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Abstract

Background: Long-term b-adrenergic receptor (b-AR) blockade reduces mortality in patients with heart failure. Chronic
sympathetic hyperactivity in heart failure causes sustained b-AR activation, and this can deplete Ca2+ in endoplasmic
reticulum (ER) leading to ER stress and subsequent apoptosis. We tested the effect of b-AR blockers on ER stress pathway in
experimental model of heart failure.

Methods and Results: ER chaperones were markedly increased in failing hearts of patients with end-stage heart failure. In
Sprague-Dawley rats, cardiac hypertrophy and heart failure was induced by abdominal aortic constriction or isoproterenol
subcutaneous injection. Oral b-AR blockers treatment was performed in therapy groups. Cardiac remodeling and left
ventricular function were analyzed in rats failing hearts. After 4 or 8 weeks of banding, rats developed cardiac hypertrophy
and failure. Cardiac expression of ER chaperones was significantly increased. Similar to the findings above, sustained
isoproterenol infusion for 2 weeks induced cardiac hypertrophy and failure with increased ER chaperones and apoptosis in
hearts. b-AR blockers treatment markedly attenuated these pathological changes and reduced ER stress and apoptosis in
failing hearts. On the other hand, b-AR agonist isoproterenol induced ER stress and apoptosis in cultured cardiomyocytes. b-
AR blockers largely prevented ER stress and protected myocytes against apoptosis. And b-AR blockade significantly
suppressed the overactivation of CaMKII in isoproterenol-stimulated cardiomyocytes and failing hearts in rats.

Conclusions: Our results demonstrated that ER stress occurred in failing hearts and this could be reversed by b-AR blockade.
Alleviation of ER stress may be an important mechanism underlying the therapeutic effect of b-AR blockers on heart failure.
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Introduction

Heart failure remains a leading cause of hospitalization and

death. A number of evidence indicates that the activity of

sympathetic nervous system plays an important role in the

pathogenesis of heart failure[1,2,3]. It has long been recognized

that heart failure patients have higher catecholamine levels in their

blood. Elevated circulating catecholamines result in chronic

b-AR activation in the heart[4]. This has been thought to be a

compensatory reaction to enhance cardiac contractility. Intrigu-

ingly, a number of clinical studies have demonstrated b-AR

blockers as one of the few classes of drugs that improve cardiac

function and reduce mortality in patients with heart failure[4]. But

the mechanisms underlying the therapeutic effects of b-AR

blockers on failing hearts have been poorly understood. One

possible explanation is that b-blockers may compete with the

binding of norepinephrine and epinephrine to their receptors, and

thus attenuates the ‘‘fight or flight’’ reaction of the heart[5]. But it

is unclear how blocking a pathway that is known to increases

contractility of normal hearts can improve the function of failing

hearts. Clearly, the putative mechanism by competing with the

effect of catecholamines on cardiac contractility cannot fully

explain the therapeutic effect of b-AR blockers on failing hearts.

Other mechanisms likely exist. Elucidating these mechanisms will

not only deepen the understanding on b-AR blockers therapy, it

may also lead to new approaches to treat heart failure.

b-AR stimulation by elevated catecholamines activates dual

signaling pathways mediated by the adenylate cyclase-cAMP-

protein kinase A (PKA) and Ca2+/calmodulin-dependent protein

kinase II (CaMKII)[6]. PKA phosphorylates and activates the

ryanodine receptor RyR2 (sarcoplasmic reticulum Ca2+ release

channel) [7]. CaMKII modulates an array of key proteins involved

in Ca2+ handling, such as the sarcoplasmic/endoplasmic reticulum

Ca2+-ATPase (SERCA) and its regulator, phospholamban (PLB),

ryanodine receptor RyR2, and sarcolemmal L-type Ca2+ channels

(LCC)[8]. Constant hyperactivation of RyR2 can lead to increased

Ca2+ release and Ca2+ leak in myocytes during diastole[9,10]. The

long-term consequence of increased Ca2+ release and diastolic
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Ca2+ leak from the sarcoplasmic reticulum (SR) is the depletion of

SR Ca2+ stores[9]. It is well established that Ca2+ depletion may

induce ER stress[11]. ER stress is a series of adaptive responses in

cells to alleviate the accumulation of unfolded proteins[12].

Normal protein folding requires adequate Ca2+ concentration in

ER[13]. Ca2+ depletion, as occurred in failing cardiomyocytes,

renders protein unfolding[13].

It has been reported that endoplasmic reticulum (ER) stress is

involved in many heart diseases that contribute to heart failure at

last, including artherosclerosis, myocardial ischemia, dilated cardio-

myopathy[14,15,16]. The endoplasmic reticulum is a central

organelle of each eukaryotic cell as the place of calcium storage,

lipid synthesis, proteins folding and protein maturation[17].

Disturbances in any of these functions such as excessive accumu-

lation of unfolded protein (unfolded protein response, UPR) or

protein traffic can lead to the so-called ER stress[13]. The

accumulation of unfolded proteins is sensed by three conserved

pathways: IRE1a (inositol-requiring transmembrane kinase and

endonuclease 1a), PERK (protein kinase-like ER kinase), and ATF6

(activation of transcription factor 6)[11]. Activation of these

pathways stimulates an array of designated transcription factors

(such as spliced XBP1, ATF6, and Activating Transcription Factor 4

[ATF4]), which subsequently trigger the expression of UPR-related

genes (such as C/EBP homologous protein [CHOP] and Glucose-

Regulated Protein 78 [GRP78])[12]. While the initial responses of

these signaling pathways aim to assist protein folding, severe or

prolonged ER stress will trigger the signals to apoptosis[13]. CHOP

is an important component that mediates PERK activation-induced

apoptosis in ER stress[18]. The c-Jun N-terminal kinase (JNK) is also

activated in response to ER stress [19]. Indeed, ER stress-induced

apoptosis has been shown to play important roles in the pathogenesis

of diabetes and neurodegenerative disorders[20].

