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Genetics, Central Laboratory of Electron Microscopy, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 3 Pianowski and Pianowski Ltda., São Paulo, Brazil

Abstract

Background: The tetracyclic triterpene euphol is the main constituent found in the sap of Euphorbia tirucalli. This plant is
widely known in Brazilian traditional medicine for its use in the treatment of several kinds of cancer, including leukaemia,
prostate and breast cancers. Here, we investigated the effect of euphol on experimental models of colitis and the
underlying mechanisms involved in its action.

Methodology/Principal Findings: Colitis was induced in mice either with dextran sulfate sodium (DSS) or with 2,4,6-
trinitrobenzene sulfonic acid (TNBS), and the effect of euphol (3, 10 and 30 mg/kg) on colonic injury was assessed. Pro-
inflammatory mediators and cytokines were measured by immunohistochemistry, enzyme-Linked immunoabsorbent assay
(ELISA), real time-polymerase chain reaction (RT-PCR) and flow cytometry. Preventive and therapeutic oral administration of
euphol attenuated both DSS- and TNBS-induced acute colitis as observed by a significant reduction of the disease activity
index (DAI), histological/microscopic damage score and myeloperoxidase (MPO) activity in colonic tissue. Likewise, euphol
treatment also inhibited colon tissue levels and expression of IL-1b, CXCL1/KC, MCP-1, MIP-2, TNF-a and IL-6, while reducing
NOS2, VEGF and Ki67 expression in colonic tissue. This action seems to be likely associated with inhibition of activation of
nuclear factor-kB (NF-kB). In addition, euphol decreased LPS-induced MCP-1, TNF-a, IL-6 and IFN-c, but increased IL-10
secretion from bone marrow-derived macrophages in vitro. Of note, euphol, at the same schedule of treatment, markedly
inhibited both selectin (P- and E-selectin) and integrin (ICAM-1, VCAM-1 and LFA-1) expression in colonic tissue.

Conclusions/Significance: Together, these results clearly demonstrated that orally-administered euphol, both preventive or
therapeutic treatment were effective in reducing the severity of colitis in two models of chemically-induced mouse colitis
and suggest this plant-derived compound might be a potential molecule in the management of inflammatory bowel
diseases.
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Introduction

Inflammatory bowel diseases (IBD) are a group of chronic

disease that affect the gastrointestinal tract and have been mainly

subdivided as ulcerative colitis (UC) and Crohn’s disease (CD).

Although its etiopathogenesis has not been definitively elucidated,

it is currently considered an abnormal inflammatory response to

intestinal microbial flora. However, there is still not consensus

whether or not IBD should be considered as an autoimmunity,

since the loss of tolerance is towards gut microbiota and the

autoantigen in the human body is still missing [1]. IBD is now

considered as a result of continuous microbial antigenic stimula-

tion of pathogenic immune responses as a consequence of host

genetic defects in mucosal barrier function, innate bacterial killing

or immunoregulation [2].

CD is characterized by TH type-1 response, marked by up-

regulation of interferon-c (IFN- c), a key cytokine, which mainly

driven T cells. On the other hand, UC appears to exhibit an

contribution of TH2 responses (characterized by secretion of

interleukin (IL)-4 and IL-13), which driven NK-T cells [3],

although this difference in immune response is not yet well

established. Interestingly, it was observed that in both CD and UC

some pro-inflammatory mediators such as tumour necrosis factor-

a (TNF-a), IL-6 and IL-1b are released in inflamed mucosa.

It is now well recognized that inflammation of the intestinal

mucosa is characterized by chronic inflammatory cell infiltration
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composed mainly of neutrophils and macrophages, an effect that is

accompanied by production of pro-inflammatory cytokines, like

IL-1b, IL-6, TNF-a and IFN-c [4]. In addition, the recruitment of

these cells from the vasculature to sites of inflammation is

dependent on a multistep cascade of adhesive interactions, which

are mediated by adhesion molecules and chemoattractants, such

as, integrins/selectins and chemokines, respectively [5,6].

Over the past decade, a substantial amount of evidence has

been generated to support a crucial role of leukocytes in the

pathogenesis of colitis [7,8]. The process of leukocyte extravasa-

tions is a critical step in the inflammatory response and is

dependent on three different families {Barreiro, #603}. (1)

Selectins belong to a family of three carbohydrate-recognizing

molecules: E-selectin, which is mainly expressed on activated

endothelium; P-selectin, which is expressed on platelets and the

endothelium; and L-selectin, which is constitutively expressed on

leukocytes [10]. Several studies using antibody blockade of

selectins have demonstrated the relevant role of selectins in

leukocyte rolling [11,12]. (2) Integrins comprise a family of 24

heterodimeric receptors, each of which is composed of an a- and a

b-subunit. These molecules dynamically alter their adhesive

properties through conformational changes (affinity) as well as

through spatial redistribution on the cell surface and are

fundamental molecules in cell migration [13,14]. Furthermore,

integrins can recognize multiple ligands including proteins of the

extracellular matrix, cell surface glycoprotein as well as comple-

ment factors and soluble components of the hemostatic and

fibrinolytic cascade. (3) The major integrin ligands involved in

leukocyte adhesion belong to the immunoglobulin superfamily

[15] and include intercellular cell adhesion molecules (ICAM) 1–5,

vascular cell adhesion molecule-1 (VCAM-1) and junctional

adhesion molecules (JAMs), which are expressed on endothelial

and other types of cells [16]. Thus, blocking adhesion molecules

constitutes a potential and useful target for controlling leukocyte

influx into the site of inflammation and consequently, leads to the

development of new anti-inflammatory drugs.

The tetracyclic triterpene euphol (Fig.1A) is the main constit-

uent found in the sap of Euphorbia tirucalli, a plant belonging to the

family Euphorbiaceae, and known in Brazilian traditional

medicine as aveloz, árvore-do-lápis, cega-olho or espinho-italiano.

In the northeast region of Brazil, the latex of E. tirucalli is used as a

folk therapy against syphilis, laxative agent, to control intestinal

parasites, to treat asthma, cough, earache, rheumatism, cancer,

chancre, epithelioma, sarcoma and skin tumors [17]. The bark/

latex of E. tirucalli presents pharmacological activities as mollus-

cicide, antiherpetic and anti-mutagenic [17]. It also shows co-

carcinogenic and anti-carcinogenic activities [18]. In addition, the

sap of E. tirucalli showed relevant potential larvicide against Aedes

aegypti and Culex quinquefasciatus, the most common dengue vector

and lymphatic filariasis vector, respectively [19] and demonstrated

Figure 1. Euphol ameliorates DSS-induced acute colitis. (A), Chemical structure of euphol. Mice received DSS for 5 days and drinking water for
the next 2 days. Animals were orally treated by gavage with 3, 10, or 30 mg/kg of euphol twice a day from day 0 to day 7 (preventive treatment) or
with 30 mg/kg from day 3 to day 7 (therapeutic treatment). Preventive or therapeutic oral treatment with euphol improved the disease activity index
(DAI) score (B), reduced body weight loss (C) and colon macroscopic damage (D), and enhanced colon length (E) when compared with mice from the
DSS group. Data are reported as means 6 S.E.M. of 8 to 10 mice per group and is representative of three independent experiments. #P,0.05 vs.
control healthy group; *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g001
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higher piscicidal activity as compared with other synthetic

pesticides, organophosphates and pyrethroids for the fish Hetero-

pneustes fossilis [20]. Furthermore, a very recent study demonstrated

that biopolymeric fraction (BET) from plant E. tirucalli showed

dose dependent anti-arthritic activity and demonstrated in vivo

suppression of CD4+ and CD8+ T cells associated with inhibition

of intracellular IL-2 and IFN-c [21]. Our group has previously

shown that euphol administered orally elicited pronounced and

long-lasting analgesia when assessed in several rodent behavior

models of inflammatory and neuropathic persistent pain and these

actions were likely to be associated with the inhibition of TNF-a
and IL-1b levels, as well as inhibition of transcription factors, such

as nuclear factor-kB (NF-kB) and cyclic AMP response element-

binding protein (CREB), both in the spinal cord and dorsal root

ganglia (unpublished data).

Despite great progress observed over the previous decades in

understanding the cellular and molecular mechanisms involved in

IBD, few effective and safe drugs have emerged to treat acute and

chronic inflammatory bowel states. Therefore, new effective

treatment for IBD is urgently needed. Hence, in the present

study, we investigated the preventive and therapeutic potential

effects of euphol in dextran sulfate sodium (DSS)- and 2,4,6-

trinitrobenzene sulfonic acid (TNBS)-induced colonic inflamma-

tion in mice. Herein, we report that the tetracyclic triterpene

euphol can effectively ameliorate DSS- and TNBS-induced colitis

by inhibiting pro-inflammatory mediators such as cytokines/

chemokines in the colonic tissue and in primary cultures of

macrophages in vitro. Our data also indicated that the mechanisms

underlying the anti-inflammatory activity of euphol was likely to

be related with its ability to inhibit selectin and integrin expression

in the endothelium, associated with the blocking of nitric oxide

synthase-2 (NOS2), vascular endothelial growth factor (VEGF),

and Ki67 expression in colonic tissue by modulating the nuclear

transcription factor-kB (NF-kB).

