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Abstract
Respiratory tract infections are a leading cause of death and disability worldwide. Although
radiology serves as a primary diagnostic method for assessing respiratory tract infections, visual
analysis of chest radiographs and computed tomography (CT) scans is restricted by low specificity
for causal infectious organisms and a limited capacity to assess severity and predict patient
outcomes. These limitations suggest that computer-assisted detection (CAD) could make a
valuable contribution to the management of respiratory tract infections by assisting in the early
recognition of pulmonary parenchymal lesions, providing quantitative measures of disease
severity and assessing the response to therapy. In this paper, we review the most common
radiographic and CT features of respiratory tract infections, discuss the challenges of defining and
measuring these disorders with CAD, and propose some strategies to address these challenges.
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1. Introduction
As shown by the recent pandemic of novel swine-origin H1N1 influenza, respiratory tract
infections are a leading cause of disability and death. Radiologic diagnosis using cross-
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sectional and projectional imaging techniques such as chest radiography and computed
tomography (CT) remains the most important modality for the first-line assessment of
acutely ill patients [1]. However, radiologic assessment is significantly restricted by its low
specificity, due to the similar appearance of infectious, inflammatory and some neoplastic
abnormalities and the absence of validated measures of disease severity. These limitations
raise the possibility that radiologists’ assessment of respiratory tract infections could be
enhanced through the use of computer-assisted-detection (CAD) systems. The use of CAD
for quantitative measurement of pulmonary disease could also provide numerical data for
correlation with fever, leukocyte counts and other quantitative laboratory variables.

CAD is increasingly being used to supplement traditional methods of evaluating
malignancies, pulmonary fibrosis and other chronic medical conditions. In this article, we
propose that CAD could also be used to evaluate and manage respiratory tract infections.
The first section reviews common causes of infection and how their corresponding imaging
findings may be productive areas for further CAD development, to generate tools for
research and for patient management. After giving brief information about infectious lung
diseases in Section 2, we provide an overview of CAD systems for assessing pulmonary
disease and their use in clinical settings in Section 3. In Section 4, we describe the currently
used image acquisition process for most CAD systems for lung diseases. In Section 5, we
discuss texture extraction and classification methods for CAD systems in pulmonary
infections. In Section 6, we first explain performance evaluation criteria for CAD systems in
general, and we then explain qualitative and quantitative measures to evaluate the extent of
infection. The final section discusses the limitations of current CAD systems for respiratory
tract infections and some possible strategies for future development.

2. Respiratory tract infections
Respiratory tract infections caused by viruses, bacteria, fungi and parasites are a major
component of global infectious disease mortality. CT examination of the lungs during acute
respiratory tract infections has become an important part of patient care, both at diagnosis
and monitoring progression or response to therapy. Common CT findings associated with
respiratory tract infections include ground-glass opacity, tree-in-bud nodularity, random
distribution of nodules, linear interstitial/bronchovascular thickening, and consolidations [1].
Although none of these visual patterns is specific for one pathogen, the amount of lung
volume exhibiting these features can provide insights into the extent or severity of infection.
For example, tree-in-bud nodularity is associated with inflammation of the small airways
(bronchioles), such as in viral or bacterial bronchiolitis, and the increasing sizes of abnormal
regions on CT can signal the progression of infection. Ground-glass opacity, in which there
is partial filling of interstitial and alveolar structures with infectious and inflammatory
material, is a very common abnormality associated with numerous infections [48]. The
transition in patterns over time, such as tree-in-bud opacity changing to ground glass
opacities (GGO) and eventual consolidation, can also provide insight into the progression of
pulmonary disease.

Historically, radiologists have interpreted these findings subjectively, by visually estimating
the extent of lung parenchyma having abnormal visual features, and published research has
employed semi-quantitative measurement scores based on visual analysis. CAD provides the
opportunity to use systematic methods for measuring lung volumes manifesting particular
imaging patterns as a first step. Then, CAD increases sensitivity, specificity, and precision
of measurements in correlating radiographic features with underlying pathology and clinical
variables [2].
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3. CAD systems in Medical Imaging
Significant progress in image acquisition technologies such as positron emission
tomography (PET), magnetic resonance imaging (MRI) and CT is making it possible for
image analysis to be used in CAD systems and for planning surgery, radiation treatment and
other types of therapy. The uses of these technologies to detect, understand, diagnose and
treat disease are areas of active research from which new CAD systems can be developed.
CAD is an intensive tool that provides radiologists with a “second opinion” to improve the
sensitivity and specificity of their diagnostic decision-making [3]. Although the ultimate aim
of CAD systems is to provide diagnostic information to improve clinical decision-making,
its success depends principally on disease detection [4].