The chronic b-AR hyperactivation causes SR Ca2+ depletion,

and this likely induces perpetual ER stress responses in failing

heart. We thus hypothesize that ER stress is a critical downstream

event of b-AR signaling pathway and b-AR blockers may protect

cardiomyocytes by relieving ER stress. In the present study, we

examined the hypothesis in cultured cells and animal models as

well as in the human failing hearts. We found that chronic b-AR

activation induces severe ER stress and apoptosis. b-AR blocker

treatment markedly alleviates ER stress responses in vitro and in vivo

leading to reduced hypertrophy and improved cardiac function.

And the effect b-AR blockers on ER stress signaling may be

contributable to inhibition of the CaMKII overactivation and

restoration of the intracellular Ca2+ balance.

Results

Induction of ER Stress in Human Heart Failure
We collected heart samples from 4 receipts of heart transplan-

tation who suffered from dilated cardiomyopathy with end-stage

heart failure, and 9 patients undergoing mitral valve replacement,

as well as 4 normal hearts of traffic accident victims. The

candidate of patients undergoing mitral valve replacement

presented with heart failure, including symptoms corresponding

to a New York Heart Association (NYHA) class 3–4 heart failure

(mean NYHA class 3.460.5) and left ventricular dilation on

echocardiography (mean left ventricular end-diastolic diameter

57.6610.2 mm at presentation) (Table 1).

We investigated the expression of several molecular indicators of

ER stress in hearts of those patients, including GRP78, PERK,

eIF2a and CHOP. We found significant activation of the PERK to

eIF2a arm of the stress response in hearts from the patients with

heart failure, evaluated by increased phosphorylated eIF2a and

PERK compared with normal hearts (Figure 1A and 1B).

Figure 1A also showed that JNK activity, indicated by c-Jun

phosphorylation, was also significantly elevated in the human

failure hearts. These results indicated that ER stress and its

associated apoptosis signaling pathways appeared to be a general

occurrence in human failing hearts arisen from varying diseases.

b-AR Blockers Attenuated Cardiac Hypertrophy and
Improved the Function of Failing Hearts

To investigate the effect of b-AR blockers on ER stress of failing

hearts in vivo, we first established a cardiac hypertrophy model that

shows cardiac dysfunction at chronic stage by performing an

abdominal aortic constriction (AAC). The animals were divided

into sham, AAC and b-AR blockers treatment groups. AAC-

induced cardiac hypertrophy was assessed by increase of the

ratio of heart weight to tibia length (HW/TL) and heart size.

Metoprolol and propranolol treatments prevented cardiac hyper-

trophy induced by AAC (Figure 2A and 2B). Morphology analyses

also showed that AAC induced a marked time-dependent increase

myocyte hypertrophy, and this was significantly reduced in the

hearts of b-AR blockers-treated rats (Figure 2C).

Detailed examination of heart function was carried out by

invasive pressure-volume analysis. As shown in table 2, cardiac

function in AAC rats was decreased in comparison with that sham

animals as evidenced by the markedly reduced dP/dtmax and dP/

dtmin, and increased left ventricular end diastolic pressure

(LVEDP) and tau (table 2, P,0.01). Contractile function assessed

through dP/dtmax was improved by b-AR blockers as compared

to AAC rats; similar results were observed for diastolic function

(LVEDP, tau and dP/dtmin) (Table. 2, P,0.05). Ventricular

afterload (indexed by Ea, arterial elastance) was identically

elevated by AAC and restored by administration of propranolol

for 4 weeks (Table. 2, P,0.05).

We carried out another animal model of heart failure with

continuous infusion of b-adrenergic agonist isoproterenol (Iso) for

2 weeks, concurrently treated them with metoprolol or vehicle.

Similar results were also observed from these Iso rats. Iso infusion

induced significantly cardiac hypertrophy, and metoprolol treat-

ment blunted the Iso-induced heart hypertrophy (Figure 2D and

2E). The left ventricle function was slightly improved assessed by

invasive pressure-volume analysis (Table. 3). This data suggested

that b-AR blockers attenuated cardiac hypertrophy and improved

heart function in rats of heart failure.

b-AR Blockers Suppressed ER Stress in Hypertrophic and
Failing Hearts of Rats

To explore the effect of b-AR blockers on ER stress in failing

hearts in vivo, we examined the expression of several molecular

indicators of ER stress in hypertrophic and failing hearts of rats.

ER stress responses were seen in the process of cardiac

hypertrophy and heart failure, as assessed by increased expression

of GRP78 and spliced XBP-1 (Figure 3A and 3B). Metoprolol

and propranolol therapy significantly suppressed the ER stress

responses in hypertrophic and failing myocardium.

To further support this notion, we also detected the effect of b-AR

blockers on ER stress process through immunohistochemical analyses.

As shown in Figure 4C, it revealed that the number of GRP78-positive

cells, as well as KDEL -positive cells and CHOP-positive cells was

increased in the hearts of the rats after AAC, and treatment with

metoprolol or propranolol significantly reduced those positive cells.

