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Abstract
Metabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin
resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached
pandemic levels, as ~20–30% of adults in most developed countries can be classified as having
MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk
for cardiovascular disease. Although the pathophysiology underlying this increase in disease has
not been clearly defined, recent evidence indicates that alterations in the control of coronary blood
flow could play an important role. The purpose of this review is to highlight current understanding
of the effects of MetS on regulation of coronary blood flow and to outline the potential
mechanisms involved. In particular, the role of neurohumoral modulation via sympathetic α-
adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. Alterations in
the contribution of end-effector K+, Ca2+, and transient receptor potential (TRP) channels are also
addressed. Finally, future perspectives and potential therapeutic targeting of the microcirculation
in MetS are discussed.
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1. Introduction
Metabolic syndrome (MetS) is a group of risk factors including obesity, dyslipidemia,
insulin resistance/impaired glucose tolerance, and/or hypertension accompanied by pro-
inflammatory and thrombotic states [1]. The incidence of obesity has reached pandemic
levels, as ~20–30% of adults in most developed countries can be classified as having MetS
[1;2]. The increased prevalence of MetS is important as it is associated with a 2-fold
increased risk for cardiovascular disease, 5-fold increased risk for type 2 diabetes mellitus,
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and 1.5-fold increase in all-cause mortality [3–5]. Critically, the prevalence of coronary
disease and heart failure is significantly elevated in patients with MetS [3;6–8]. Given that
heart disease remains a leading cause of death around the world [1], elucidating mechanisms
by which MetS increases cardiovascular risk is essential for developing future treatments
and preventing this global epidemic.

Alterations in the control of coronary blood flow could underlie increased cardiovascular
morbidity and mortality in the MetS. Regulation of myocardial oxygen delivery is critical to
overall cardiac function as the heart has limited anaerobic capacity and maintains a very
high rate of oxygen extraction at rest (70–80%) [9–12]. Thus, the myocardium is highly
dependent on a continuous supply of oxygen to maintain normal cardiac output and blood
pressure. MetS impairs the ability of the coronary circulation to regulate vascular resistance
and balance myocardial oxygen supply and demand [13–15]. Coronary microvascular
dysfunction in MetS is evidenced by reduced coronary venous PO2 [13–15], diminished
vasodilation to endothelial-dependent and independent agonists (i.e. flow reserve) [16–21],
and altered functional and reactive hyperemia [13–15;22;23]. Importantly, these changes
occur prior to overt atherosclerotic disease and have been associated with left ventricular
systolic and diastolic contractile dysfunction in humans [24–28] and animal models of MetS
[13;29–31].

The purpose of the present review is to highlight current understanding of the effects of
MetS on regulation of coronary blood flow and outline potential mechanisms involved. In
particular, pathophysiologic roles of neurohumoral modulation via sympathetic α-
adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. In
addition, the contribution of end-effector K+, Ca2+, and transient receptor potential (TRP)
channels are addressed. Finally, future perspectives and potential therapeutic targeting of the
microcirculation in MetS are discussed. Other recent reviews of microvascular dysfunction
in MetS include those by Knudson et al. [32], Hodnett and Hester [33]; Frisbee [34]; Stepp
et al [35;36]; Serne et al [37]; Bagi [38] and Krentz et al [39]; Liu and Gutterman [40].

2. Coronary blood flow in MetS
2.1 Resting flow and vasodilator responses

There is little change in baseline coronary blood flow in either animals [13–15;22;41–45] or
humans [16–19;46] with MetS. While myocardial perfusion is equivalent, myocardial
oxygen consumption (MVO2) is elevated in proportion to increases in stroke volume,
cardiac output, and blood pressure; i.e. characteristic “hyperdynamic circulation”
[13;30;31;46;47]. Basal coronary venous PO2 is reduced in MetS, indicating an imbalance
between coronary blood flow and myocardial metabolism [13–15]. These findings suggest
that the MetS forces the heart to utilize its limited oxygen extraction reserve by affecting one
or more primary determinants of coronary flow, including: 1) myocardial metabolism; 2)
arterial pressure; 3) neuro-humoral, paracrine and endocrine influences; and 4) myocardial
extravascular compression [9;10]. As addressed below, MetS increases sympathetic output
[48–51] and activates the RAAS [15;52–55], increasing blood pressure, myocardial oxygen
demand, and coronary vascular resistance. The determinants of coronary flow in MetS are
also influenced by diminished nitric oxide (NO) bioavailability [36;56–59] and augmented
endothelial-dependent vasoconstriction [43;60–64]. However, despite these changes it is not
surprising that basal coronary flow is largely unaffected by MetS, as it is well established
that inhibition of NO synthesis [65–69] or endothelin-1 receptors [63;70–72] does not alter
myocardial perfusion in normal, lean subjects. To date, no studies have specifically
examined the effects of MetS on myocardial compressive forces.
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MetS attenuates coronary flow responses to pharmacologic vasodilator compounds such as
acetylcholine, adenosine, papaverine, and dipyridamole [16–20;45;73]. Decreases in
coronary flow reserve directly correlate with waist-to-hip ratio [74], body mass index [17],
blood pressure [20], degree of insulin resistance [16;20], and the clinical diagnosis of MetS
[18]. Interestingly, our data indicate that specific receptor subtypes and downstream K+