Results

Euphol treatment attenuates the severity of DSS-induced
acute colitis

In mice with DSS-induced acute colitis, which resembles the

acute phase of human ulcerative colitis, we observed hemorrhage

in the colonic lumen, body weight loss and marked diarrhea with

bloody stools, which ultimately resulted in a sharp increase of the

disease activity index (DAI) from day 3 onwards, compared with

control healthy (non-colitic) mice (Fig. 1). Euphol was adminis-

tered orally at three different doses (3, 10 and 30 mg/kg) to detect

potential dose-dependent effects. Preventive oral treatment with

30 mg/kg of euphol but not with 3 or 10 mg/kg significantly

reduced the DAI from day 3 onwards (Fig. 1B). DSS administra-

tion was associated with significant body weight loss on days 5, 6

and 7. Mice treated with euphol (30 mg/kg) were protected from

marked body weight loss and recovered a healthy appearance that

was similar to that of control healthy mice (non-colitic) (Fig. 1C).

DSS administration resulted in colon inflammation associated with

hyperemia, ulceration and bowel wall thickening, leading to an

increase in macroscopic colon damage and decrease in colon

length (Fig. 1 D,E). Oral euphol (30 mg/kg) treatment reduced

macroscopic damage (Fig. 1D) and significantly prevented colon

length reduction (Fig. 1E) on the 7th day after colitis induction. In

contrast, treatment with euphol at doses of 3 or 10 mg/kg, p.o.,

was not able to reduce macroscopic damage, prevent colon length

reduction and recover the loss in body weight. Based on these

results, the dose of 30 mg/kg of euphol was used in subsequent

experiments to investigate some of the mechanisms underlying its

anti-inflammatory effects.

Next, we determined whether euphol also had a therapeutic

effect on DSS-induced acute colitis by administering it after colitis

symptoms were seen on day 3, since although preventive

treatments are important, treatments that have efficacy after

colitis symptoms have been established are more clinically

relevant. The results for the disease activity index (Fig. 1B), body

weight loss (Fig. 1C), macroscopic damage (Fig. 1D) and colon

length (Fig. 1E) showed that the therapeutic effect of euphol

(30 mg/kg, p.o.) was as effective as its preventive effect in

alleviating the severity of DSS-induced acute colitis.

Euphol treatment inhibited polymorphonuclear leukocyte influx

and reduced colon damage

Several studies have suggested that tissue damage and

inflammatory signals in experimental colitis are mainly mediated

by polymorphonuclear leukocytes (PMN), mainly neutrophils

[6,8]. We therefore assessed whether the effect of euphol treatment

in DSS-mediated colitis was associated with alterations in the

composition of the neutrophil population in the intestinal mucosa.

Seven days after the initiation of DSS treatment, mucosal

neutrophils infiltration into the colon was indirectly assessed by

measuring MPO activity. Colonic samples taken from untreated

(DSS) mice displayed significantly increased MPO levels relative to

control healthy mice (non-colitic) (Fig. 2A). Notably, preventive

oral treatment with euphol at 10 and 30 mg/kg, but not 3 mg/kg,

significantly reduced DSS-induced increase in colonic MPO levels

(Fig. 2A). Of note, therapeutic treatment with euphol (30 mg/kg,

p.o.) also inhibited MPO levels (Fig. 2A). To further investigate the

effect of euphol treatment in the architecture and integrity of

colonic structure and confirm results from MPO analysis, colons

were processed for histological observation. Mice with colitis

induced by DSS exhibited disruption of the epithelial barrier, a

marked decrease in the number of crypts, and marked infiltration

of inflammatory cells, predominantly neutrophils, into the mucosa

and sub mucosa of the colon, corroborating the MPO assay

(Fig. 2B). The histological evaluation of colons from euphol-

treated (30 mg/kg, p.o.) mice revealed a pronounced reduction in

the inflammatory response with moderate loss of epithelial cells

and minimal inflammatory infiltration into the colonic tissue,

resulting in a decreased microscopic damage score, compared with

colons from DSS mice (untreated) (Fig. 2 B,C).

Euphol prevents epithelial surface lesion in colonic tissue
Next, we assessed whether euphol treatment could restore the

morphological characteristics of inflamed colonic mucosa follow-

ing DSS administration using scanning electron microscopy (SEM)

[22]. SEM observations of the colonic mucosa in control healthy

mice showed a normal epithelium with crypts and some

granulated mast cells. The mucosal surface appeared to be

subdivided by well-defined concave grooves and regular-shaped

crypt openings containing mucin like material. A regular

microvillus carpet makes the epithelial surface smooth and velvety

(Fig. 2D). The DSS-group showed degenerated epithelium, severe

inflammatory cell infiltration, widened grooves, dilatations of

glandular crypts losing their regular shape by assuming fissure like

aspects and depletion of goblet cells, leaving an irregular craterlike

area (Fig. 2D). Relevantly, treatment with euphol (30 mg/kg, p.o.)

following 7 days of DSS treatment significantly restored the

architecture of the colon epithelium with a marked decrease in

inflammatory cell infiltration compared with the DSS group

(untreated mice). Similar to the control healthy group (non colitic),

euphol treatment restored the microvillus carpet and made the

epithelial surface smooth (Fig. 2D).

Euphol and Experimental Colitis
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Euphol inhibits cytokine local release and expression
during experimental ulcerative colitis

It has been shown that selective blockade of IL-1R, CXCR2,

CXCL1/KC, MCP-1, MIP-2, TNF-a and IL-6 significantly

decreases severity of colitis and neutrophil/macrophage migration

[4,6,23]. In this set of experiments, we investigated whether oral

treatment with euphol could inhibit the levels and expression of

pro-inflammatory cytokines/chemokine in the colonic tissues.

Colonic levels of the pro-inflammatory cytokines IL-1b, CXCL1/

KC, MIP-2 and MCP-1 were markedly elevated 7 days after the

initiation of DSS treatment (Fig. 3 A–D). Preventive treatment

with euphol (30 mg/kg, p.o.) significantly inhibited the levels of

IL-1b by 80% (Fig. 3A), KC by 48% (Fig. 3B), MIP-2 by 65%

(Fig. 3C) and MCP-1 by 80% (Fig. 3D) in colon tissue (P,0.05). In

addition, DSS administration resulted in a pronounced increase in

colonic IL-1b, CXCL1/KC, TNF-a and IL-6 mRNA expression

(Fig. 3 E–H). Interestingly, euphol treatment (30 mg/kg), given

orally during 7 day following DSS administration, significantly

inhibited the up-regulated mRNA expression of IL-1b by 95%

(Fig. 3E), CXCL1/KC by 100% (Fig. 3F), TNF-a by 40%

(Fig. 3G) and IL-6 by 75% (Fig. 3H) (P,0.05). Such data suggest

that the anti-inflammatory action of euphol is likely to be

associated with its abilities to inhibit the release and expression

of cytokines/chemokines as well as inhibit neutrophils influx into

colonic tissue after DSS administration.

Euphol reduces cytokine release from LPS-stimulated
macrophages

The reduction in IL-1b, CXCL1/KC, MCP-1 and MIP-2 levels

induced by euphol in DSS-treated colon could be just a

consequence of decreased cellular adhesion or migration; inflam-

matory cells produce cytokines and chemokines, thus a decrease in

the presence of these cells could also correspond to a decrease in

their secreted cytokines/chemokines. To clarify whether euphol

could also diminish the production of inflammatory mediators or

modify the profile of cytokines produced by the inflammatory cells

present in colonic tissue after inflammatory stimulus, we cultured

primary bone marrow-derived macrophages and evaluated the

influence of euphol on MCP-1, TNF-a, IL-6, IFN-c and IL-10

production after in vitro stimulation with LPS (1 mg/ml, for 24 h), an

Figure 2. Treatment with euphol reduces cell influx and microscopic colon damage after DSS-induced acute colitis. At 7 days after
euphol oral treatment, colon tissues were processed for histological evaluation, measurement of myeloperoxidase (MPO) activity and scanning
electron microscopy. Preventive (3, 10, and 30 mg/kg, p.o.) or therapeutic (30 mg/kg, p.o.) treatment with euphol reduced MPO (A) activity. (B)
Representative histological sections of colon from control healthy mice (non colitic), DSS-treated and euphol-treated mice (30 mg/kg, p.o.) were
examined microscopically after H&E staining with original magnification x20. The images are representative of at least four mice per group. (C)
Preventive treatment with euphol (30 mg/kg, p.o.) decreased the microscopic damage score in mouse colon. (D) Scanning electron microscopy
photographs of the colon of the colon surfaces of control healthy mice, DSS-treated group, and DSS plus euphol (30 mg/kg, p.o.) treated mice after 7
days following DSS administration. Original magnification: x750 and x6,000, respectively. Each column represents the mean 6 S.E.M. of 8 to 10 mice
per group and is representative of two independent experiments. #P,0.05 vs. control healthy group (non colitic); *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g002
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important component of colitis-induced damage. Primary macro-

phages stimulated with LPS for 24 h increased MCP-1, TNF-a, IL-

6 and IFN-c levels (Fig. 4 A–E). In vitro pre-treatment (30 min) with

euphol (1 and 10 mM) markedly blocked MCP-1, TNF-a, IL-6 and

IFN-c levels after LPS administration (Fig. 4). In addition, LPS

administration decrease IL-10 levels and, interestingly, euphol (1

and 10 mM) increased IL-10 production in the macrophage culture

after LPS administration (Fig. 4E).