Similar to the findings above, sustained Iso infusion for 2 weeks

induced marked ER stress in hearts. b-AR blockers treatments

suppressed ER stress responses in Iso-induced hypertrophic and

b-AR Blockers Effect on Heart Failure
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failing hearts in rats (Figure 3D). These data exhibited the

importance of increased catecholamines in the onset of ER stress

in cardiac remodeling and failure. Taken together, all evidence

above demonstrated that b-AR blockade alleviated ER stress in

cardiac hypertrophy and heart failure in rats.

b-AR Blockers Suppressed ER Stress-Mediated Apoptosis
in Cardiac Hypertrophy and Failure

We examined CHOP expression in hearts subjected to AAC

with or without b-AR blocker treatment. Results showed that the

expression of CHOP increased dramatically after AAC; and

metoprolol or propranolol treatment abolished expression of

CHOP (Figure 4A and 4B). And treatment with metoprolol

markedly decreased the number of apoptotic cells in the failing

hearts of rats exposed to chronic Iso stimulation (Figure 4C). Thus,

sustained ER stress triggered apoptosis in hypertrophic and failing

hearts induced by either chronic loading stress or b-adrenergic

stimulation, and these could be prevented by b-AR blockade.

b-AR Blockers Reduced ER Stress in Cardiomyocytes
To investigate whether the action of b-AR participate in ER

stress, we pretreated H9c2(2–1) cells with Iso,and found that Iso

significantly increased expression of GRP78 (Figure 5A). To

investigate whether initiation of ER stress induced by b-AR

stimulation is associated with PKA or CaMKII signaling pathway,

we pretreated H9c2(2–1) cells with PKI (a specific inhibitor of

PKA), KN93 (a specific inhibitor of CaMKIId) or propranolol

before exposing them to Iso. Propranolol remarkably decreased

Iso-induced GRP78 overexpression, while PKI, KN93 had no

such significant effect (Figure 5B).

Table 1. Clinical characteristics of patients with mitral valve replacement.

Patient 1 2 3 4 5 6 7 8 9 Summary

Age 43 27 58 63 42 52 45 56 48 48.2610.7

Sex male female female female female female female female female N/A

Diagnosis MI MI MS MS MI, TI MVP MS MVP MS N/A

Diabetes N N N N N N N N N N/A

Hypertension N N N N N N N N N N/A

AF N N Y Y N N N N N 2/9

NYHA 4 3 3 4 3 3 3 4 4 3.460.5

EF 78 66 48 63 56 57 45 55 50 57.6610.2

MI, mitral insufficiency; MS, mitral stenosis; AF, atrial fibrillation; TI, tricuspid insufficiency; MVP, mitral valve prolapse; N/A, not applicable.
doi:10.1371/journal.pone.0027294.t001

Figure 1. Induction of ER Stress in Human Heart Failure. ER stress markers including phosphorylated eIF2a (p-eIF2a), phosphorylated PERK (p-
PERK), GRP78 and CHOP and apoptosis marker phosphorylated c-Jun (p-c-Jun), were examined in the heart samples from patients with heart failure.
(A) ER stress was increased in heart transplant recipients’ failing hearts compared with normal heart. DCM, dilated cardiomyopathy. (B) p1-p9, heart
samples of 9 patients undergoing mitral valve replacement; N1 and N2, normal human hearts. Proteins were normalized to b-actin. *P,0.05 vs.
normal hearts.
doi:10.1371/journal.pone.0027294.g001

b-AR Blockers Effect on Heart Failure
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To reconfirm whether b-AR blockade inhibits the ER stress

generally, we pretreated H9c2(2–1) cells with different b-AR

blockers, metoprolol and propranolol, before exposing them to

tunicamycin (TM) or thapsigargin (TG), agents commonly used to

induce ER stress. Metoprolol and propranolol both significantly

decreased TG or TM-induced GRP78 overexpression, especially,

propranolol almost completely inhibited the TG-induced GRP78

activation after 24 hours incubation (Figure 5C). These results

suggested that b-AR blockers reduced ER stress induced by

different stressors in cells.

b-AR Blockers Protected Cardiomyocytes against ER
Stress-Mediated Apoptosis

Severe or prolonged ER stress triggers apoptosis. The

characteristic markers of ER stress-induced apoptosis are c-Jun

N-terminal kinase (JNK) and caspase-12 activation. As shown in

Figure 2. b-AR blockers attenuated cardiac hypertrophy and improved the function of failing hearts. (A) to (C) showed b-AR blockers
attenuated cardiac hypertrophy in rats induced by abdominal aortic constriction (AAC). (A) Representative images of hearts. Scale, 5 mm. (B) Ratio of
heart weight to body weight. *P,0.05 vs. sham. (C) HE staining of rat hearts and cardiomyocyte cross-sectional diameter (mm). Scale bar, 50 mm.
*P,0.05 vs. sham, #P,0.05 vs. AAC. (D) and (E) showed b-AR blocker attenuated Iso-induced cardiac hypertrophy in rats. (D) Ratio of heart weight to
body weight. *P,0.05 vs. control. (E) HE staining of rat hearts and cardiomyocyte cross-sectional diameter (mm). Scale bar, 50 mm. Iso, isoproterenol.
*P,0.05 vs. control, #P,0.05 vs. Iso.
doi:10.1371/journal.pone.0027294.g002

Table 2. Hemodynamic parameters in AAC rats and AAC rats with b-AR blocker treatment.

