower indices denote the state of the MB molecules (0
for unbonded and 1 for bonded). In Eq. (10), z denotes either
the h or c correlation function. The coefficients 3 and 6 in
ρ result from the reduction of the dimensionality of the OZ
equation.26 In order to solve the OZ equation, an additional
relation between the h and c correlation functions is needed.
In the present study, we choose the polymer PY closure31 in
the form

cbulk
ij (r) = fLJ(r)

(
tbulk
ij (r) + δi0δj0

)
+ δi1δj1

(
xbulk

1

)2
f̄HB(r)eLJ(r)

[
tbulk
00 (r) + 1

]
, (11)

where tbulk
kl (r) = hbulk

kl (r) − cbulk
kl (r), xbulk

1 is the fraction of
MB particles not bonded at one arm, fLJ(r) = eLJ(r) − 1, and
eLJ(r) = exp[−ULJ(r)/kBT ]. Furthermore, f̄HB(r) is the ori-
entationally averaged Mayer function for the hydrogen bond
potential (Eq. (3)) and xbulk

1 follows from mass-action law as31

in the form

xbulk
1 = 1

1 + 3ρbulkxbulk
1 �

. (12)

� is defined by 31

� = 2π

∫
gbulk

00 (r)f̄HB(r)rdr. (13)

The total pair distribution function gbulk(r) is calculated via
the relation

gbulk(r) = gbulk
00 (r) + 3gbulk

01 (r) + 3gbulk
10 (r) + 9gbulk

11 (r).

(14)

The associative HAB integral equation can be in same formal-
ism as for bulk written as

hiw(r) = ciw(r) +
∫

cbulk
ij (r ′)ρjkhkw(|�r − �r ′|)d�r ′. (15)

To solve HAB equation, we must write also closure condition
for water-wall and in this work, we used PY type of equation
written in the form

ciw(z) = fw(z)(tiw(z) + δi0), (16)

where fw(z) = exp[−φ(z)/kBT ] − 1. Solving the HAB inte-
gral equation, supplemented by the closure condition, we get
the tiw(z) functions and then the usual density profile

ρ(z) = ρbulk(g0w(z) + 3g1w(z)). (17)

We also calculated the surface density excess � which is de-
fined as

� =
∫ ∞

a

(g(z) − 1)dx, (18)

where g(z) = ρ(z)/ρbulk and a is smallest distance where g(z)
is equal to 1.

Other closures are also possible. Here, we also tried the
polymer soft mean-spherical approximation (PSMSA). In this
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FIG. 1. Two molecules of MB water (i and j ), separated by the distance rij . Each molecule has three bonding vectors denoted by �ik (or �jl); k, l = 1, 2, 3.

closure, we divide the LJ potential into a short-range refer-
ence part U0(r) and a long-range perturbation part U1(r) as
suggested elsewhere28, 42

ULJ(r) = U0(r) + U1(r), (19)

where

U0(r) =
{

ULJ(r) + εLJ r ≥ rm

0 r < rm

and

U1(r) =
{−εLJ r ≥ rm

ULJ(r) r < rm

.

The distance rm that separates these two components is cho-
sen to be the position of a minimum of the LJ part of the
potential function, i.e., rm = 21/6σLJ. We obtain the PSMSA
closure relation by substituting fLJ(r) with

f0(r) = exp

[
−U0(r)

kBT

]
− 1, (20)

and eLJ(r) with

e0(r) = f0(r) + 1, (21)

into Eq. (11). Then, only the one term for which i = 0 and
j = 0 has a different form

c00(r) = f0(r)(t00(r) + 1) − (f0(r) + 1)
U1(r)

kBT
. (22)

MB particle wall potential φ(z) was also divided into a short-
range reference part φ0(z) and a long-range perturbation part
φ1(z)

φ(z) = φ0(z) + φ1(z), (23)

where

φ0(z) =
{

φ(z) + 8
√

3
9 εw z ≥ zm

0 z < zm

and

φ1(z) =
{

− 8
√

3
9 εw z ≥ zm

φ(z) z < zm

.