CAD systems are widely used to detect and diagnose numerous abnormalities in routine
clinical work. They are usually specialized for anatomical regions such as the chest, breast
or colon, and for certain imaging technologies such as radiography, CT or MRI [5].
Applications of CAD systems include the detection of clustered micro-calcifications in
mammograms, intracranial aneurysms in magnetic resonance angiography (MRA) and
interval changes in successive whole-body bone scans [3].

The development of a new CAD system typically begins with the identification of a
clinically important problem. The problem is then analyzed using imaging and clinical
findings, based on human recognition of normal and abnormal features. Radiologists’ visual
interpretations, combined with physicians’ clinical data analysis, contribute significantly to
understanding clinical needs at this step. Third, the imaging and clinical findings are
incorporated into the computational environment by means of automated or semi-automated
algorithms. This step includes texture, shape and spatial analysis of observed patterns and
their classifications.

In general, the medical literature distinguishes three principal applications for the
computerized detection and analysis of diseases. As applied to respiratory tract infections,
these are:

• Understanding: the use of imaging to identify, understand, and diagnose infectious
pulmonary diseases;

• Preprocessing: Algorithms for segmentation and registration of pulmonary
anatomical structures; and

• Detection and classification: the application of texture and shape analysis to image
processing to develop accurate, reliable, and robust detection and classification
systems for respiratory tract infections.

In this paper, we focus on the first and third applications of CAD. Because the general
processing of lung images (CAD-preprocessing), including segmentation and registration in
normal and diseased subjects, have been well characterized in the medical literature, we
have excluded that step from this paper. Comprehensive reviews of algorithms for
segmentation and registration of anatomical structures in the chest can be found elsewhere
[6,7].

4. Image acquisition
Some characteristics of image acquisition that are not disease-specific, such as patient
position, level of respiration, and reduced dose technique, play a significant role in the
interpretation of CT and radiograph scans. Since the advent of high-resolution CT (HRCT),
thin-slice CT scans with sub-millimeter resolution have become an indispensable part of
chest radiology, allowing the examination of the lung parenchyma with improved contrast,
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spatial resolution, and a level of detail that is only otherwise possible from biopsy or
postmortem specimens [1, 6]. CT is therefore the most powerful tool for the assessment of
the lung parenchyma. Density differences in normal and diseased lungs are more apparent in
CT scans, and because of its higher sensitivity compared to plain-film radiography, CT
imaging provides better identification, localization, and quantification of small lung nodules
[8,51,52,54]. Specifically, the use of thoracic thin-section CT scans for recognition and
quantification of inflammatory and infectious diseases continues to improve, as the visual
quantification of the extent of disease from 2D chest radiographs is less accurate than from
CT images. On the other hand, although the interpretation of radiograph scans is notoriously
difficult, such that large inter-observer variability is inevitable [9], certain advantages of the
chest radiograph cause it to continue to be requested as a first step in investigation [10].

5. Detecting and understanding disease processes
A significant part of the interpretation of radiographic and CT scans is the detection of
characteristic abnormalities. Visual patterns associated with abnormal anatomy in medical
images carry valuable information, especially when the normal anatomy and its visual
(textural or shape) patterns are known. A number of studies have reported that diagnostic
confidence and consistency can be improved by using image processing techniques. These
methods extract textural and shape patterns from scans and apply pattern recognition
methods to the extracted information to learn normal and abnormal textural and shape
patterns [6, 11–16].

Commonly observed patterns, associated with abnormal lung anatomy, in chest radiographs
and CT images can be divided into four groups, based on shape, texture and attenuation
information (Table 1). The presence of more than one type of abnormality in the same
region of interest can cause difficulty in understanding and interpreting the nature and extent
of a disease. That situation is referred to as a “mixture” in Table 1.

5.1. Feature extraction
Despite extensive investigation of textural analysis techniques for the detection,
classification, and quantification of disease patterns in the chest, the relationship between
specific lung diseases such as influenza and their unique textural or shape patterns remains
poorly characterized. This section explains computerized features pertaining to radiological
findings from respiratory tract infections that can be extracted using image processing
methods.