Sham AAC AAC+Meto-4w AAC+ Prop-4w AAC+Meto-8w AAC+ Prop-8w

N 6 5 5 4 8 6

HR 189.369.9 195.6619.4 208.8628.5 200.5623.2 202.6621.3 207.5611.5

LVEDP 0.463.3 4.962.6* 0.561.9{ 25.262.7{ 8.163.1 563.1

Ea 1.4560.85 2.1960.7* 1.9061.40 1.260.4{ 1.7061.20 1.5460.4

dPdtMax 651661211 44486876* 51476627 656661401{ 616961568{ 675261064{

dPdtMin 2721161820 250606940* 2607762152 2805462463{ 2726061839{ 2748061507{

tauWeiss 14.362.8 17.962.3* 16.462.2 13.761.4{ 2264.6 17.561.4

HR, heart rate; LVEDP, left ventricular end diastolic pressure; Ea, arterial elastance; dP/dtmax, maximal slope of systolic pressure increment; dP/dt min maximal slope of
diastolic pressure decrement; meto, metoprolol; prop, propranolol. Data are mean 6 s.d. * P,0.05 versus control; {P,0.05 vs. AAC.
doi:10.1371/journal.pone.0027294.t002

b-AR Blockers Effect on Heart Failure
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Figure 6A, metoprolol and propranolol both reduced caspase-12

cleavage in H9c2 cells treated by TG or TM, and propranolol had

the stronger effect which nearly blocked the activation of caspase-

12. In accordance with results above, pretreatment of the cells with

metoprolol or propranolol significantly reduced cell apoptosis

induced by TG or TM as determined by Hoechst staining

(Figure 6B and 6C) and Annexin V-FITC binding with flow

cytometry analysis (Figure 6D). These results indicated that b-AR

blockade reduced ER stress responses and subsequent apoptosis in

cardiomyocytes.

b-AR Blockers Suppressed Overactivation of Calmodulin
Kinase II in Rat Failing Hearts

We pretreated H9c2(2–1) cells with KN93 or more selective

b1-blocker metoprolol before exposing them to TM. Figure 7A

showed specific inhibition of CaMKIId with KN93 did not

suppress the ER stress, while metoprolol alleviated ER stress

assessed by decreased expression of GRP78, phosphorylated

PERK and CHOP. We assessed activation of CaMKII in rats

failing hearts. As showed in Figure 7B, CaMKII significant

Table 3. Hemodynamic parameters in Iso rats and Iso rats
with b-AR blocker treatment.

Control Iso Iso+meto

N 5 4 5

HR (bpm) 228.3622.7 217.5623.4 189.0616.5

Pes (mmHg) 136.9615.8 136.7613.1 163.4649.9

Ped (mmHg) 2.867.2 4.066.8 14.667.8

dP/dtmax (mmHg/s) 813461088 59336800* 630561406

dP/dtmin (mmHg/s) 27521.36605 2542561912* 2503362190

HR, heart rate; PES, end-systolic pressure; PED, end-diastolic pressure; dP/dtmax,
maximal slope of systolic pressure increment; dP/dt min maximal slope of
diastolic pressure decrement; Iso, isoproterenol; meto, metoprolol. Data are
mean 6 s.d. *P,0.05 vs. control.
doi:10.1371/journal.pone.0027294.t003

Figure 3. b-AR blockers suppressed ER stress in hypertrophic and failing hearts of rats. (A) ER chaperone GRP78 and spliced XBP-1 were
increased in AAC rats (1or 4 or 8 weeks after operation), and metoprolol treatment (30 mg/kg/d for 8 weeks) reduced the epression of GRP78 and
spliced XBP-1. Proteins were normalized to b-actin. (B) GRP78 was increased in AAC rats (4 weeks), and propranolol treatment (30 mg/kg/d for 4
weeks) reduced the epression of GRP78. Protein was normalized to b-actin. (C) Immunohistochemical analyses of rats’ hearts and number of GRP78,
KDEL and CHOP-positive cells per mm2. Scale bar, 40 mm. For (A) to (C), *P,0.05 vs. sham, #P,0.05 vs. AAC. (D) GRP78 and spliced XBP-1 was
increased in Iso rats, and metoprolol treatment (30 mg/kg/d for 2 weeks) reduced the epression of GRP78 and spliced XBP-1. Proteins were
normalized to b-actin. *P,0.05 vs. control, #P,0.05 vs. Iso.
doi:10.1371/journal.pone.0027294.g003

b-AR Blockers Effect on Heart Failure
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activated in the AAC hearts, evaluated by increased phosphory-

lated CaMKII compared with normal hearts. And administration

of metoprolol could suppress the overactivation of CaMKII.

Taken together, these results suggest that b-AR blockade

decreased overactivation of CaMKII, which could decrease

intracellular Ca2+ and suppress ER stress.