channels involved in coronary microvascular dilation are altered in Ossabaw swine with
early-stage MetS, prior to any absolute change in coronary flow reserve [44]. In contrast,
decreased coronary flow reserve is evident in swine with later-stage MetS [41;73;75] and
worsens with the onset of type 2 diabetes [16;17]. Exact mechanisms underlying impaired
pharmacologic coronary vasodilation in MetS have not been clearly defined, but are likely
related to altered functional expression of receptors and ion channels [41;44;45;73;76;77],
endothelial and vascular smooth muscle function [36;56;77;78], paracrine and neuro-
endocrine influences [32;48–50;54;79;80], structural remodeling of coronary arterioles
[35;81;82], and/or microvascular rarefaction [83–85].

2.2 Coronary response to increases in cardiac metabolism
Energy production of the heart is almost entirely dependent on oxidative phosphorylation for
contraction in relation to ventricular wall tension, myocyte shortening, heart rate, and
contractility [9]. Since the heart maintains a very high rate of oxygen extraction at rest,
increases in myocardial energy production must be met by parallel increases in myocardial
oxygen delivery [9–11;86]. Exercise is the most important physiologic stimulus for
increases in coronary blood flow, as many of the primary determinants of myocardial
oxygen demand are elevated by β-adrenoceptor signaling [9;86]. Data from our laboratory
indicate that MetS impairs the ability of the coronary circulation to adequately balance
myocardial oxygen delivery with myocardial metabolism at rest and during exercise-induced
increases in MVO2. In particular, coronary vasodilation in response to exercise is attenuated
in Ossabaw swine with MetS. This effect is evidenced by reduction of the slope between
coronary blood flow and aortic pressure, which supports that exercise-mediated increases in
vascular conductance are attenuated in MetS (Fig. 1A). Diminished local metabolic control
of the coronary circulation is also evidenced by decreased coronary blood flow at a given
coronary venous PO2 (Fig. 1B), an index of myocardial tissue PO2 which is hypothesized to
be a primary stimulus for metabolic coronary vasodilation [9–11]. Importantly, coronary
venous PO2 is also depressed by MetS relative to alterations in MVO2 (the primary
determinant of myocardial perfusion) both at rest and during exercise (Fig. 1C). Together,
these findings demonstrate coronary microvascular dysfunction in MetS leads to an
imbalance between coronary blood flow and myocardial metabolism that could contribute to
the increased incidence of cardiac contractile dysfunction and the onset of myocardial
ischemia in obese patients [1;3;7;8]. This point is supported by an ~25% reduction in
baseline cardiac index (cardiac output normalized to body weight) and a marked increase in
myocardial lactate production (onset of anaerobic glycolysis) in swine with the MetS [13].

2.3 Coronary response to myocardial ischemia
Coronary vasodilation in response to myocardial ischemia is a critical mechanism increasing
oxygen delivery to the heart to mitigate ischemic injury and infarction [87;88]. To address
the effects of MetS on ischemic vasodilation, we examined coronary flow responses to a 15
sec occlusion in anesthetized, open-chest lean and MetS Ossabaw swine [22].
Representative tracings illustrating reactive hyperemia in lean vs. MetS swine are shown in
Fig. 2A. Because coronary reactive hyperemia varies directly with baseline blood flow,
estimating overall repayment of incurred oxygen debt is critical for analyzing ischemic
dilator responses [87;88]. Our finding that vasodilation in response to cardiac ischemia is
impaired by MetS, relative to the deficit in coronary blood flow (i.e. repayment/debt ratio;
Fig. 2B), is consistent with decreased reactive hyperemia of peripheral vascular beds in
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obese humans [89;90]. We propose that impaired ischemic dilation in MetS could
exacerbate myocardial injury in patients with flow-limiting atherosclerotic lesions or acute
coronary thrombosis.