Euphol inhibits NOS2 and VEGF expression induced by
DSS

Ulcerative colitis appears to be caused by a disruption of

intestinal homeostasis and integrity, while up-regulated NOS2

expression in gut mucosa has been shown to cause apoptosis of

epithelial cells [24]. Furthermore, it has been suggested that NOS2

is also involved in angiogenesis [25] a relevant phenomenon that

has recently been demonstrated to be one of the major

contributors to the pathogenesis of IBD [26]. Our present data

corroborated with this observation by demonstrating that DSS-

induced colitis increased NOS2 (Fig. 5 A,C) and VEGF expression

(Fig. 5 B,D). Interestingly, preventive treatment with euphol

(30 mg/kg) significantly blocked the increase in NOS2 and VEGF

expression in colonic tissue (Fig. 5).

Euphol inhibits inflammatory and enterocyte cells
proliferation during inflammation bowel induced by DSS

Ki-67 is a nuclear protein necessary for cell proliferation and is

expected to play a central role in the inflammatory process [27].

To explore whether or not euphol could interfere with

inflammatory and enterocyte cells proliferation we evaluated Ki-

67 staining in colon tissue after DSS administration. Tissue

sections from control mice exhibited very low levels of specific

staining for Ki-67 in epithelial cells (Fig. 6). In contrast, at 7 days

after DSS administration, the untreated (DSS) group showed

intense immunostaining for Ki67 expression in colon tissue,

mainly in the inflammatory cells, but also in enterocyte cells (Fig. 6

A,C). On the other hand, the preventive oral treatment with

euphol (30 mg/kg, twice a day) during 7 days following DSS

administration, significantly inhibited proliferation index in colon

tissue, using monoclonal antibodies against ki67 (Fig. 6 A,C).

Euphol prevents colonic NF-kB activation in the colon
tissue after DSS administration

The transcriptional factor NF-kB is among the major pro-

inflammatory signaling pathways involved in colitis [28,29].

Herein, in order to further evaluate the possible mechanisms

involved in the anti-inflammatory action of euphol, we next

assessed whether the oral pre-treatment with euphol was able to

decrease the activation of transcriptional factors NF-kB, in the

colonic tissue after DSS administration. As shown in Fig. 6, low

levels of NF-kB p65 was detected in the naive mouse colon;

however, DSS-induced inflammation bowel, as expected, lead to a

pronounced phosphorylation of p65 NF-kB in the colonic tissue

after 7 days (Fig. 6 B,D). Interestingly, the pre-treatment with

euphol (30 mg/kg, p.o.), significantly reduced the p65 NF-kB

activation in the mouse colon tissue, thus strongly suggesting that

inhibition of NF-kB activation seems to be the key mechanism

Figure 3. Preventive treatment with euphol changes colonic protein levels and mRNA expression of inflammatory mediators. At the
end of 7 days, colon tissue was collected and processed for cytokine levels and mRNA expression. (A–D) Enzyme-linked immunosorbent assay.
Preventive treatment with euphol (30 mg/kg, p.o.) reduced colonic levels of interleukin-1b (IL-1b) (A), keratinocyte-derived chemokine (CXCL1/KC)
(B), macrophage inflammatory protein-2 (MIP-2) (C) and monocyte chemoattractant protein-1 (MCP-1) (D). (E–H) Real-time PCR. The same scheme of
treatment with euphol also impaired the increase colonic mRNA expression of IL-1b (E), CXCL1/KC (F), tumor necrosis factor-a (TNF-a) (G) and
interleukin-6 (IL-6) (H). The real-time PCR assay was performed in duplicate and GAPDH mRNA was used to normalize the relative amount of mRNA.
Data are reported as means 6 S.E.M. of 8 to 10 mice per group and is representative of three independent experiments. #P,0.05 vs. control healthy
group (non colitic); *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g003
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through which this compound modulates intestinal inflammation

(Fig. 6 B,D).

Anti-inflammatory effect of euphol is mediated by
inhibition of adhesion molecule expression in colonic
tissue

The process of leukocyte extravasations, a critical step in the

inflammatory response, involves migration of leukocytes from the

bloodstream toward colon tissue, which is orchestrated by the

combined actions of cellular adhesion receptors (selectins and

integrins) and chemotactic factors {Barreiro, #603}. In this set of

experiments, we assessed whether oral treatment with euphol was

able to decrease the expression of adhesion molecules in colonic

tissue. In the first set of experiments, we assessed mRNA

expression of adhesion molecules on day 7 after the induction of

colitis. In the DSS group (untreated), a pronounced increase in

colonic ICAM-1 (Fig. 7A), VCAM-1 (Fig. 7B) and LFA-1 (Fig. 7C)

mRNA expression was observed. Interestingly, preventive treat-

ment with euphol (30 mg/kg) markedly inhibited the up-regulated

mRNA expression of ICAM-1, VCAM-1 and LFA-1 (Fig. 7) in

colonic tissue. In addition, to determine the effect of euphol in

regulating selectins, we performed immunofluorescence analysis of

colon samples obtained from mice after DSS-induced colitis.

Tissue sections from control healthy mice exhibited very low levels

of specific staining for P-selectin (Fig. 7D) and E-selectin (Fig. 7E)

in endothelial cells only. In contrast, 7 days after DSS

administration, intense immunostaining for both P- and E-selectin

expression in colon tissue was observed; however, preventive

treatment with euphol (30 mg/kg, p.o.) during the 7 days after

DSS administration resulted in a significant decrease in the

positive immunostaining for P- and E-selectin (Fig. 7 D,E).

Euphol treatment attenuates the severity of
TNBS-induced colitis

Recently, our group has shown that 72 h after TNBS

administration, mice developed severe diarrhea, striking hyper-

emia, necrosis and inflammation accompanied by an extensive

wasting disease, rectal prolapse and sustained weight loss [6]. To

assess whether or not euphol treatment would also prove to be

beneficial in another chemical model of colitis, we tested its effects

on some parameters of colitis induced by the hapten TNBS, which

constitutes a Crohn’s disease model. Rectal administration of

TNBS dissolved in ethanol induced severe colitis in CD1 mice that

was characterized by weight loss and diarrhea. Treatment with

euphol (30 mg/kg, p.o.), twice a day, starting 24 h after TNBS

administration (i.e., at a time point when colitis was already

established), significantly reduced body weight loss (Fig. 8A). At

this same dose, euphol also reduced the macroscopic damage score

(Fig. 8B) and the reduction in colon length (Fig. 8 C,D).

Discussion

Ulcerative colitis and Crohn’s disease are major forms of

inflammatory bowel disease (IBD), a disease that affects millions of

people worldwide and is characterized by chronic uncontrolled

Figure 4. Euphol reduces pro-inflammatory cytokines and chemokines production in macrophages stimulates with lipopolysac-
charide (LPS). Macrophage from bone marrow of naı̈ve mice were stimulated with LPS (1 mg/ml) in the presence or absence of euphol (1 and
10 mM) for 24 hours, and the culture supernatants were analyzed for cytokine levels using cytokine bead array kit (CBA). Euphol incubation in dose-
related manner reduced production of MCP-1 (A), TNF-a (B), IL-6 (C), IFN-c (D), but increase the IL-10 levels (E). Data are reported as means 6 SEM
(n = 4) and is representative of two independent experiments. #P,0.05 vs. control without LPS treatment (vehicle solution); *P,0.05 vs. LPS-treated
group. Vehicle solution corresponds to 5% Tween 80 in medium.
doi:10.1371/journal.pone.0027122.g004
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inflammation of intestinal mucosa [30,31]. Despite intense

interest, the pathogenesis of IBD still remains poorly understood;

the imbalance between pro-inflammatory cytokines, such as TNF-

a, IFN-c, IL-1b, IL-6 and IL-12, and anti-inflammatory cytokines,

such as IL-4, IL-10 and IL-11, is thought to play a pivotal role in

modulating gut inflammation [32]. It has been reported that these

inflammatory responses begin with a sudden infiltration of

neutrophils and macrophages [33] with the activated macrophages

producing a potent combination of broadly active inflammatory

cytokines, including TNF- a, IL-1 and IL-6 [34]. Conventional

therapy for IBD relies on the use of aminosalicylates, corticoste-

roids, immunosuppressive drugs and antibiotics [35]. Nowadays a

new class of drugs has been used for the treatment of IBD, among

them biologic agents such as anti-TNF therapy are noteworthy

[36,37]. However, these therapies for IBDs are usually associated

with several side effects or clinical limitations for use. Therefore,

there is a need for better therapeutic agents that effectively induce

remission and/or alter the natural course of the disease with

minimum or no side effects of treatment.