5.1.1. Low-level features—Any method of feature analysis relies on an appropriate
representation of shape and/or appearance information and developing that representation
for further classification [17, 18]. Based on how human beings interpret image information
[19], the appearance, shape, spectral and textural, and contextual features are some
fundamental feature types that have been computerized in various image-processing
applications, including CAD systems. Among those feature types, representing the
appearance of medical images (CT scans and radiographs in this particular case) in the most
discriminatory way eases the classification procedure. Early approaches for texture
classification in CAD systems of lung diseases focused on analysis of first-order or second-
order statistics of textures [6], statistical and fractal texture features, ridge and numerous
texture features derived from a grey level co-occurrence matrix (GLCM), and some basic
shape-based features to detect nodular structures. More recent approaches have focused on
spatial/frequency analysis of textures, wavelets, Gabor filters, local binary signatures and
high-level features, providing good multi-resolution analytical tools for texture analysis and
classification with promising experimental results [20–26].

Bagci et al. Page 4

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.1.2. High-level features—High-level features significantly affect the way objects are
recognized and understood. Different parts of objects, their relative positions within scenes
and the relationship of textural patterns extracted from different objects in the same scene
are some of the high-level information which can facilitate easier and more accurate
detection and recognition of patterns or objects, leading ultimately to a more reliable
diagnosis. However, efficient methods of creating or extracting high-level context
information, together with image texture features, are currently not available, and this may
prove to be a difficult problem [27]. Hence, the notion of using high-level information to
solve the CAD problem is still somewhat premature. To our knowledge, the only global
feature that is commonly extracted and used in CAD systems is the location or “geography”
of a pattern. This is usually done by encoding the positions of patterns or region of interests,
by linking them with corresponding anatomical locations or regions. For instance, the
feature extraction step can link an abnormality to the right upper or left lower lobe of the
lung, or identify it as central or peripheral, helping to further differentiate types of diseases
[28, 29]. Figure 1 shows an example for the anatomical compartments and segments of the
lungs. Incorporating knowledge of these anatomical regions into clinical practice could help
to improve the differentiation of diseases and the quantification of disease progression.

5.1.3. Clinical parameters—Radiologists can be aided in the decision-making process by
knowledge of a patients age and gender, the duration and severity of symptoms, the patients
body temperature and immune status, and a history of underlying malignancy, smoking,
drug treatment, or dust exposure [7, 9, 16]. This information can also be incorporated into a
CAD system, but a careful correlation study between clinical and imaging findings will be
necessary.

Figure 2 gives an overview of various feature sets that can be used to model CAD systems
for lung diseases. None has yet been developed for CAD of respiratory tract infections.
However, because of the close similarity between the visual appearances of infectious and
inflammatory diseases, we conclude that feature sets and classification methods used to
assess inflammatory conditions can also be applied to pulmonary infections. An intriguing
question at this point is whether the observed or extracted patterns can be used to
discriminate specific diseases. Because textural information alone may not be able to
uniquely identify a disease, answering this question may require a correlation of the imaging
features with the patients history and clinical findings. This situation is reflected in the low
rate of inter-operator agreement in classifying lung diseases [30]. Nevertheless, textures are
still important attributes for characterizing and distinguishing objects, lesions, and regions in
lung parenchyma, and they could be used effectively to help radiologists, in the way that
CAD has been employed in several studies of lung nodules [3, 6, 12, 31–35].

5.2. Radiography and CT patterns and their detection
This section briefly summarizes the most common textural patterns of respiratory tract
infections in CT images and chest radiographs. For each finding, we present the use of
feature extraction as part of the CAD system, and discuss current state-of-the art feature
extraction methods, with their advantages and disadvantages.

5.2.1. Reticular or linear abnormalities—Reticular patterns are small linear opacities,
usually perceived as a net, that are seen both in chest radiographs and in CT scans [36]. High
resolution CT scans can discriminate different types of reticular patterns, such as
interlobular septal thickening, intralobular lines, or cyst walls of honeycombing [36] (See
Figure 4.a). If micronodules are superimposed onto reticular opacities, the resulting pattern
is called reticulonodular. Reticular opacities are usually seen in interstitial lung diseases;
however, their existence in CT and radiograph scans can indicate the presence of an
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infectious process, such as in upper or lower respiratory viral infections of adults [37]. For
example, influenza C virus can produce a pneumonia that is manifested in radiographs as
diffuse, bilateral reticulonodular areas of increased opacity [37]. If the disease progresses,
follow-up scans will most probably show diffuse bilateral consolidation. CT scans from a
person infected from influenza virus (type C) show GGOs with some irregular linear areas
(reticular patterns) of increased attenuation in both lungs.