The distance zm that separates these two components is cho-
sen to be the position of a minimum of the φ(z) part of the
potential function, i.e., zm = 31/6σw. We obtain the PSMSA
closure relation by substituting fw(r) with

fw0(z) = exp

[
−φ0(z)

kBT

]
− 1, (24)

into Eq. (16). Then, only the one term for which i = 0 has a
different form

c0w(z) = fw0(z)(t0w(z) + 1) − (fw0(z) + 1)
φ1(z)

kBT
. (25)

IV. RESULTS AND DISCUSSION

All the results are shown in reduced units: the energy
and temperature are normalized to the HB energy parame-
ter εHB (A∗ = A/|εHB|, T ∗ = kB ∗ T /|εHB|) and the distances
are scaled to the hydrogen bond characteristic length rHB

(r∗ = r/rHB).
For HAB theory, it is important to have good results for

bulk. Figure 2 shows the bulk water-water radial distribu-
tion functions, g(r∗), calculated for high T ∗ = 0.36 and low
T ∗ = 0.18 temperature at density obtained at simulation. In
particular, Fig. 2 compares the IET with PY (red solid line)
and SMSA (green dashed line) closures and the MC results
(symbols).21, 23 This figure shows that SMSA gives slightly
better result at smaller distances for low temperatures.

Figures 3–5 show the computed profiles of water den-
sity close to plane. Figure 3 shows how theory can predict
structure at different temperatures at fixed simulation pres-
sure. We can see that IET with SMSA closure gives good
prediction in all temperature range while results of IET with
PY closure are slightly worse. Figures 4 and 5 show density
dependence of profiles at different temperatures. At higher
temperature (T ∗ = 0.36), theory gives excellent prediction
of results. For lower temperatures, SMSA gives good agree-
ment at low and high densities while in at mid range den-
sities, the theories do not predict the structure correctly. At
these ranges of densities, we are noticing dewetting due to an-
gle dependence of water-water interaction which is neglected
on IET level. The obtained results need in some comment.
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FIG. 2. The water-water radial distribution function, g(r∗), at (a) T ∗ = 0.18, P ∗ = 0.19 and (b) T ∗ = 0.36, P ∗ = 0.19. The MB model Monte Carlo result23

is presented by symbols, the PY results by red continuous line, and the SMSA results by green dashed line.

The fact that IET with SMSA closure gives good agreement
with the simulations at high temperatures is not surprise. This
is consistent with other studies that use the mean spherical
approximation.43, 44 At high densities and low temperatures,
the SMSA results are also reasonable due to renormalization
of long-range interactions.44 What is unexpected, however,
that the SMSA is successful also for low densities and low
temperatures. This success can be explained by the hydrogen
bonding contributions to profiles of water density near sur-
face. As we can see from Fig. 4, at low temperature for the in-
termediate densities ρ∗ = 0.534 and ρ∗= 0.741, SMSA over-
estimates the value of profile. The SMSA gives higher values
than computer simulations. Since SMSA is the linear theory
about long-range interaction, we can predict that for the den-
sity lower than ρ∗ = 0.1, the result of computer simulations
will be higher than the result of SMSA. In this region, SMSA
as usually the mean spherical approximation fails to give the
second virial coefficient correctly at low temperatures.

From density profiles, we calculated some other surface
quantities. This way we can have possibility to check the

quality of proposed theory and to discuss other specific sur-
face properties of water in framework of this model. First we
checked the contact theorem for MB model of water near sur-
face. Usually the contact theorem is formulated for fluids near
hard wall.45, 46 For soft wall, considering in this paper, this
theorem can be presented approximately in the form

ρ(zm) = βp − β

∫ ∞

0
ρ(z)

∂φ(z)

∂z
dz, (26)

where p is the water bulk pressure, β inverse temperature,
and zm corresponds to the value of the first peak in profile
ρ(z). Figure 6 shows the density dependence contact value of
ρ(rm) at high and low temperatures calculated from Eq. (26)
and from IET and computer simulation. As we can see we
have good correlation between results obtained from Eq. (26)
and from IET and computer simulations.