The use of medicinal plants or their active components is

becoming an increasingly attractive approach for the treatment of

various inflammatory disorders, such as rheumatoid arthritis

[38,39], multiple sclerosis {Ma, #622; Martin, #623; De Paula,

2008 #624} and ulcerative colitis [28]. Euphol, the alcohol

derivate tetracyclic triterpene is the main constituent found in the

sap of Euphorbia tirucalli, which is used as a folk therapy against

syphilis, asthma, rheumatism, cancer and sarcoma [17]. In

addition, a recent study have demonstrate that a biopolymeric

fraction (BET) obtained from E. tirucalli showed dose-dependent

anti-arthritic activity and demonstrated in vivo suppression of

CD4+ and CD8+ T cells associated with the inhibition of

intracellular IL-2 and IFN-c, and inhibited vascular permeability

Figure 5. Euphol treatment inhibits NOS2 and VEGF expression in colonic tissue. After a 7-day euphol treatment, colon samples were
processed for immunohistochemistry analysis. Preventive treatment with euphol (30 mg/kg, p.o.) significantly reduced NOS2 (A) and VEGF (B)
immunostaining in the colon tissue after DSS-induced colitis in mice. Graphical representation of the immunostaining for NOS2 (C) and VEGF (D)
expression evaluated in colon tissue. The mean intensity of NOS2 and VEGF staining were determined from image analysis and are represented as
optical density. Scale bar corresponds to 100 mm and applies throughout. Each column represents the mean 6 S.E.M. of 8 to 10 mice per group and is
representative of three independent experiments. #P,0.05 vs. control healthy group (non colitic); *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g005
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and the migration of leucocytes at the site of the insult [21].

However, so far, there have been no reports about the effect of

euphol on inflammatory bowel disease, such as UC and CD. Our

results demonstrated the effectiveness of the isolated natural

tetracyclic triterpene euphol in ameliorating two experimental

model of colitis in mice. Euphol, given orally, consistently

ameliorated the inflammatory symptoms associated with DSS-

induced colitis, accompanied by a direct reduction in neutrophils

migration, overproduction of pro-inflammatory mediators, mac-

rophage infiltration and activation. Of interest, it was observed

that euphol produced a marked decrease in adhesion molecule

expression, such as integrins (ICAM-1, VCAM-1 and LFA-1) and

selectins (P- and E-selectins), without compromising the integrity

of the endothelial barrier, as seen by scanning electron

microscopy. In addition, the present study clearly showed that

euphol treatment consistently reduced activation of NOS-2,

VEGF, Ki67 and p65 NF-kB. Furthermore, we also demonstrated

that euphol treatment ameliorated TNBS-induced colitis, suggest-

ing that the anti-inflammatory effect of euphol did not depend on

the animal model of colitis used.

Several studies support a crucial role for neutrophils in

mediating tissue injury and clinical symptoms in colitis [7,8,43].

Here, DSS-mediated colitis induces MPO activity and relevantly

treatment with euphol prevented the increase in MPO activity.

The reduction in neutrophils influx after euphol treatment

observed in this study was associated with a decrease in colon

damage. Interestingly, euphol was able to modulate the release

and/or expression of pro-inflammatory cytokines/chemokines in

Figure 6. Euphol prevents inflammatory/enterocyte cells proliferation and NF-kB activation after DSS-induced colitis. Expression of
Ki67 and phosphorylation of NF-kB was performed 7 days after administration of DSS (3%) or with vehicle in colonic tissues. Pre-treatment with
euphol (30 mg/kg, p.o.), significantly inhibited proliferation index (Ki67) (A) and phosphorylation of p65 NF-kB (B) in colon tissue after DSS-induced
colitis in mice. (A–B) Representative images of Ki67 and phospho-p65 NF-kB immunoreactivity in colon tissue. Scale bar corresponds to 100 and
25 mm (black square) respectively, and applies throughout. Graphical representation of the immunostaining for Ki67 (C) and phospho-p65 NF-kB (D)
expression evaluated in colon tissue. The mean intensity of Ki67 and p65 NF-kB staining were determined from image analysis and are represented as
optical density. Each column represents the mean 6 S.E.M. of 8 to 10 mice per group and is representative of two independent experiments.
#P,0.05 vs. control healthy group (non colitic); *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g006
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colonic tissue. In this context, there is now a considerable amount

of experimental evidence indicating that cytokines, such as MIP-2

and CXCL1/KC, play a pivotal role in the regulation of cell

migration in colon tissue [6]. Taken together, these results suggest

that euphol treatment contributes to a decrease in cell influx by

diminishing the production of chemotactic factors, thus, in turn,

ameliorating colon inflammation.

As discussed earlier, given that inflammatory cells up-regulated

the production of cytokines/chemokines in pathological condi-

tions, we next investigated whether the decreased levels and/or

expression of colonic cytokines demonstrated by euphol treat-

ment could be just a consequence of decreased cell migration. To

further strengthen this view, we cultured primary bone marrow-

derived macrophages and showed that euphol significantly

reduced MCP-1, TNF-a, IL-6, and IFN-c production in

macrophages. Interestingly, in vitro pre-treatment (30 min) with

euphol (1 and 10 mM) markedly increased IL-10 production, a

relevant anti-inflammatory cytokine, in the macrophage culture

after LPS administration. Considering these data, it is possible to

suggest that euphol could modulate macrophage activation and

in consequence decrease cytokine production, an effect which

might contribute to the reduction of adhesion molecule

expression.

Nitrosative stress caused by nitric oxide synthase 2 (NOS2 or

iNOS)-derived nitric oxide (NO) is strongly associated with IBD

progression and contributes to the pathogenesis of human IBD

and experimental colitis [44]. Blocking NOS2 expression using

gene knockout or specific inhibitors ameliorates the severity of

experimental colitis [45,46]. In addition, another relevant study

has shown that NOS2 is implicated in the induction of VEGF

[25], a cytokine that has a relevant role in angiogenesis and is

increased in patients with IBD [26]. Additional evidence has

indicated that local microvasculature and inflammation-dependent

angiogenesis exert a relevant role in both human and murine IBD

[26,47,48]. Here, we demonstrated that induction of colitis was

associated with a significant increase in NOS2 and VEGF

Figure 7. Preventive treatment with euphol blocks integrins and selectins expression in the colonic tissue after DSS-induced colitis.
At the end of 7 days, colon tissue was collected and processed for mRNA expression and immunofluorescence. Preventive treatment with euphol
(30 mg/kg, p.o.) reduced colonic mRNA expression of inter-cellular adhesion molecule 1 (ICAM-1) (A), vascular cell adhesion molecule-1 (VCAM-1) (B)
and lymphocyte function-associated antigen 1 (LFA-1) (C). The real-time PCR assay was performed in duplicate and GAPDH mRNA was used to
normalize the relative amount of mRNA. The same scheme of treatment with euphol also impaired the increase of P-selectin (D) and E-selectin (E).
Representative images of P-selectin and E-selectin immunofluorescent stains were obtained on day 7 from control healthy mice, DSS-treated group
and euphol (30 mg/kg, p.o.) treated group. Nuclei were stained with Hoechst (0.5 ml/ml). Scale bar corresponds to 50 mm and applies throughout.
Data are reported as means 6 S.E.M. of 8 to 10 mice per group and is representative of three independent experiments. #P,0.05 vs. control healthy
group (non colitic); *P,0.05 vs. DSS-treated group.
doi:10.1371/journal.pone.0027122.g007
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expression and the euphol treatment consistently blocked their up-

regulation after DSS-induced colitis, suggesting that blocking

intestinal inflammation and patho-angiogenesis through inhibiting

NOS2 and VEGF expression during IBD progression may be, at

least in part, the explanation of how euphol attenuates

experimental colonic inflammation.

In addition, the pathway underlying the euphol protection of

colon damage observed with preventive treatment could be

associated with diminished of inflammatory and enterocyte cells

proliferation (Ki67 immunostaining), which is a fundamental

protein involved in cell proliferation [27]. This event seems to be

associated with chronic inflammation and colon cancer and is

increased under this condition [49]. In the present study, oral

treatment with euphol notably reduced Ki67 protein activation

in colonic tissue, suggesting that euphol ameliorates acute colitis,

at least in parts, by reducing cell proliferation. However, these

events might be an indirect consequence of the general

improvement in inflammation mediated by euphol and need to

be further clarified.

Nuclear factor kB is a critical transcription factor involved in a

broad range of biological processes, including the regulation of

immune and inflammatory responses which has been associated to

the pathogenesis of colitis and other IBDs [50]. Activation of the

NF-kB transcription factor induces the expression of several pro-

inflammatory mediators, such as cytokines, chemokines and

adhesion molecules, which in turn mediate the recruitment and

activation of immune cells [51]. Herein, our results using the

phospho-p65 NF-kB antibody demonstrated that euphol is able to

inhibit the translocation of p65 into the nucleus, thus strongly

suggesting that inhibition of NF-kB activation should be a key

mechanism through which this natural tetracyclic triterpene

modulates intestinal inflammation.