Computerized detection of reticular opacities: Shape-based features such as thickness,
size, area and volume can be effectively used to identify linear and reticular opacities in the
lung, such as the thickness of bronchial walls and the sizes of pulmonary arteries adjacent to
the bronchi. The reason for using these features is straightforward: reticular patterns consist
of lines or straight or elongated ribbon-like formations, caused by thickening of the
interstitial fiber network [38]. In addition to shape-based feature extraction methods, the
idea of representing textures by their responses to a bank of filters has been developed to
detect complex structures that are not easily identified by either method alone [39]. For
example, it has been demonstrated that textures can be classified using the joint distribution
of intensity values over extremely compact neighbourhoods, outperforming classification
using filter banks with large support [40]. More recently, wavelet features and those based
on spatial/frequency analysis (Gabor, Local Binary Patterns, Spherical Harmonics, etc.)
have received great interest in extracting local texture and shape information, because of
their power in analyzing spectral and spatial information. Likewise, the tight fusion between
the human visual system and multi-scale filter banks is well known to texture analysis, and
efforts have been made to apply it to several CAD systems [14, 28, 29, 41–46]. Spatial/
frequency analysis-based features in general offer a variety of scale and frequency bands
from which many features can be extracted and the most useful selected. Researchers are
now trying to determine how to exploit these features to maximize benefits in terms of
texture classification performance [47].

5.2.2. Nodular abnormalities—Nodules and nodular patterns are seen both in chest
radiographs and in CT scans. A single nodule has the appearance of a rounded or irregular
opacity, which may be well or poorly defined; solid, non-solid or partly solid; and of soft
tissue or GGO; usually with a diameter less than 3 cm [36]. Likewise, nodular patterns have
numerous small, rounded, discreet opacities, ranging from 2–10 mm in diameter, spread
over the lung regions. In contrast, micro-nodules are less than 3 mm in diameter. Non-solid
or partly solid nodules may also be seen in combination with GGO; this finding is most
likely to be due to an infection in the lung. While a solid nodule has homogeneous soft-
tissue attenuation, partly solid nodules include both GGO and solid soft-tissue attenuation.
These features can be used to characterize them as being benign or malignant, such that
solid nodules are less likely to be malignant compared to partly-solid nodules. Another
important factor for making an accurate diagnosis is the distribution of nodules in CT
images or chest radiographs. For instance, a centrilobular distribution may indicate
infectious airways diseases such as endobronchial spread of tuberculosis (TB), while a
random distribution suggests hematogenous metastases, miliary TB, or miliary fungal
infections. Figures 3.b and c illustrate examples of nodular patterns seen in chest CT scans.

Computerized detection of nodules and nodular patterns: Shape-based features are often
used to detect nodular patterns in chest radiographs and CT scans. Published reports indicate
that size, volume, area, diameter, circularity for 2D, form factor, solidarity [48, 49],
thickness, top-hat filtering, mean curvature [38], shape index, Gaussian curvature, sphericity
for 3D [50–52], surface smoothness, shape irregularity [53], roundness, center of mass [54],
compactness, inertia matrix [55], and surface curvature [56] are the most effective and
useful features for characterizing nodular patterns. For example, lung nodules come in two
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basic shapes: solid and GGO (partly solid and nonsolid). In order to discriminate GGO
nodules, which are much more likely to be malignant [57], from solid nodules, a shape
feature can be used to define sphericity, solidity or circularity/roundness criteria [50] based
on the fact that GGO nodules have more irregular shapes and less well defined boundaries
than solid nodules. Fractal-based features can also be used to define geometric similarities
between normal and abnormal patterns [58]. For example, benign and malignant tumors in
chest radiographs were differentiated using fractal features [59]. The geometric self-
similarity of pulmonary blood vessels and the branching structure of the airways facilitate
the use of fractal dimension in discriminating normal lung from linear disease features in
chest CT scans [60]. However, because chest radiographs and CT scans invariably contain
other normal linear and branching structures that are superimposed on one another,
presenting a pattern of irregular shapes, the success of fractal-based features is limited.

5.2.3. Altered attenuation (Consolidation)—Consolidation appears in CT scans and
chest radiographs when alveolar air has been replaced by an exudate or other product of
disease [36]. The homogeneous opacification of the pulmonary parenchyma is preceded by
an increase in attenuation, such that bronchial and vascular margins are obscured [61].
Consolidation is not a disease-specific pattern, and it may be seen in different kinds of lung
diseases. It has recently been reported that consolidation is almost a common textural pattern
in CT scans of patients with novel swine-origin H1N1 influenza [61–66]. Consolidation is
also a common pattern found in chest radiographs of patients with Q fever pneumonia [67].
Pulmonary TB is also identified through consolidation and cavities in chest radiographs and
tree-in-bud patterns in CT scans [68]. Non-tuberculous mycobacterial infections can also
produce consolidation patterns in CT scans. Figure 3.a shows example of dense
consolidation in patients with H1N1 influenza.