In summary, microvascular dysfunction in MetS upsets the balance between coronary blood
flow and myocardial metabolism as well as impairs blood flow responses to pharmacologic
vasodilator compounds (coronary flow reserve), exercise-induced increases in MVO2
(physiologic stimuli), and cardiac ischemia (pathophysiologic stimuli). Potential
mechanisms underlying these key alterations in the control of coronary blood flow are
explored below.

3. Neurohumoral modulation of coronary flow in MetS
3.1 Sympathetic control of coronary blood flow

MetS is associated with sympathetic hyperactivity, as numerous studies have documented
increased plasma and urinary catecholamines, sympathetic nerve activity, and cardiac
autonomic activity [48–52;91;92]. Potential components of MetS that might contribute
include increased plasma insulin, adipokines, nonesterified fatty acids, proinflammatory
cytokines, as well as activation of RAAS, baroreflex impairment, and obstructive sleep
apnea [48;50]. Sympathetic activation has important effects on the coronary circulation
through direct actions on vascular α- and β-adrenoceptors and indirect initiation of local
metabolic vasodilator mechanisms secondary to increases in contractility, heart rate, and
arterial pressure [9;11;12;93]. It is well accepted that direct α-adrenoceptor mediated
vasoconstriction limits myocardial flow in both normal and hypoperfused hearts [94–101]
and that “feedforward” β-adrenoceptor vasodilation contributes to increased coronary blood
flow when the sympathetic nervous system is activated, as during exercise [96;97;102;103].
Therefore, alterations in these opposing autonomic influences could play a key role in
coronary microvascular dysfunction in MetS.

Vasoconstriction mediated by α-adrenoceptors is augmented by MetS in both coronary
[42;104] and peripheral vascular beds [105–107]. Recent findings from Grisk et al. who
documented that α1-adrenoceptor mediated vasoconstriction is enhanced in isolated
coronaries from Wistar Ottawa Karlsburg W rats [104], are consistent with in vivo data from
our laboratory which demonstrated increased coronary constriction to the α1-adrenoceptor
agonist methoxamine in MetS dogs (Fig. 3A) [42]. Importantly, no differences in α2-
adrenoceptor mediated coronary vasoconstriction or expression of α1B- or α1D-
adrenoceptors were noted in lean vs. MetS canines. Thus, MetS is associated with increased
coronary α1-adrenoceptor signaling that likely contributes to the imbalance between
myocardial oxygen supply and demand, especially during heightened sympathetic activity.
Given that α-adrenoceptor inhibition improves myocardial perfusion and cardiac contractile
function clinically [108;108–111], therapeutic strategies to diminish coronary α1-
adrenoceptor activation could improve cardiovascular outcomes in patients with MetS.

Sympathetic vasodilation mediated by β-adrenoceptors is also diminished in MetS as
D'Angelo et al. recently showed that an exaggerated blood pressure response to acute stress
in obese Zucker rats is related, at least in part, to blunted β-adrenoceptor dilation [112].
Decreased vasodilation to the β-agonist isoproterenol has also been observed in isolated
coronary arterioles [104]. However, the extent to which altered sympathetic β-adrenoceptor
expression and/or signaling contribute to coronary vascular dysfunction in MetS in vivo has
not been investigated.
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3.2 RAAS and coronary blood flow
There is substantial evidence that MetS activates the RAAS and that effects of angiotensin II
on vascular tone, inflammation, vascular remodeling, thrombosis, and plaque stability are
central to the pathogenesis of cardiovascular disease [15;52–55]. Although angiotensin II
has very modest effects on the coronary circulation in normal hearts [15;113;114],
vasoconstriction to angiotensin II is enhanced in disease states associated with chronic
RAAS activation [15;115;116]. Our data support this hypothesis, as increased circulating
angiotensin II in our canine model of MetS was accompanied by increased angiotensin II
type 1 (AT1) receptor-mediated coronary vasoconstriction (Fig. 3B) [15]. This augmented
constriction directly corresponded with a ~40% increase in coronary AT1 receptor
expression, while coronary AT2 receptor expression was unchanged. Importantly, inhibition
of AT1 receptor-mediated coronary vasoconstriction with telmisartan significantly improved
the balance between myocardial oxygen supply and demand in MetS animals at rest and
during exercise-induced increases in MVO2.