Materials and Methods

Materials
Metoprolol, propranolol, thapsigargin (TG), tunicamycin (TM),

isoproterenol (Iso), KN-93 were purchased from Sigma-Aldrich

(St. Louis, MO). Antibodies for phosphorylated PERK, PERK,

phosphorylated eIF2a, JNK1, phospho-c-Jun (p-Ser73), GRP78,

CHOP (GADD153), KDEL receptor, XBP1, phosphorylated

CaMKIId, CaMKIId, b-actin and PKI (6–22) were from Santa

Cruz Biotechnology (Santa Cruz, CA). Antibody for caspase-12

was from Chemicon (Millipore, Billerica, MA). Horseradish

peroxidase-conjugated secondary antibodies (goat anti-rabbit

immunoglobulin G and rabbit anti-mouse immunoglobulin G)

and enhanced chemiluminescence reagents were from Pierce

Biotechnology (now part of Thermo Fisher Scientific, Rockford,

IL). Polyvinylidene difluoride (PVDF) membranes were from

Whatman (now part of GE Healthcare Life Sciences, Buck-

inghamshire, UK). Hoechst 33258 was from Calbiochem (part of

Merck KGaA, Darmstadt, Germany) and Annexin V-FITC

apoptosis detection kit and TACSTM TdT Kit apoptosis

detection kit were from R&D (Minneapolis, MN). All other

reagents were purchased from commercial suppliers unless

otherwise specified.

Cell Culture
H9c2(2–1) cells, a subclone of the original clonal cell line

derived from embryonic BD1X rat heart tissue, were obtained

from American Type Culture Collection (CRL-1446) and cultured

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (FBS) and penicillin-streptomycin

(100 IU/ml) in a humidified atmosphere of 95% air and 5% CO2

at 37uC.

Animals
Male Sprague-Dawley rats (150–200 g) were obtained from the

Experimental Animal Center of Tongji Medical College (Wuhan,

People’s Republic of China). All animal experimental protocols

complied with the ‘‘Guide for the Care and Use of Laboratory

Animals’’ published by the United States National Institutes of

Health. The study was approved by the Institutional Animal

Research Committee of Tongji Medical College (permit number:

SYXK 2004–0028). All animals were housed at the animal care

facility of Tongji Medical College at 25uC with 12/12-h light/dark

cycles and allowed free access to normal rat chow and water

throughout the study period. Rats were randomly assigned to

different treatment groups.

Figure 4. b-AR blockers suppressed ER stress-mediated apoptosis in cardiac hypertrophy and failure. (A) and (B) CHOP was increased in
AAC rats (4 or 8 weeks after operation), and metoprolol (30 mg/kg/d for 4 or 8 weeks)or propranolol (30 mg/kg/d for 4 or 8 weeks) treatment
reduced expression of CHOP. CHOP was normalized to b-actin. (C) Representative images of TUNEL showing cardiac myocytes apoptosis and
quantitative analysis of TUNEL-positive myocardial cells in rats. Nuclei of normal cells are blue, and nuclei of apoptosis cells (TUNEL-positive cells) are
brown.
doi:10.1371/journal.pone.0027294.g004

b-AR Blockers Effect on Heart Failure
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Experimental Groups
Pressure overload was induced by abdominal aorta constriction

(AAC) in male Sprague Dawley rats according to the method

described previously[21]. 80 rats were randomly assigned to one of

4 experimental groups: In group 1 (n = 20), sham-operated

animals served as controls. In group 2 (n = 20), cardiac

hypertrophy and heart failure was induced by abdominal aorta

constriction (AAC) without further treatment. In group 3 (n = 20),

AAC was performed and treatment with metoprolol for 4 or 8

weeks at a dose of 30 mg/kg/day in saline after operation as

described previously[22]. In group 4 (n = 20), AAC was performed

and treatment with propranolol for 4 or 8 weeks at a dose of

30 mg/kg/day in saline after operation.

Sustained b-adrenergic stimulation can be induced by low dose

of isoproterenol (Iso) subcutaneous injection as reported be-

fore[23]. 48 rats were randomly divided in 3 groups: In group 1

(n = 16), rats were administered with saline subcutaneously per day

as control. In group 2 (n = 16), rats were administered with Iso in

saline subcutaneously 5 mg/kg/d for 2 weeks. In group 3 (n = 16),

treatment with metoprolol in saline at a dose of 30 mg/kg/d was

started when rats were exposing to Iso for 2 weeks.

Abdominal Aorta Constriction
Cardiac hypertrophy and heart failure was induced by AAC

according to the method described previously[21]. Briefly, rats

were anesthetized with pentobarbital sodium at a dose of 40

mg/kg body weight intraperitoneally. Once anaesthesia is induced,

it can be maintained by using a nose cone of halothane. The animal

should be carefully monitored from the point of view of body

temperature, respiratory rate, circulation, airway problems and

Figure 5. b-AR blockers alleviated ER stress induced in cardiomyocytes. (A) Iso increased GRP78 in a dose-dependent manner in H9c2(2–1)
cells. *P,0.05 vs. control (B) Propranolol reduced Iso induced-ER Stress in H9c2(2–1) cells. Cells were pretreated with PKI (specific inhibitor of PKA,
5 mmol/L), KN-93 (specific inhibitor of CaMKIId, 0.5 mmol/L), metoprolol (meto, 10 mmol/L) or propranolol (prop, 10 mmol/L) for 1 hour, and exposed
to Iso (10 mmol/L) for 24 hours. Cell lysates were then immunoblotted for GRP78, normalized to b-actin as a loading control. Iso, isoproterenol.
*P,0.05 vs. control, #P,0.05 vs. Iso. (C) b-AR blockers blocked ER stress induced by TG or TM. Cells were treated with TG (5 mmol/L) or TM (5 mg/ml)
with or without metoprolol (10 mmol/L) or propranolol (10 mmol/L) for 24 hours. Cell lysates were then immunoblotted for GRP78, normalized to b-
actin. dmso, cell with vehicle dissolvant dimethyl sulphoxide; TG, thapsigargin; TM, tunicamycin. *P,0.05 vs. control, #P,0.05 vs. TM, & P,0.05 vs.
TG.
doi:10.1371/journal.pone.0027294.g005