An increasing body of evidence has emerged indicating that

cytokines and chemokines can up-regulate adhesion molecule

Figure 8. Therapeutic treatment with euphol protects mice against TNBS-induced acute colitis. Mice were given 100 mL of the TNBS (in
35% ethanol) and after 24 h, treated with euphol (30 mg/kg, p.o.). (A) The time-course of body weight changes on day 3 after TNBS-induced colitis. (B)
Macroscopic score; (C) colon length after TNBS-induced colitis. (D) Representative photograph of colons from day 3 after the induction of TNBS-colitis.
1, Control healthy mice; 2, TNBS-treated (only vehicle administration); 3, TNBS plus euphol (30 mg/kg, p.o.). Each column represents the mean 6
S.E.M. of 8 to 10 mice per group and is representative of two independent experiments. #P,0.05 vs. control healthy group (non colitic); *P,0.05 vs.
TNBS-treated group. Vehicle corresponds to 5% Tween 80 in saline 0.9% NaCl.
doi:10.1371/journal.pone.0027122.g008
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expression [52,53,54,55,56]. The characteristic steps taken by

leukocytes to extravasate from blood to the site of inflammation

caused by either exogenous or endogenous stimuli have been

recognized as the ‘three-step’ paradigm of inflammatory cell

recruitment that involve rolling, activation and adhesion [16]. The

interaction between leukocytes and the endothelium comprises a

variety of adhesive and migratory molecular events, including low

affinity transient and reversible rolling adhesion, integrin-depen-

dent firm adhesive interaction and migratory events of leukocytes

through the endothelium and beyond that, such as the penetration

of the membrane and migration into the interstitial space [16].

The initial process of active leukocyte recruitment is the tethering

or rolling of leukocytes, described as the initial selectin-mediated

interaction between leukocytes and endothelial cells [57].

Multiple studies have indicated that antibody blockade of

selectins inhibit leukocyte rolling in vivo [16], P-selectin-/- mice

show no leukocyte rolling in vivo [58] and double knockout mice for

P- and E-selectin show a decrease in neutrophils mobilization [59].

The most important ligand for selectins is the P-selectin

glycoprotein ligand-1 (PSGL-1), which is present on leukocytes

and can bind to both P- and E-selectin [60]. Interestingly, PSGL-1

ligation in neutrophils by both P-selectin and E-selectin can result

in activation of integrins, thus providing a link between rolling and

the subsequent integrin-mediated firm adhesion [60]. Neutrophils

and macrophages both use lymphocyte function-associated

antigen 1 (LFA-1) (CD11a/CD18; aLb2) and Mac-l (CD11b/

CD18; aMb2) for adhesion [61] in endothelial ICAMs, such as

ICAM-1 and ICAM-2. Moreover, ICAM-1 expression is further

increased after endothelial activation [62], and neutrophils-

mediated adhesion to endothelial cells. In contrast, endothelial

VCAM-1 is recognized by b1-integrin receptors predominantly

found on lymphocytes and monocytes [63]. Another study

demonstrated that induction of colitis in rats by TNBS is followed

by up-regulation of endothelial VCAM-1, and suggests that

VCAM-1 and constitutive ICAM-1 are major determinants of

leukocyte recruitment to the inflamed intestine [64]. On the other

hand, a relevant report established that VCAM-1 plays a central

role in leukocyte recruitment in colitis and blockade of this

adhesion molecule has higher therapeutic effect than immune

neutralization of ICAM-1 or MAdCAM-1 in colitis experimental

model. In the same study, chronic administration of anti-VCAM-1

antibody, but not anti-ICAM-1 or anti-MAdCAM-1, resulted in

significant attenuation of colitis in terms of disease activity index,

colon length, ratio of colon weight to length, and myeloperoxidase

activity [65]. In this context, to gain further insight into the

mechanisms through which euphol modulates cell migration and

improves DSS-induced colitis in mice, we assessed the content of

chemotactic factors and the expression of adhesion molecules after

induction of colitis. Our results demonstrated that euphol almost

totally suppressed the increase in mRNA expression of all

integrins, accompanied by a significant decrease in the positive

immunostaining of both selectin in colon tissue. Our present data

suggest that euphol affects recruitment of leucocytes, especially

neutrophils and macrophages, by regulating adhesion molecule

expression in leucocytes and colonic endothelial cell. However, as

described above the anti-inflammatory effect of euphol in the

experimental colitis, could be justified mainly by the blockade of

VCAM expression in the colonic tissue, however further studies

are necessary to clarify this hypothesis.

In conclusion, our results demonstrate that orally-administered

euphol has both preventive and therapeutic anti-inflammatory

properties when assessed in two models of colitis in mice. The

beneficial action of euphol in ameliorating colitis seems likely

associated with its ability to prevent the expression of pro-

inflammatory mediators and/or release in colonic tissue through

inhibiting leukocyte influx (mainly neutrophils and macrophages)

into inflammatory foci by blocking adhesion molecule expression,

such as selectins (P- and E-selectins) and integrins (ICAM-1,

VCAM-1 and LFA-1), without compromising the integrity of the

endothelial barrier. Moreover, euphol treatment markedly inhib-

ited the activation of NF-kB in the mouse colon tissue. These

results suggest that euphol might constitute a potential candidate

for the treatment of IBD.

Materials and Methods

Experimental animals
Male CD1 mice (8–10 weeks of age) were obtained from the

Laboratório de Farmacologia Experimental (LAFEX), Universi-

dade Federal de Santa Catarina (UFSC, Florianópolis, SC, Brazil)

and housed in collective cages at 22 6 1uC under a 12-h light/

dark cycle (lights on at 07:00 h), with free access to food and tap

water. All experiments were performed during the light phase of

the cycle. The experimental procedures were previously approved

by UFSC’s Committee on the Ethical Use of Animals and were

carried out in accordance with Brazilian regulations on animal

welfare (CEUA/UFSC protocol number 23080.030926/2010-62).

DSS-induced colitis
This model of colitis was employed as previously described [66]

and consisted of adding 3% w/v dextran sodium sulfate (30–

50 kD, MP Biomedicals, Cleveland, OH, USA) to the animals’

drinking water for 5 days, followed by another 2 days during

which they were offered DSS-free (i.e., plain) drinking water alone.

Control healthy mice (non colitic) received plain drinking water at

all times.

TNBS-induced colitis
This colitis model employed here was originally described [67]

and slightly modified [6]. After being deprived of food for 18–24 h

with free access to a 5% glucose solution, mice were randomly

divided into control healthy and colitis groups. Briefly, mice

deprived of food for 1 day were lightly anaesthetized by

administration of xylazine (10 mg/kg, i.p.) and ketamine

(80 mg/kg, i.p.), and then a catheter (polyethylene PE-50) was

carefully inserted into the colon (4 cm proximal to the anus). To

induce colitis, TNBS (1.5 mg in 100 mL of 35% ethanol solution)

was slowly administered (day 0). To assure the distribution of

TNBS within the entire colon, mice were carefully maintained at a

45u angle (head down position) for 2 min and then returned to

their cages. Four hours later, the animals were given free access to

food and water. Throughout the experiments, mice were

monitored for body weight loss and overall mortality. At 72 h

following TNBS administration (day 3), i.e., 4 h after receiving the

last injection, the animals were killed, and the colon was removed,

dissected and opened lengthwise.

Treatment protocols
The compound euphol was diluted in 5% Tween 80 solution

made in saline (0.9% NaCl solution) and administered orally by

gavage (p.o.). In the experiments involving DSS-induced colitis,

mice received euphol (3, 10 and 30 mg/kg, p.o.) or vehicle (5%

Tween 80 in saline 0.9% NaCl) twice a day from day 0 to day 7

(preventive treatment) or with 30 mg/kg from day 3 to day 7

(therapeutic treatment), and were sacrificed 4 h after receiving the

last administration. After that the dose of 30 mg/kg (p.o.) euphol

was used in subsequent experiments. To evaluate the potential

therapeutic effect of euphol in TNBS-induced colitis, animals were
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orally treated by gavage with euphol (30 mg/kg, twice a day) or

the corresponding vehicle (5% Tween 80 in saline 0.9% NaCl),

starting 24 h after TNBS instillation (day 1) during 3 consecutive

days (day 1–3). Vehicle solution (5% Tween 80 in 0.9% NaCl

solution) was used in control experiments. The dose of each drug

was chosen based on preliminary studies.

Body weight change and disease activity index
Body weight was measured daily, starting on the day preceding

DSS administration and up to 7 days thereafter in the DSS model.

Body weight was also measured daily in the TNBS model, starting

on the day preceding colitis induction (i.e., before fasting) and then

again just prior to intracolonic TNBS or vehicle administration (after

fasting) and up to 72 h after treatment. In the DSS model only, the

clinical disease activity index (DAI) was measured daily using the

protocol previously described [68], which ranged from 0 to 4 and

was the sum of scores given for body weight loss (scored as: 0, none;

1, 1–5%; 2, 5–10%; 3, 10–20%; 4, over 20%), stool consistency

(scored as: 0, well formed pellets; 2, loose stools; 4, diarrhea) and

presence or absence of fecal blood (scored as: 0, negative hemoccult

test; 2, positive hemoccult test; 4, gross bleeding).