Increases in aldosterone signaling have been linked with impaired vascular function, pro-
atherosclerotic gene expression, vascular smooth muscle proliferation, and calcification, as
well as diminished cardiac and renal function [117–120]. With regard to the coronary
circulation, aldosterone produces dose-dependent vasoconstriction in vivo in open-chest
dogs [121], in vitro in isolated perfused rat hearts [122], and in isolated coronary arterioles
[123]. Interestingly, this non-genomic effect of aldosterone is blunted by inhibition of AT1
receptors [123;124] and endothelial denudation [123], but is unaffected by blockade of
mineralocorticoid receptors with spironolactone [121;123]. Coronary effects of aldosterone
also appear to be augmented in disease states such as hypertension [123] and to worsen
contractile function during cardiac ischemia [121]. Although clinical trials have established
a beneficial effect of aldosterone antagonism on cardiovascular morbidity and mortality in
myocardial infarction and heart failure [55;125], pathophysiologic consequences of elevated
coronary mineralocorticoid receptor stimulation in MetS have not been examined. We
propose one mechanism by which increases in angiotensin II and aldosterone impair control
of coronary blood flow in MetS is through alterations in the expression of microvascular ion
channels and receptors. This hypothesis is discussed in detail below. Together, these
findings implicate upregulation of the RAAS in MetS-induced coronary vascular
dysfunction and provide strong rationale for future clinical studies with AT1 and
mineralocorticoid receptor antagonists in patients with MetS.

4. Coronary ion channel dysfunction in MetS
4.1 Smooth muscle K+ channels in MetS

Coronary smooth muscle cells express a variety of K+ channels, which regulate membrane
potential and vascular tone [77]. Major types include voltage-dependent (KV), large
conductance, Ca2+-activated (BKCa), ATP-sensitive (KATP), and inwardly rectifying (Kir)
K+ channels, but other channels such as IKCa and SKCa are functionally expressed in the
coronary circulation [126].

KV channels are activated in the physiological range of membrane potential and thus have
been implicated in the control of coronary blood flow [77]. In particular, our laboratory
previously demonstrated that KV channels regulate coronary blood flow at rest, during
ischemia, and with increasing MVO2 in normal-lean animals [127–131]. More recently, we
documented that induction of the MetS markedly attenuates coronary vascular smooth
muscle KV current and expression of KV1.5 channels [118], which is consistent with recent
preliminary data indicating that metabolic coronary vasodilatation is reduced in KV1.5
knockout mice [132]. Importantly, these changes in functional expression of KV channels
were directly associated with reductions in coronary blood flow, vascular conductance, and
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coronary venous PO2 in swine with the MetS [127]. Although the specific mechanisms
underlying the impairment of coronary KV channels in MetS are unclear, there is evidence
that dyslipidemia, hyperglycemia, hypertension, and/or oxidative stress may contribute
[133–139]. Activation of the sympathetic nervous system, RAAS, and PLC-PKC signaling
pathways could also be involved [77;140;141].

Compared to KV channels, BKCa channels activate at more depolarized membrane potentials
[41], but also respond to local Ca2+ signaling [73]. Recently, we found that the MetS
significantly attenuates coronary BKCa channel function, as evidenced by a reduction in
vasodilation to the BKCa channel agonist NS1619 (Fig. 3D) [41]. This decrease in
vasodilation corresponded with reductions in coronary vascular smooth muscle BKCa
current (Fig. 3C) and a paradoxical increase in BKCa channel α and β1 subunit expression
[41]. Decreases in total K+ current and spontaneous transient outward currents, which are
elicited by Ca2+ sparks and indicative of BKCa channel activation, have also been reported
in coronary microvessels of diabetic dyslipidemic swine [73;142]. Studies in obese, insulin
resistant rat models also support these findings and suggest that the reductions in BKCa
current are related to alterations in the regulatory β1 subunit [143]. Although diminished
BKCa channel function in obesity/MetS is well established, data fail to support a
significantly role for BKCa channels in the control of coronary blood flow at rest, during
increases in MVO2 or during cardiac ischemia in lean or MetS animal models [22;41].
However, BKCa channels have been shown to modulate coronary endothelial-dependent
vasodilation in normal-lean subjects [144;145]. Thus, we propose that decreases in BKCa
channel function likely contribute to coronary endothelial dysfunction observed in the
setting of the MetS (see recent review by Belin de Chantemele and Stepp [146]), but play
little role in the overall impairment of coronary vascular function.