b-AR Blockers Effect on Heart Failure
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injury from sharp objects for the adequacy of anaesthesia. And

then the retroperitoneum was entered at 2 cm left lumbar

vertebrae under the costal arch through a small incision. The

abdominal aorta was isolated upper the renal artery crotch and

constricted by a 4–0 silk suture ligature tied against a 22-gauge

needle. The needle was removed to form a constriction of 0.7 mm

in diameter. Sham-operated rats underwent a similar surgical

procedure without aorta constriction. The animals were divided

into sham receiving oral administration of saline, AAC rats with

just saline as control, and treatment groups. In treatment groups,

animals were received b-AR blocker metoprolol or propranolol for

4 or 8 weeks at a dose of 30 mg/kg/day in saline after operation as

described previously[22].

In vivo Hemodynamics
In vivo LV function was assessed by Millar PV catheter as

described previously[24]. Rats were anesthetized as described

above and placed on heating pads with core temperature

maintained at 37uC. A microtip pressurevolume catheter (SPR-

838; Millar Instruments, Houston, TX) was inserted into the right

carotid artery and advanced into the left ventricle (LV) under

pressure control. After stabilization for 20 min, the signals were

continuously recorded at a sampling rate of 1,000/s using an

ARIA pressure-volume conductance system (Millar Instruments)

coupled to a Powerlab/4SP analog-to-digital converter (AD

Instruments, Mountain View, CA) and a personal computer. All

pressure-volume loop data were analyzed using a cardiac pressure-

volume analysis program (PVAN3.6; Millar Instruments), and

HR, LV end-systolic pressure (PES), LV end-diastolic pressure

(PED), left ventricular end diastolic pressure (LVEDP), left

ventricular end systolic pressure (LVESP), arterial elastance (Ea),

tauWeiss, maximal slope of systolic pressure increment (dP/dt

max) and diastolic pressure decrement (dP/dt min) were computed

as described previously[25,26].

Human Heart Samples
This study was approved by the Review Board of Tongji

Hospital and Tongji Medical College. The subjects recruited to

the study provided written informed consent. The investigation

conforms to the principles outlined in the Declaration of Helsinki.

Tissue samples were obtained and kept frozen in liquid nitrogen

and then stored at 280uC until use.

Histochemical Analysis
Formalin fixed hearts were embedded in paraffin, sectioned into

4 mm slices, and stained with H&E. In order to determine the

expression of ER stress chaperons, KDEL receptors were detected

by immunohistochemical staining of formalin-fixed and paraffin-

embedded heart sections. Briefly, after deparaffinization and

rehydration, slides were incubated in 3% hydrogen peroxide for

10 min, PBS containing 10% of goat serum for 30 min and with a

primary antibody to KDEL (overnight incubation at 4uC). After

washing, sections were stained with a secondary biotinylated anti-

rabbit antibody (Vector, CA) (room temperature; 30 min), followed

by streptavidin-peroxidase (DakoCytomation, Denmark) (room

temperature; 30 min). Subsequently the slides were incubated in

DAB chromogen for 5 min at room temperature. Then the sections

were counterstained with hematoxylin, and coverslipped.

Figure 6. b-AR blockers protected cardiomyocytes against ER stress-mediated apoptosis. (A) b-AR blockers suppressed activation of
caspase-12 in H9c2(2–1) cells. Cells were treated with TG (5 mmol/L) or TM (5 mg/ml) with or without metoprolol (10 mmol/L) or propranolol (10 mmol/L)
for 12 hours. Cell lysates were then immunoblotted for caspase-12. Caspase-12 cleavage was normalized to b-actin. *P,0.05 vs. control, #P,0.05 vs.
TM, & P,0.05 vs. TG. (B) and (C) Hochst-positive cells (%). H9c(2–1) cells were pretreated with metoprolol (10 mmol/L, 1 h) or propranolol (10 mmol/L,
1 h), then exposed to TG (5 mmol/L, 24 h) or TM (5 mg/ml, 24 h) before staining with Hochst33258 as indicated. Hochst-positive cells are expressed as a
percentage of the number of total cells. **P,0.001 vs. control. # P,0.05 vs. TG or TM. (D) Anexin V-positive cells (%). H9c(2–1) cells were pretreated with
metoprolol (10 mmol/L, 1 h) or propranolol (10 mmol/L, 1 h), then exposed to TG (5 mmol/L, 24 h) before staining with Anexin V/PI as indicated. Analyze
by flow cytometry immediately after incubation. Anexin V-positive cells are expressed as a percentage of the number of total cells. *P,0.05 vs. control.
#P,0.05 vs. TG.
doi:10.1371/journal.pone.0027294.g006
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The sections were examined with HAIPS-2000 Pathological

Imagic Analysis System developed by the Ultrastructural Pathol-

ogy Department of Tongji Hospital. Cardiac myocyte cross-

sectional diameter and KDEL-positive cells per 1 mm2 were

measured. The distance across the myocardial cell at its narrowest

plane across the nucleus was measured in 75 cells from each LV

(25 from the epicardium, 25 from the myocardium, and 25 from

the endocardium). The mean diameter was calculated for the LV

in each animal. We counted the number of KDEL positive cells

(brown staining) per mm2 for 5 different visual fields in each

animal, and the average number was calculated in each animal

and each group.