The surface density excess is connected with the adsorp-
tion coefficient � which can be calculated from Eq. (18). The
results for � as a function of density at different temperatures
are plotted in Fig. 7. We have compared our results also with
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FIG. 3. Density profile of MB water close to LJ plane. The MB model Monte Carlo result is presented by symbols, the PY results by red continuous line, and
the SMSA results by green dashed line for pressure p∗ = 0.19 and (a) T ∗ = 0.36, ρ∗ = 0.534, (b) T ∗ = 0.28, ρ∗ = 0.741, (c) T ∗ = 0.24, ρ∗ = 0.870, and (d)
T ∗ = 0.18, ρ∗ = 0.990.
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FIG. 4. Same as Fig. 3, results are for T ∗ = 0.18 and (a) ρ∗ = 0.1, (b) ρ∗ = 0.534, (c) ρ∗ = 0.741, and (d) ρ∗ = 0.990.
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FIG. 5. Same as Fig. 4, results are for T ∗ = 0.36.
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FIG. 6. Dependence of maximum density of MB water close to LJ plane on density. The SMSA results from Eq. (26) are presented by red solid line and from
IET by green dashed line and from Monte Carlo simulations by symbols for (a) T ∗ = 0.36 and (b) T ∗ = 0.18.
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FIG. 7. Dependence of absorption coefficient of MB water close to LJ plane on density. The MB model Monte Carlo result is presented by symbols and the
SMSA results by red solid line for (a) T ∗ = 0.36 and (b) T ∗ = 0.18.

MC data. It is necessary to note that the � calculated within
the SMSA approximation is quantitatively correct at low den-
sities and high temperatures only. At higher densities, devi-
ations are seen. At low temperatures, the deviations are high
mainly due to approximation of orientationally averaging in
the theory. IET and MC results demonstrate qualitatively the
same tendencies. With increasing density, the surface density
excess decreases. This feature is similar as for other associa-
tive fluids.16–18 In the presence of hydrophobic surface, water
molecules form smaller number of hydrogen bonds than in
bulk. The surface repulses water molecules away from sur-
face into the bulk phase. This tendency is opposite to the case
of simple liquids where due to packing effect the density of
molecules near surface is larger than in bulk. As a result, the
adsorption coefficient � for simple liquids increases with in-
creasing density.

For better understanding of water behavior near sur-
face, we calculated the number of hydrogen bonds of wa-
ter molecules as function of distance from hydrophobic wall.
This was done using the following approximation. First we
calculated ratio of nonbonded MB molecules at distance z

from wall from mass action law as

x1(z) = 2

1 + √
12ρ(z)�(z)

, (27)

where ρ(z) is density around hydrophobic wall from HAB and
�(z) is defined as integral from center at distance z from wall

�(z) =
∫

gbulk
00 (r)f̄HB(r)dr. (28)

Equations (27) and (28) are generalization of Eqs. (12)
and (13) for bulk. Each molecule has three arms. The prob-
ability that a hydrogen bond is formed at one arm is (1 −
x1(z)). We now get the following equations for average num-
ber of hydrogen bonds per molecule at distance z:

n(z) = 3(1 − x1(z)). (29)

The results for the bulk water are presented in Table I. From
this table, we can see overestimation of number of hydro-
gen bonds from IET approximately to 0.1 at high and low
temperatures. Average number of hydrogen bonds of MB
water as a function of distance from hydrophobic wall is pre-
sented in Fig. 8. We can see that theory overestimates av-
eraged number of hydrogen bonds at all distances at high
and low temperatures. We can also see that at small dis-
tances from wall theory predict that water can still form same

number of hydrogen bonds as in bulk. Probably this is the
main defect of IET with considering closures. The reason
is that orientationally averaging is equivalent to arms be-
ing randomly distributed and water close to surface can still
form three hydrogen bonds which is different than in simu-
lation. However, as we can see from Fig. 8, computer sim-
ulations show correct prediction. Average number of hydro-
gen bonds near surface is smaller than in bulk. Figures 9
and 10 show populations of nonbonded (p0(z) = x3

1 (z)), once
bonded (p1(z) = 3x2

1 (z)(1 − x1(z))), twice bonded (p2(z) =
3x1(z)(1 − x1(z))2), and triple bonded (p3(z) = (1 − x1(z))3)
water molecules. From these results, we can see same con-
clusions about accuracy of IET as from average number of
hydrogen bonds.