Evidence that coronary KATP channels are altered by MetS also exists as we recently
documented that the functional contribution of KATP channels to coronary vasodilation in
response to 2-chloroadenosine or a brief coronary artery occlusion (i.e. coronary reactive
hyperemia) is significantly diminished in MetS vs. lean Ossabaw swine [22;44]. Decreases
in KATP channel function have also been reported in the skeletal muscle microcirculation of
obese Zucker rats [33] and in the coronary circulation of diabetic humans [147]. In contrast,
other investigations have shown an increased role for coronary KATP channels in
hypercholerestolemic swine [148] and type-1 diabetic dogs [149;150]. Overall, more studies
are needed to understand the mechanisms by which the MetS affects coronary smooth
muscle KATP channels. Particularly needed are direct measurements of KATP channel
activity and subunit expression. The same is true of Kir channels, which are highly
expressed in autoregulatory beds such as the coronary circulation and tend to increase in
abundance with decreasing vessel diameter [151]. While studies indicate roles for Kir in the
regulation coronary arteriole diameter and blood flow [152], the impact of MetS on Kir
channel function is unknown.

4.2 Ca2+ channels in MetS
L-type (CaV1.2) Ca2+ channels are the predominant voltage-dependent Ca2+ channel
expressed in coronary smooth muscle [153]. Ca2+ regulates contraction and gene expression;
therefore, alterations in L-type channel function by MetS could have many consequences
[154–156]. In particular, increased activation of vasoconstrictor pathways (e.g. α1
adrenoceptors, AT1 receptors) along with decreased function of smooth muscle K+ channels
(e.g. BKCa channels, KV channels) would serve to augment L-type Ca2+ channel activity and
vasoconstriction [77]. Data from our laboratory support this hypothesis as we previously
demonstrated that the MetS increases intracellular Ca2+ concentration [41], L-type Ca2+

channel current (Fig. 3E) and arteriolar vasoconstriction to the L-type Ca2+ channel agonist
Bay K 8644 [32] (Fig. 3F). We also found that coronary vasodilation in response to the L-
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type Ca2+ channel antagonist nicardipine is markedly elevated in obese dogs with the MetS
[32]. These findings are in contrast with earlier studies which documented reductions in L-
type Ca2+ channel current in hypercholesterolemic and/or diabetic dyslipidemic swine
[157;158]. Taken together, these data indicate that the entire MetS milieu is critical in
determining the overall functional expression of L-type Ca2+ channels in the coronary
circulation. Whether increases in L-type Ca2+ channel activation contribute to the impaired
control of coronary blood flow at rest or during increases in MVO2 in the MetS merits
further investigation.

4.3 TRP channels in MetS
Transient receptor potential (TRP) channels are non-selective channels permeable to
monovalent and divalent cations. Thus, changes in the function or expression of TRP
channels could alter intracellular Ca2+ levels directly, indirectly or through membrane
potential and the regulation of L-type Ca2+ channel activity. Several TRP subfamilies are
expressed in vascular smooth muscle, including TRPC (canonical) and TRPV (vanilloid)
channels in the coronary circulation.

TRPC channels are expressed throughout the vasculature and are activated by G protein-
coupled receptors and receptor tyrosine kinases [159]. Selective TRPC subtypes regulate
vascular tone in response to phenylephrine [160;161], hypoxia [162] and have been shown
to be the predominant source of Ca2+ entry in response to endothelin-1 stimulation in rabbit
coronary smooth muscle [163]. Although the exact role of TRPC channels in the control of
coronary blood flow has not been extensively examined, data from the Sturek laboratory
indicate that the MetS significantly augments TRPC1 expression and store operated Ca2+

entry in coronary smooth muscle [164;165]. TRPC1 is also upregulated following vascular
injury [166;167] and inhibition of TRPC1 attenuates neointimal growth [168;169]. Thus,
alterations in TRPC activity and expression have been implicated in smooth muscle Ca2+

dysregulation and proliferation in MetS.

TRPV channels are activated by various stimuli including capsaicin, lipids, acid, heat, shear
stress, and hypoosmolarity [159]. To date, those best characterized are TRPV1 and TRPV4.
TRPV1 is present in primary afferent capsaicin-sensitive neurons projecting to cardiac
tissues [159]. Capsaicin causes vasodilation, but many studies fail to distinguish direct
vascular effects of capsaicin from TRPV1-dependent release of CGRP and/or substance P.
However, recent data from our laboratory indicate that TRPV1 channels are functionally
expressed in the coronary circulation, and that the MetS significantly impairs endothelial-
dependent responses to capsaicin administration [75]. This decrease in TRPV1-mediated
dilation was directly associated with diminished coronary TRPV1 protein expression and
capsaicin-induced divalent cation influx in endothelial cells. TRPV4 functions in flow-
mediated dilation of coronary arterioles [170], a response that is impaired in MetS [171].
These findings indicate that TRP channel dysfunction could be an important mechanism
underlying impaired vascular reactivity and disease that should be further explored.