Apoptosis Detection
Hoechst Staining. Hoechst33258 suspended in dH2O at a

1 mM concentration was prepared as stock solution. Cultured cells

were suspended at approximately 1–26106/ml in buffered media

(pH 7.2). Hoechst33258 dye was added to cell suspension to

10 mmol/L final concentrations, and incubated at 37uC for 30

minutes. The cells then were observed under fluorescence

microscope or analyzed by flow cytometry immediately.

Hoechst33258 stained cells were illuminated with an argon laser

tuned for UV (346–352 nm) and resulting fluorescence were

detected at 460 nm.

Annexin V-FITC Apoptosis Assay. The cultured cells were

gently trypsinized and washed with serum-containing media. After

centrifugation, cell pellets (1–56105 cells) were resuspended in

500 ml of 1x Binding Buffer, and 5 ml of Annexin V-FITC and 5 ml

of propidium iodide (PI 50 mg/ml) were added. Annexin V-FITC

binding was analyzed by flow cytometry (Ex = 488 nm; Em =

530 nm) using FITC signal detector (usually FL1) and PI staining

by the phycoerythrin emission signal detector (usually FL2)

immediately after 5 min incubation at room temperature in the

dark.

TUNEL. Terminal deoxynucleotidyl transferase–mediated

dUTP nick-end labeling (TUNEL) reaction was performed by

using the TACSTM TdT Kit apoptosis detection kits (R&D).

Immunoblotting
Cell lysates and lysates from heart tissues, prepared as

previously described[27], were matched for protein concentration,

separated on SDS polyacrynamide gels (8–12%) and transferred to

nitrocellulose membranes. Next, the membranes were blocked

with 5% nonfat milk and 3% BSA for 2 hour and incubated

overnight with primary antibodies as indicated. The following day,

membranes were washed three times and incubated with

appropriate secondary antibody for 2 hour at room temperature.

Antibody binding was detected by enhanced chemiluminescence.

Statistical Analysis
All values are expressed as mean 6 s.e. unless noted otherwise.

Differences between data groups were evaluated for significance

using Student t-test of unpaired data or one-way analysis of

variance (ANOVA) and Bonferroni post-test. P,0.05 was

accepted as statistically significant.

Discussion

In the present study, we identify long-term oral b-AR blockers

suppresses ER stress in cardiac hypertrophy and heart failure. We

Figure 7. b-AR blockers suppressed overactivation of Calmodulin Kinase II in rat failing hearts. (A) Metoprolol alleviated ER stress and
overactivation of CaMKII induced by tunicamycin (TM). Cells were pretreated with KN93 (KN, 0.5 mmol/L or 2 mmol/L), metoprolol (M, 10 mmol/L or
20 mmol/L) for 1 hour, and exposed to TM (5 mg/ml) for 24 hours. Cell lysates were then immunoblotted for phosphorylated CaMKII, phosphorylated
PERK, GRP78 and CHOP, which were all normalized to b-actin. *P,0.05 vs. control, #P,0.05 vs. TM. (B) Metoprolol suppressed the overactivation of
CaMKII in AAC rats. *P,0.05 vs. sham, #P,0.05 vs. AAC.
doi:10.1371/journal.pone.0027294.g007
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found the clue first, that ER stress was induced in the tissues from

human failing hearts. The similar result was subsequently found in

isoproterenol-stimulated cardiomyocytes and rat models of heart

failure after abdominal aortic constriction and isoproterenol

subcutaneous injection. b-AR blockers treatment reduced ER

stress and associated apoptosis in cardiomyocytes and rats failing

hearts. This effect may be attributable to prevention of CaMKII

overactivation and restoration of intracellular Ca2+ balance.

Heart failure (HF) is a complex clinical syndrome that involves a

series of responses in the heart, neural and hormonal systems, and

vasculature[28]. It has been documented that ER stress is involved

in cardiotoxicity and heart diseases that eventually may evolve into

heart failure[14,15,16]. For instance, imatinib, the causal agent in

chronic myelogenous leukemia, exhibit cardiotoxicity; and the

underlying mechanism seems to be related to the ER stress caused

by this drug[29]. ER can generate and propagate apoptotic signals

in response to myocardial ischemic stress[15,30]. Pressure

overload by transverse aortic constriction induces expression of

ER chaperones and ER stress-induced apoptosis of cardiac

myocytes, leading to cardiac hypertrophy and heart failure[14].

Okada and his colleage found ER stress induced in patients with

dilated cardiomyopathyv (DCM) and adriamycin cardiomyopa-

thy[14]. In the present study, we found upregulation of ER

chaperones in patients with end-stage heart failure, who received

heart transplantation and mitral valve replacement. We detected

the activation of several ER stress-associated pro-apoptotic

signaling pathways, including PERK, eIF2a, CHOP and JNK,

in human failing hearts. These results confirmed previous studies

and indicated that prolonged ER stress and associated apoptosis

appeared to be a general occurrence in human failing hearts arisen

from varying diseases.

While previous studies implicated ER stress induced in heart

failure, how ER stress is initiated in failing hearts is still unknown.