Macroscopic and microscopic colonic damage
In the DSS model at the end of the 7-day period, colons were

removed and examined for: weight, the consistency of the stool

found within as well as gross macroscopic appearance and length,

which was measured from 1 cm above the anus to the top of the

cecum. Macroscopic damage was assessed according previously

[69], as the sum of scores attributed to stool condition (0, normal

well-formed fecal pellets; 1, loosely shaped moist pellets; 2,

amorphous, moist, sticky pellets; 3, diarrhea; plus 1 for presence

of blood in stool), colon damage (0, no inflammation; 1, reddening,

mild inflammation; 2, moderate or more widely distributed

inflammation; 3, severe and/or extensively distributed inflamma-

tion), colon weight loss (0, for ,5%; 1, for 5–14%; 2, for 15–24%; 3,

for 25–35%; 4, for .35%) and colon length shortening (0, for ,5%;

1, for 5–14%; 2, for 15–24%; 3, for 25–35%; 4, for .35%), with up

to a maximum total score of 15. To evaluate microscopic colon

damage by light microscopy, samples of the distal colon were fixed

immediately in 10% formaldehyde solution, embedded in paraffin,

cut into 5 mm thick transversal sections, mounted on glass slides,

deparaffinized and stained with hematoxylin and eosin stain (H&E).

In each specimen, six random fields of view were analyzed by two

double-blind observers, using Sight DS-5M-L1 digital camera

connected to an Eclipse 50i light microscope (both from Nikon,

Melville, NY, USA). The intensity of microscopic colonic damage

was assessed according to the scoring system described by Rath et al.

[70] and modified by Van der Sluis et al. [71].

In the TNBS model, at 3 days after TNBS administration, mice

were sacrificed and their colons removed and rinsed with saline, and

macroscopic colonic damage was evaluated using the following

scoring system: 0, no damage; 1, hyperemia without ulcers; 2,

hyperemia with bowel wall thickening but no ulcers; 3, one site of

ulceration without bowel wall thickening; 4, two or more sites of

ulceration or inflammation; 5, 0.5 cm of inflammation and major

damage; 6, at least 1 cm of major damage (for every additional

0.5 cm of damage, the score was increased by one to a maximum of

10); plus 1 for presence of diarrhea or stricture; plus 1 or 2 for

presence of mild or severe adhesions, respectively [72].

Scanning electron microscopy (SEM)
SEM was used to visualize topographical alterations of the

luminal surface of the colon from control healthy, untreated and

treated mice. Fragments of 2 mm thickness from the mid-colon

were pre-fixed in the field in 2.5% glutaraldehyde in 0.1M sodium

phosphate buffer (pH 7.4) and kept on ice. The specimens were

then rinsed in the same buffer, post-fixed in 2% osmium tetroxide

(OsO4) for 4 h, dehydrated in a graded ethanol series (30% to

100%) and dried in hexamethyldisilazane (HMDS). The samples

were glued onto stubs, covered with gold particles (Bio-Rad

SC502, Hertfordshire, UK) and observed under a scanning

electron microscope (JEOL JSM-6390LV, Tokyo, Japan).

Myeloperoxidase assay
Neutrophil infiltration into the colon was assessed indirectly by

measuring myeloperoxidase (MPO) activity. Mid-colon segments

were homogenized in ethylenediaminetetraacetic acid (EDTA)/

NaCl buffer (pH 4.7) and centrifuged at 10,000 rpm for 15 min at

4uC. The pellet was ressuspended in 0.5% hexadecyltrimethyl

ammonium bromide buffer (pH 5.4) and frozen in liquid nitrogen

and thawed repeatedly three times. Samples were then centrifuged

again (10,000 rpm, 15 min, 4uC) and 25 ml of the supernatant was

used for the MPO assay. The enzymatic reaction was assessed by

the addition of 25 ml of 1.6 mM tetramethylbenzidine (TMB) in

80 mM NaPO4, plus 100 ml of 0.3 mM H2O2. MPO activity was

measured spectrophotometrically at 650 nm and the results are

expressed as optical density (OD) per milligram of tissue.

Determination of cytokine levels
Mid-colon segments were homogenized in phosphate buffer

containing 0.05% Tween 20, 0.1 mM phenylmethylsulfonyl

fluoride, 0.1 mM benzethonium chloride, 10 mM EDTA and

20 IU aprotinin A. The homogenates were centrifuged at 3,0006g

for 10 min and the supernatants stored at 280uC until assays for

the determination of levels of the cytokines IL-1b, keratinocyte-

derived chemokine (CXCL1/KC), monocyte chemoattractant

protein-1 (MCP-1) and macrophage-inflammatory protein-2

(MIP-2) were carried out. The amount of protein in each sample

was measured using the Bradford method [73], using bovine

serum albumin as a standard. The levels of each cytokine were

evaluated using enzyme-linked immunosorbent assay (ELISA) kits

according to the manufacturer’s recommendations (R&D systems,

Minneapolis, MN, USA) and the results are expressed in pg/mg of

protein in each sample.

Real-time quantitative PCR
Total RNA was extracted from mid-colon samples taken from

anesthetized mice treated with DSS using the Trizol protocol

(Invitrogen, Carlsbad, CA, USA) and its concentration was

determined by NanoDropTM 1100 (NanoDrop Technologies,

Wilmington, DE, USA). A reverse transcription assay was

performed as described in the M-MLV Reverse Transcriptase

protocol according to the manufacturer’s instructions. cDNA

(300 ng) was amplified in triplicate using TaqManH Universal

PCR Master Mix Kit with specific TaqMan Gene Expression target

genes, the 3’ quencher MGB and FAM-labeled probes for mouse

TNF-a (Mm00443258_m1), IL-1b (Mm01336189_m1), CXCL1/

KC (Mm00433859_m1), IL-6 (Mm99999064_m1), ICAM-1

(Mm005616024_g1), VCAM-1 (Mm01320970_m1), lymphocyte

function- associated antigen 1 (LFA-1, Mm01278854_m1) and

GAPDH (NM_008084.2) (which was used as an endogenous

control for normalization). The PCR reactions were performed in a

96-well Optical Reaction Plate (Applied Biosystems, Foster City,

CA, USA). The thermocycler parameters were as follows: 50uC for

2 min, 95uC for 10 min, 50 cycles of 95uC for 15 sec and 60uC for

1 min. Expression of the target genes was calibrated against

conditions found in control non-colitic animals, i.e., those that

received vehicle (5% Tween 80 in saline 0.9% NaCl).
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Tissue and immunostaining
Seven days after DSS-induced experimental colitis, animals

were sacrificed and each portion of the distal colon was fixed

immediately in 4% paraformaldehyde in 0.1 M phosphate buffer

(pH 7.4). Colons were removed and post-fixed 24 h in the same

solution, following embedding in paraffin and sections (5 mm)

mounted on glass slide and deparaffinized. Immunohistochemical

analysis was performed on paraffin-embedded colon tissue (5 mm)

using polyclonal rabbit anti-NOS2 (1:300), monoclonal mouse

anti-VEGF (1:300), polyclonal rabbit anti-Ki-67 (1:300) and

monoclonal mouse anti-phospho-p65 NFkB (1:50) according to

the method described previously [74]. After quenching of

endogenous peroxidase with 1.5% hydrogen peroxide in methanol

(v/v) for 20 min, high-temperature antigen retrieval was per-

formed by immersion of the slides in a water bath at 95 to 98uC in

10 mmol/L trisodium citrate buffer, pH 6.0, for 45 min. The

slides were then processed using the VECTASTAINH Elite ABC

reagent (Vector Laboratories, Burlingame, CA), according to the

manufacturer’s instructions. After the appropriate biotinylated

secondary antibody, sections were developed with 3,3’-diamino-

benzidine (Dako Cytomation, Glostrup, Denmark) in chromogen

solution for the exact same amount of time and counterstained

with Harris’s hematoxylin. For immunofluorescence, sections

5 mm in thickness were deparaffinized and blocked with 2%

BSA in 0.3% Triton X-100 for 1 h at room temperature and

incubated overnight at 4uC with antibodies specific for P-selectin

(polyclonal goat; 1:200 dilution) and E-selectin (polyclonal goat;

1:100 dilution), followed by fluorescein isothiocyanate-conjugated

donkey goat-specific secondary antibody (1:50 dilution; Vector

Laboratories, Burlingame, CA) for 2 h at room temperature.

Nuclei were stained with Hoechst (0.5 ml/ml; Molecular Probes).

Images were acquired using a Sight DS-5M-L1 digital camera

connected to Eclipse 50i light microscope fluorescence (both from

Nikon, Melville, NY, USA). Four ocular fields per section (5–10

mice per group) were captured and a threshold optical density that

best discriminated staining from the background was obtained

using the NIH ImageJ 1.36b imaging software (NIH, Bethesda,

MD, USA). For immunohistochemistry analysis, total pixel

intensity was determined and data are expressed as optical density

(OD). For immunofluorescence, signal intensities were collected in

triplicate and microscopy data were acquired by two investigators

‘blinded’ to the identity of the disease group.