5. Conclusions and future perspective
Investigations to date have demonstrated that the MetS has profound effects on the
regulation of coronary blood flow (see schematic diagram in Fig. 4). We propose that
therapies targeting of angiotensin/AT1 receptors, mineralocorticoid receptors, and/or
sympathetic activation of α1-adrenoceptors are likely to be effective in attenuating
cardiovascular complications associated with the MetS as such treatments would not only
target vasoconstrictor pathways, but key signaling pathways that influence the functional
expression of downstream K+ and Ca2+ channels. However, much research is needed to
more clearly elucidate the mechanisms underlying coronary microvascular dysfunction in
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the MetS and to determine the efficacy and cardiovascular outcomes of targeted therapies in
these patients.
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RESEARCH HIGHLIGHTS

➣ Metabolic syndrome impairs the balance between myocardial oxygen supply
and demand.

➣ Obesity impairs coronary response to exercise, ischemia, and vasodilator
agonists.

➣ Increased neurohumoral and RAAS activation limits coronary blood flow.

➣ Alterations in functional expression of coronary ion channels are explored.
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Fig. 1.
Effects of metabolic syndrome on coronary blood flow at rest and during exercise. (A)
Reduction of the slope between coronary blood flow and aortic pressure indicates that
exercise-mediated increases in vascular conductance are significantly attenuated by the
MetS. (B) Diminished local metabolic control of the coronary circulation is also evidenced
by decreased coronary blood flow at a given coronary venous PO2, an index of myocardial
tissue PO2 that is hypothesized to be a primary stimulus for metabolic coronary vasodilation.
(C) Imbalance between myocardial oxygen supply and demand in MetS is evidenced by the
reduction of coronary venous PO2 relative to alterations in MVO2 (the primary determinant
of myocardial perfusion) both at rest and during exercise.
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Fig. 2.
Effect of the metabolic syndrome on coronary vasodilation in response to cardiac ischemia.
(A) Representative tracings illustrating reactive hyperemic responses in lean and MetS
swine. (B) Coronary vasodilation in response to cardiac ischemia is impaired by metabolic
syndrome as evidenced by the significant reduction in percent repayment of incurred
coronary flow debt (i.e. repayment/debt ratio). * P < 0.05 vs. lean-control.
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Fig. 3.
Effect of metabolic syndrome on neurohumoral-mediated coronary vasoconstriction and ion
channel function. (A) Increased coronary constriction to the α1-adrenoceptor agonist
methoxamine in obese dogs. Data from reference [42]. (B) Augmented angiotensin II type 1
(AT1) receptor-mediated coronary vasoconstriction in obese dogs with the MetS. Data from
reference [15]. (C) Reductions in coronary vascular smooth muscle BKCa current in
response to the BKCa channel agonist NS1619 directly correspond with (D) diminished
coronary vasodilation to NS1619 in MetS swine. Data from reference [41]. (E) Increases in
coronary vascular smooth muscle L-type Ca2+ channel current activation in response to Bay
K 8644 are associated with (F) augmented coronary arteriolar vasoconstriction to Bay K
8644 in obese dogs. Data from reference [32].

Berwick et al. Page 20

J Mol Cell Cardiol. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Schematic diagram illustrating mechanisms by which the metabolic syndrome impairs
control of coronary blood flow in response to increases in myocardial oxygen consumption
(MVO2) or a brief coronary artery occlusion (i.e. decrease PO2/ischemia). Factors, receptors
and ion channels that are downregulated in metabolic syndrome are depicted in green.
Factors, receptors and pathways that are upregulated in metabolic syndrome are depicted in
blue and/or with + symbol. ET-1 (endothelin-1); Ang II (angiotensin II); AT1 (angiotensin II
type 1 receptor); α1 (α1 adrenoceptor); NE (norepinephrine); TRP (transient receptor
potential channel); BKCa (large conductance, Ca2+ activated K+ channel); ETA (endothelin
type A receptor). eNOS (endothelial nitric oxide synthase); ECE (endothelin converting
enzyme).
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