The obtained results for the dependence of number of
hydrogen bonds of water molecules of the distance from a
hydrophobic surface (especially calculated from computer
simulations) are in qualitative agreement obtained recently
from 3D water model using the probabilistic hydrogen bonds
approach.47, 48 In this approach, it was assumed that the water-
water hydrogen bonds have a binomial character. This as-
sumption corresponds to ideal network approximation36 used
in IET. Djikaev and Ruckenstein47, 48 calculated the popula-
tions pi(z) as

p0(z) = p0K0(z), p1(z) = p1K1(z),

p2(z) = p2K2(z), p3(z) = p3K3(z), (30)

where p0, p1, p2, and p3 are corresponding values for bulk
water as presented in Table I. The coefficient-functions Ki(z)
were evaluated by using geometrical constrains by averag-
ing orientations of water molecules near surface. Though
the results of Djikaev and Ruckenstein47, 48 are correct, the

TABLE I. Hydrogen bonds distribution in bulk water. Comparison of IET
results with computer simulation results for pressure p∗ = 0.19 for high and
low temperature.

T ∗ = 0.36, ρ∗ = 0.534 T ∗ = 0.18, ρ∗ = 0.99

IET MC IET MC
n 0.66 0.52 2.05 1.93
p0 0.47 0.57 0.03 0.08
p1 0.40 0.35 0.20 0.25
p2 0.11 0.073 0.44 0.38
p3 0.010 0.007 0.33 0.29
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FIG. 8. Average number of hydrogen bonds per MB water molecule depending on distance from LJ plane. The MB model Monte Carlo result is presented by
symbols and the SMSA results by red solid line for pressure p∗ = 0.19 and (a) T ∗ = 0.36, ρ∗ = 0.534 and (b) T ∗ = 0.18, ρ∗ = 0.990.
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FIG. 9. Population pi of (a) nonbonded, (b) once bonded, (c) twice bonded, and (d) triple bonded MB water molecule depending on distance from LJ plane.
The MB model Monte Carlo result is presented by symbols and the SMSA results by red solid line for pressure p∗ = 0.19 and T ∗ = 0.18, ρ∗ = 0.990.
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FIG. 10. Same as Fig. 8, results are for T ∗ = 0.36, ρ∗ = 0.534.
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approach used is semiphenomenological and does not give
possibility to describe microscopic structure between water
and surface.

V. CONCLUSIONS

We use the simple 2D MB model of water to study the
properties of water near nonpolar wall. We have calculated
the structure and adsorption of the MB water molecules by
means of the PY and SMSA approximation of the associative
HAB integral equation. We have compared our results with
MC simulation data. We concluded that prediction of HAB is
in quantitative agreement with MC at high temperatures and
is qualitatively correct for cold water. The virtue of employing
this approach is that it gives physical insights and is analytical,
and so is much more efficient computationally than Monte
Carlo simulations model.

We found the desorption of water molecules near
hydrophobic surface which is more stronger at lower
temperatures. This phenomenon leads to the formation of
depletion layer between water and surface. The developed
IET approach has two general defects. It includes only
orientational-averaged functions. Due to this, orientational
correlation effects are neglected. For the description of such
effect, IET should be expanded for orientational-dependent
IET similar as was done in previous work27 for bulk case. The
second defect is connected with the associative version of
HAB approach which uses the bulk fluid properties as input.
In result, the degree of association x1 is determined by the so-
lution for bulk fluid. For the improvement of IET, we can use
the inhomogeneous version of Wertheim-Ornstein-Zernike
equation (WOZ2) similar as was done for dimerising fluid in
work of Henderson et al.49 Such programme of improvement
of IET will be considered in our future work.
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