Murine bone marrow-derived macrophages
CD1 mice were sacrificed by cervical dislocation. Total bone

marrow was obtained from mice by flushing the femurs and tibiae

with Dulbecco modified eagle medium (DMEM), as previously

described [75]. Briefly, bone marrow mononuclear phagocyte

precursor cells were propagated in suspension by culturing in

macrophage medium (DMEM containing glucose, supplemented

with 2 mM L-glutamine, 10% FCS, 10 mM Hepes, 100 mg/ml

streptomycin, 100 U/ml penicillin (all from Sigma-Aldrich) sup-

plemented with 20% L929 cell-conditioned medium (as a source of

M-CSF). Cells were incubated at 37uC in 5% CO2 air and fed on

day 5 by replacing the medium supplemented with 20% L929 cell-

conditioned medium. Cells were harvested on day 7, and

16106 cells/ml were cultured in a 96-well cell culture plate for

24 h. Afterwards, adherent cells were stimulated for 24 h with LPS

(1 mg/ml) in the presence or absence of euphol (1 and 10 mM) in a

final volume of 250 ml/well. Control group corresponds to 5%

Tween 80 in medium with/without LPS treatment. After

stimulation, the plate was centrifuged (2006g/10 min) and the

cell-free supernatant was collected and stored at 270uC for cytokine

determination. A cytokine bead array Mouse Kit Inflammation was

used to measure MCP-1, TNF-a, IL-6, IFN-c and IL-10 secretion

in the supernatant. The data were acquired using BD FACSCanto

II (BD Biosciences, San Diego, CA, USA) and analyzed using FCAP

Array software (BD Biosciences, San Diego, CA, USA).

Drugs and reagents
The sap from Euphorbia tirucalli was initially extracted with

hexane and the resulting precipitate was extracted with n-butanol.

The most lipophilic compounds present in the methanol fraction

were purified by means of high performance liquid chromatog-

raphy (HPLC) analysis. Further purification of the compounds was

carried using Sephadex G-75 in a mixture of hexane-ethyl acetate.

The euphol chemical characterization was conducted by means of

nuclear magnetic resonance (NMR) and mass spectroscopic data.

The tetracyclic triterpene euphol used in this study showed a

purity .95%. Dexamethasone, H2O2, Tween 20, Tween 80,

EDTA, aprotinin, phosphate buffered saline (PBS), H&E, 3,3,5,5-

tetramethylbenzidine, H2O2 and TNBS were purchased from

Sigma Chemical Co. (St. Louis, MO, USA). Formaldehyde was

obtained from Merck (Frankfurt, Darmstadt, Germany). Anti

mouse-KC and the DuoSet kits for IL-1b/IL-1F2, MCP-1 and

MIP-2 were obtained from R&D Systems (Minneapolis, MN,

USA). Bradford reagent was purchased from Bio-Rad Laborato-

ries (Richmond, CA, USA). Polyclonal rabbit anti-NOS2 was

purchased from Thermo Fisher Scientific Inc. (Fremont, CA,

USA). Monoclonal mouse anti-VEGF was purchased from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). Monoclonal mouse

anti-phospho-p65 NF-kB was purchased from Cell Signaling

Technology (Danvers, MA, USA) and polyclonal rabbit anti-Ki-67

from purchased Abcam (Cambridge, MA, USA). Secondary

antibody Envision Plus, streptavidin–HRP reagent, and 3,3-

diaminobenzidine chromogen were purchased from DakoCyto-

mation (Carpinteria, CA, USA). Trizol and M-MLV reverse

transcriptase were purchased from Invitrogen (Carlsbad, CA,

USA). Primers and probes for mouse TNF-a (Mm00443258_m1),

IL-1b (Mm01336189_m1), CXCL1/KC (Mm00433859_m1), IL-

6 (Mm99999064_m1), ICAM-1 (Mm005616024_g1), VCAM-1

(Mm01320970_m1), LFA-1 (Mm01278854_m1), GAPDH

(NM_008084.2) and TaqManH Universal PCR Master Mix Kit

were purchased from Applied Biosystems (Foster City, CA, USA).

The CBA Mouse Inflammation Kit was purchased from BD

Biosciences (San Diego, CA, USA). The compound euphol (3, 10

and 30 mg/kg) was diluted in a 5% Tween 80 solution made in

saline (0.9% NaCl solution) and administered orally by gavage

(p.o.). All other drugs were made in physiological saline (0.9%

NaCl solution).

Statistical analysis
All data were expressed as means 6 S.E.M. (n = 8210 animals/

group). Statistical analysis was performed using Kruskal-Wallis

followed by Dunn’s test for non-parametric data, one-way

ANOVA followed by Newman-Keuls test for parametric data.

All analysis was conducted using GraphPad Prism 4 software

(GraphPad Software Inc., San Diego, CA, USA). Differences with

p#0.05 were considered to be statistically significant.

Author Contributions

Conceived and designed the experiments: RCD RFC AFB RM JBC.

Performed the experiments: RCD RFC AFB RM ECS ZLB. Analyzed the

data: RCD RFC AFB. Contributed reagents/materials/analysis tools: LFP

JBC. Wrote the paper: RCD RFC JBC.

Euphol and Experimental Colitis

PLoS ONE | www.plosone.org 13 November 2011 | Volume 6 | Issue 11 | e27122



References

1. Friedman S, Blumberg, RS (2001) Harrison’s Principles of Internal Medicine.
New York: McGraw-Hill. pp 1679–1692.

2. Sartor RB (2008) Microbial influences in inflammatory bowel diseases.
Gastroenterology 134: 577–594.

3. Dharmani P, Chadee K (2008) Biologic therapies against inflammatory bowel

disease: a dysregulated immune system and the cross talk with gastrointestinal
mucosa hold the key. Curr Mol Pharmacol 1: 195–212.

4. McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G (2009)
Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel

Dis 15: 100–113.

5. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2: 129–134.

6. Bento AF, Leite DF, Claudino RF, Hara DB, Leal PC, et al. (2008) The selective

nonpeptide CXCR2 antagonist SB225002 ameliorates acute experimental colitis
in mice. J Leukoc Biol 84: 1213–1221.

7. Buanne P, Di Carlo E, Caputi L, Brandolini L, Mosca M, et al. (2007) Crucial

pathophysiological role of CXCR2 in experimental ulcerative colitis in mice.
J Leukoc Biol 82: 1239–1246.

8. Wallace JL, McKnight W, Asfaha S, Liu DY (1998) Reduction of acute and
reactivated colitis in rats by an inhibitor of neutrophil activation. Am J Physiol

274: G802–808.

9. Barreiro O, Martin P, Gonzalez-Amaro R, Sanchez-Madrid F (2010) Molecular
cues guiding inflammatory responses. Cardiovasc Res 86: 174–182.

10. Vestweber D (1992) Selectins: cell surface lectins which mediate the binding of
leukocytes to endothelial cells. Semin Cell Biol 3: 211–220.

11. Ley K, Gaehtgens P, Fennie C, Singer MS, Lasky LA, et al. (1991) Lectin-like

cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo.
Blood 77: 2553–2555.

12. Nolte D, Schmid P, Jager U, Botzlar A, Roesken F, et al. (1994) Leukocyte
rolling in venules of striated muscle and skin is mediated by P-selectin, not by L-

selectin. Am J Physiol 267: H1637–1642.

13. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell
adhesion. Cell 69: 11–25.

14. Chavakis T, Kanse SM, May AE, Preissner KT (2002) Haemostatic factors
occupy new territory: the role of the urokinase receptor system and kininogen in

inflammation. Biochem Soc Trans 30: 168–173.

15. Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation
and leukocyte emigration. Annu Rev Physiol 57: 827–872.

16. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of
inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:

678–689.

17. Betancur-Galvis LA, Morales GE, Forero JE, Roldan J (2002) Cytotoxic and
antiviral activities of Colombian medicinal plant extracts of the Euphorbia

genus. Mem Inst Oswaldo Cruz 97: 541–546.

18. Hecker E (1968) Cocarcinogenic principles from the seed oil of Croton tiglium

and from other Euphorbiaceae. Cancer Res 28: 2338–2349.

19. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Larvicidal
activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex

quinquefasciatus (Diptera: Culicidae). Parasitol Res 102: 867–873.

20. Kumar A, Prasad M, Mishra D, Srivastav SK, Srivastav AK (2010) Toxicity of

aqueous extract of Euphorbia tirucalli latex on catfish, Heteropneustes fossilis.
Ecotoxicol Environ Saf 73: 1671–1673.

21. Bani S, Kaul A, Khan B, Gupta VK, Satti NK, et al. (2007) Anti-arthritic

activity of a biopolymeric fraction from Euphorbia tirucalli. J Ethnopharmacol

110: 92–98.

22. Gaudio E, Taddei G, Vetuschi A, Sferra R, Frieri G, et al. (1999) Dextran sulfate
sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig

Dis Sci 44: 1458–1475.

23. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, et al. (1994)

Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs
inflammation in rabbit immune colitis. J Clin Invest 94: 449–453.

24. Yue G, Lai PS, Yin K, Sun FF, Nagele RG, et al. (2001) Colon epithelial cell

death in 2,4,6-trinitrobenzenesulfonic acid-induced colitis is associated with

increased inducible nitric-oxide synthase expression and peroxynitrite produc-
tion. J Pharmacol Exp Ther 297: 915–925.