Our present studies suggest that b-AR hyperactivation may be an

important mechanism underlying ER stress in cardiac hypertro-

phy and failure. Sympathetic nervous system activity plays a

central role in the pathogenesis of heart failure. Catecholamines

are released from the sympathetic nervous system as a result of

increased workload from pressure or volume overload[31]. The

sustained increase in adrenoceptor activity initiates impairment in

b-AR signaling pathway[32]. The identified important down-

stream effect of altered b-AR signaling in heart failure include

hyperposphorylation of LTCC, the NCX, and cardiac ryanodine

receptors[9,33]. Chronic PKA hyperphosphorylation of RyR2 in

heart failure leads to depletion of calcium in SR, which in turn

reduces EC coupling gain and contributes to impaired systolic

contractility[9,10]. On the other hand, Ca2+ storage and signaling,

as well as the folding, modifying and sorting of newly synthesized

proteins, are among the main functions of the ER in mammalian

cells[11]. Disturbances in any of these functions can result in ER

stress[13]. Both Ca2+ overload and depletion of the ER Ca2+ pool

can lead to changes in protein folding and in ER stress[11].

Indeed, we detected strong ER stress response in isoproterenol-

stimulated cardiomyocytes and the hearts of rats subjected to

constant b-AR stimulation. While these initial responses may be

adaptive, prolonged ER stress triggers apoptotic signaling. Parallel

to the activation of ER stress signaling pathways, apoptosis and

loss of heart function were seen in cardiac hypertrophy and failure.

These findings suggest that ER stress maybe a crucial downstream

event of chronic b-AR hyperactivation and ER-induced apoptosis

may be important cause of the loss of cardiac function in heart

failure.

b-AR blockade is one of the most effective treatments with

improving cardiac function and prolonging life in patients with

heart failure[4]. However, the use of b-AR blockers in patients

with heart failure is counterintuitive, because they decrease

contractility acutely in normal and failing hearts. Current

understanding on the mechanism of b-AR blockers therapy

includes the attenuation of chronic hyperactivity of the

sympathetic nervous system[5]. However, this does not fully

explain the beneficial effect of b-AR blockers on failing hearts.

The present study suggested that alleviation of ER stress may

contribute to the action of b-AR blockers. In cultured

cardiomyocytes, b-AR blockers prevented isoproterenol-induced

ER stress responses. Furthermore, experimental therapies with b-

AR blockers also attenuated ER stress reactions in hypertrophic

and failing rat hearts. Corresponding to the attenuation of ER

stress, pro-apoptotic signaling and the number of apoptotic cells

were all diminished by b-AR blockers treatment. The preventa-

tive effect of b-AR blockers on ER stress is also parallel to the

reduction of cardiac hypertrophy and improvement of cardiac

function.

Moreover, the effect of nonselectived b-AR blocker propranolol

on suppressing ER stress seemed stronger than selectived b1-AR

blocker metoprolol. Previous study have ever indicated that

propranolol treatment attenuates LVH by a mechanism unrelated

to its b-adrenoceptor blocking activity, and is possibly mediated

through the known membrane stabilizing effect of this agent[21].

Consider with metoprolol and propranolol had the same effect on

b-AR blocking activity[22], our data above also suggested that the

effect of propranolol on suppressing ER stress may be independent

of its b blockade. Taken together, all lines of evidence indicate that

the therapeutic effect of the b-AR blockers on heart failure may

be, at least partially, attributed to their ability to counteract ER

stress.

How exactly b-AR blockers prevent ER stress responses

remains to be determined. One plausible explanation is that the

administration of b-AR blockers reduces the chronic hyperactivity

of the sympathetic nervous system. Deceased plasma levels of

circulating catecholamines reduce intracellular cAMP levels, and

thus reverse PKA hyperphosphorylation of RyR2[10,34]. This

may restore normal intracellular Ca2+ handling and Ca2+ signaling

in failing heart. However, b-AR blockers also dramatically

attenuated ER stress induced by TG and TM, which directly

perturb ER Ca2+ homeostasis and protein glycosylation. ER stress

induced by these two means is independent of b-AR activation.

The fact that b-AR blockers attenuated ER stress induced by

adrenergic stimulation independent means is a strong indication

that b-AR blockers can alleviate ER stress by mechanisms

independent of b-AR blockade.

Acute b1-adrenergic receptor (b1AR) stimulation activates the

classic Gs-adenylyl cyclase (AC)-cAMP-PKA signaling pathway,

whereas chronic stimulation of b1AR that induces myocyte

hypertrophy and apoptosis requires activation of CaMKII[6,35].

However, inhibition of PKA could not alleviate ER stress. It

revealed that chronic b-adrenergic stimulation induced-ER stress

may be independent of the typical PKA pathway. Increased

activitation of CaMKII, a Ca2+- dependent kinase, elevates

intracellular Ca2+. Previous studies[36,37] have demonstrated

that increase of intracellular Ca2+ was a common mechanism for

aberrant ER stress and unfolded protein response activation. We

found significant activation of CaMKII in isoproterenol-stimulated

cardiomyocytes and rats failing hearts. And b-AR blockade

suppressed overactivation of CaMKII, which could decrease

intracellular Ca2+ and suppress ER stress. We suppose that effect

of b-AR blockers on ER stress signaling may be contributable to

inhibition of the CaMKII overactivation and restoration of the

intracellular Ca2+ balance.
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In summary, we demonstrated that ER stress is a crucial

downstream event of b-AR hyperactivation in cultured cells and

heart failure in vivo. b-AR blockade markedly relieved ER stress

and ER mediated-apoptosis in cardiomyocytes and hypertrophic

and failing hearts. Thus, alleviation of ER stress may be an

important mechanism underlying the therapeutic effect of b-AR

blockers on heart failure. Preventing or alleviating ER stress may

represent a new approach to treat cardiac hypertrophy and heart

failure.
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