25. Wang X, Klein RD (2007) Prostaglandin E2 induces vascular endothelial growth

factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP
pathway. Mol Carcinog 46: 912–923.

26. Danese S, Sans M, de la Motte C, Graziani C, West G, et al. (2006)
Angiogenesis as a novel component of inflammatory bowel disease pathogenesis.

Gastroenterology 130: 2060–2073.

27. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, et al. (1984) Cell cycle
analysis of a cell proliferation-associated human nuclear antigen defined by the

monoclonal antibody Ki-67. J Immunol 133: 1710–1715.

28. Vitor CE, Figueiredo CP, Hara DB, Bento AF, Mazzuco TL, et al. (2009)

Therapeutic action and underlying mechanisms of a combination of two
pentacyclic triterpenes, alpha- and beta-amyrin, in a mouse model of colitis.

Br J Pharmacol 157: 1034–1044.

29. Arulampalam V, Pettersson S (2002) Uncoupling the p38 MAPK kinase in IBD:

a double edged sword? Gut 50: 446–447.

30. Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of
inflammatory bowel disease. Annu Rev Med 51: 289–298.

31. Hanauer SB, Present DH (2003) The state of the art in the management of

inflammatory bowel disease. Rev Gastroenterol Disord 3: 81–92.

32. Ardizzone S, Bianchi Porro G (2005) Biologic therapy for inflammatory bowel

disease. Drugs 65: 2253–2286.

33. Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis,

and therapeutic opportunities. Inflamm Bowel Dis 12 Suppl 1: S3–9.

34. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429.

35. Baert F, Vermeire S, Noman M, Van Assche G, D’Haens G, et al. (2004)

Management of ulcerative colitis and Crohn’s disease. Acta Clin Belg 59:

304–314.

36. Cuzzocrea S (2003) Emerging biotherapies for inflammatory bowel disease.

Expert Opin Emerg Drugs 8: 339–347.

37. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects

and established and evolving therapies. Lancet 369: 1641–1657.

38. Kang SY, Yoon SY, Roh DH, Jeon MJ, Seo HS, et al. (2008) The anti-arthritic

effect of ursolic acid on zymosan-induced acute inflammation and adjuvant-

induced chronic arthritis models. J Pharm Pharmacol 60: 1347–1354.

39. Liu M, Dai Y, Yao X, Li Y, Luo Y, et al. (2008) Anti-rheumatoid arthritic effect

of madecassoside on type II collagen-induced arthritis in mice. Int Immuno-

pharmacol 8: 1561–1566.

40. Ma X, Jiang Y, Wu A, Chen X, Pi R, et al. (2010) Berberine attenuates

experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One 5:

e13489.

41. Martin R, Carvalho-Tavares J, Hernandez M, Arnes M, Ruiz-Gutierrez V, et al.

(2010) Beneficial actions of oleanolic acid in an experimental model of multiple

sclerosis: a potential therapeutic role. Biochem Pharmacol 79: 198–208.

42. De Paula ML, Rodrigues DH, Teixeira HC, Barsante MM, Souza MA, et al.

(2008) Genistein down-modulates pro-inflammatory cytokines and reverses

clinical signs of experimental autoimmune encephalomyelitis. Int Immunophar-

macol 8: 1291–1297.

43. Peterson CG, Sangfelt P, Wagner M, Hansson T, Lettesjo H, et al. (2007) Fecal

levels of leukocyte markers reflect disease activity in patients with ulcerative

colitis. Scand J Clin Lab Invest 67: 810–820.

44. Cross RK, Wilson KT (2003) Nitric oxide in inflammatory bowel disease.

Inflamm Bowel Dis 9: 179–189.

45. Hokari R, Kato S, Matsuzaki K, Kuroki M, Iwai A, et al. (2001) Reduced

sensitivity of inducible nitric oxide synthase-deficient mice to chronic colitis. Free

Radic Biol Med 31: 153–163.

46. Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, et al. (2001)

Regulation of murine intestinal inflammation by reactive metabolites of oxygen

and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med 194:

1207–1218.

47. Sandor Z, Deng XM, Khomenko T, Tarnawski AS, Szabo S (2006) Altered

angiogenic balance in ulcerative colitis: a key to impaired healing? Biochem

Biophys Res Commun 350: 147–150.

48. Tsiolakidou G, Koutroubakis IE, Tzardi M, Kouroumalis EA (2008) Increased

expression of VEGF and CD146 in patients with inflammatory bowel disease.

Dig Liver Dis 40: 673–679.

49. Vetuschi A, Latella G, Sferra R, Caprilli R, Gaudio E (2002) Increased

proliferation and apoptosis of colonic epithelial cells in dextran sulfate sodium-

induced colitis in rats. Dig Dis Sci 47: 1447–1457.

50. Spehlmann ME, Eckmann L (2009) Nuclear factor-kappa B in intestinal

protection and destruction. Curr Opin Gastroenterol 25: 92–99.

51. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat

Immunol 3: 221–227.

52. Sanders WE, Wilson RW, Ballantyne CM, Beaudet AL (1992) Molecular

cloning and analysis of in vivo expression of murine P-selectin. Blood 80:

795–800.

53. Weller A, Isenmann S, Vestweber D (1992) Cloning of the mouse endothelial

selectins. Expression of both E- and P-selectin is inducible by tumor necrosis

factor alpha. J Biol Chem 267: 15176–15183.

54. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, et al. (1995)

Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B

and cytokine-inducible enhancers. Faseb J 9: 899–909.

55. Yao L, Pan J, Setiadi H, Patel KD, McEver RP (1996) Interleukin 4 or

oncostatin M induces a prolonged increase in P-selectin mRNA and protein in

human endothelial cells. J Exp Med 184: 81–92.

56. Stocker CJ, Sugars KL, Harari OA, Landis RC, Morley BJ, et al. (2000) TNF-

alpha, IL-4, and IFN-gamma regulate differential expression of P- and E-selectin

expression by porcine aortic endothelial cells. J Immunol 164: 3309–3315.

57. Kansas GS (1996) Selectins and their ligands: current concepts and

controversies. Blood 88: 3259–3287.

58. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993)

Leukocyte rolling and extravasation are severely compromised in P selectin-

deficient mice. Cell 74: 541–554.

59. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Double

knockout highlights value of endothelial selectins. Immunol Today 17: 205.

60. Zarbock A, Lowell CA, Ley K (2007) Spleen tyrosine kinase Syk is necessary for

E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular

adhesion molecule-1. Immunity 26: 773–783.

Euphol and Experimental Colitis

PLoS ONE | www.plosone.org 14 November 2011 | Volume 6 | Issue 11 | e27122



61. Basit A, Reutershan J, Morris MA, Solga M, Rose CE, Jr., et al. (2006) ICAM-1

and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the
alveolar space. Am J Physiol Lung Cell Mol Physiol 291: L200–207.

62. Lucas R, Lou J, Morel DR, Ricou B, Suter PM, et al. (1997) TNF receptors in

the microvascular pathology of acute respiratory distress syndrome and cerebral
malaria. J Leukoc Biol 61: 551–558.

63. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, et al. (1990) VCAM-1
on activated endothelium interacts with the leukocyte integrin VLA-4 at a site

distinct from the VLA-4/fibronectin binding site. Cell 60: 577–584.

64. Sans M, Panes J, Ardite E, Elizalde JI, Arce Y, et al. (1999) VCAM-1 and
ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis.

Gastroenterology 116: 874–883.
65. Soriano A, Salas A, Salas A, Sans M, Gironella M, et al. (2000) VCAM-1, but

not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis
in mice. Lab Invest 80: 1541–1551.

66. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced

mouse models of intestinal inflammation. Nat Protoc 2: 541–546.
67. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, et al. (1989)

Hapten-induced model of chronic inflammation and ulceration in the rat colon.
Gastroenterology 96: 795–803.

68. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study

of dextran sulfate sodium experimental murine colitis. Lab Invest 69: 238–249.

69. Kimball ES, Wallace NH, Schneider CR, D’Andrea MR, Hornby PJ (2004)

Vanilloid receptor 1 antagonists attenuate disease severity in dextran sulphate
sodium-induced colitis in mice. Neurogastroenterol Motil 16: 811–818.

70. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Jr., et al. (1996)

Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis,
gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats.

J Clin Invest 98: 945–953.
71. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, et al.

(2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2

is critical for colonic protection. Gastroenterology 131: 117–129.
72. Wallace JL, MacNaughton WK, Morris GP, Beck PL (1989) Inhibition of

leukotriene synthesis markedly accelerates healing in a rat model of
inflammatory bowel disease. Gastroenterology 96: 29–36.

73. Bradford MM (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.

Anal Biochem 72: 248–254.

74. Dutra R, Cola M, Leite D, Bento A, Claudino R, et al. (2011) Inhibitor of
PI3Kgamma ameliorates TNBS-induced colitis in mice by affecting the

functional activity of CD4(+) CD25(+) FoxP3(+) regulatory T cells. Br J
Pharmacol 19.

75. Stanley ER (1997) Murine bone marrow-derived macrophages. Methods Mol

Biol 75: 301–304.

Euphol and Experimental Colitis

PLoS ONE | www.plosone.org 15 November 2011 | Volume 6 | Issue 11 | e27122