Computerized detection of consolidation: A co-occurrence matrix has been shown to be
very effective for characterizing random textures, and ultimately in use for various CAD
systems [38, 48, 49, 56, 69–71], particularly for the detection of consolidation and GGO.
Co-occurrence matrices, known also as second-order statistical features, represent the
statistical nature of texture for given image blocks by creating a spatial-dependent
probability distribution matrix. A standard work has recommended 14 textural features:
angular second moment, contrast, correlation, variance, inverse difference moment, sum
average, sum variance, entropy, sum entropy, difference variance, difference entropy, two
features of information measures of correlations, and maximal correlation coefficient [19].
Meanwhile, run-length features can be defined under the same class with co-occurrence
matrix based features, even though it has been shown that they are the least efficient features
among a group of traditional texture features [72].

5.2.4. Altered attenuation (Ground-glass opacities (GGO))—The GGO pattern is a
common finding on CT scans and chest radiographs, and it is not specific for particular lung
diseases. On CT scans and chest radiographs, a GGO is an area of hazy increased density
that does not obscure bronchial and vascular margins. The main causes of GGO are partial
filling of airspaces, increased capillary blood volume, thickening, collapse of alveoli, or a
combination of these [36, 73]. Together with certain clinical tests, the presence of GGO can
indicate a specific diagnosis. For example, together with an appropriate clinical history, the
combination of GGO and reticular opacities indicates a diagnosis of nonspecific interstitial
pneumonia (NSIP) [73, 74]. Similarly, GGO and traction bronchiectasis usually represents
fibrosis. GGO are also seen in many different inflammatory and infectious processes. for
example, chest radiographs and CT scans of patients with fatal H1N1 influenza contain
bilateral areas of mixed GGO and airspace consolidation, predominantly in peripheral and
subpleural distributions (Figure 4.b) [63, 65, 66].
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Computerized detection of GGO: Areas of GGO can be detected based on a variety of
textural features, including image histogram, first-order features, mean and variance of
intensities, and kurtosis. Because these basic textural features describe the frequency of
occurrence of all the grey levels in a region of interest, they may provide quantitative
measures of the degree of pulmonary diseases as stated in [75, 76], in particular for GGO
detection, as indicated in [77]. Mean and variance information for grey-level images helps
radiologists to track how grey-level information varies among diseases, while kurtosis
measures the frequency of the observed patterns and entropy measures the information
content of the image [71].

Although it is a challenging problem to find an optimal method of detecting GGO or GGO
nodules using only first-order statistical features, some studies have shown promising results
if used with carefully designed multi-thresholding methods [77]. As another example,
biologically motivated Gabor [78] and Laplacian of Gaussian (LoG) filters have been used
to describe the image textures of radiography scans in multi-scale representations [14],
suggesting that complex patterns such as GGOs can be extracted in efficient ways by taking
into account their size and distribution in the scene. In particular, Gabor filters have been
shown to be optimal for minimizing joint two-dimensional uncertainty in space and
frequency [78]. However, most existing studies of the selection of the most useful features,
such as Gabor features, are empirical rather than optimal.

5.2.5. Altered attenuation (Cavities)—Cavities are gas-filled spaces that sometimes
contain fluid. They are usually formed by the expulsion or drainage of a necrotic portion of a
lesion through the bronchial tree [36]. Cavities may appear within areas of consolidation,
masses or nodules. In many infectious diseases, chest radiographs and CT scans show
cavities with consolidation and tree-in-bud patterns, respectively [68]. Lung cavities are
most often caused by an infection, such as a fungal disease or tuberculosis. However, cystic
fibrosis, sarcoidosis and cancer can also produce cavities.

Computerized detection of cavities: Histogram-based approaches and variations of
gradient information are often used to detect cavities in chest radiographs. For more
sophisticated cavity-detection problems in CT images, shape-based and texture-based
methods can be combined and used as a hybrid approach, similar to the way it has been
utilized for chest radiographs [79].

5.2.6. Mixtures (Tree-in-Bud)—As its name implies, this pattern resembles a budding
tree in CT scans (See Figure 4.c). It is usually pronounced in centrilobular branching
structures in the lung periphery, associated with diseases of the small airways [36]. The tree-
in-bud sign indicates bronchiolar luminal impaction with mucus, pus, or fluid, causing
normally invisible peripheral airways to become visible [80]. It is not specific for a single
disease entity, but is a direct sign of various diseases of the peripheral airways and an
indirect sign of bronchiolar diseases, such as air trapping or sub-segmental consolidation.
Because any organism that infects the small airways can cause a tree-in-bud pattern,
pulmonary infections are its most common cause [80, 81]. This observation is supported by
recent studies of thoracic CT findings in patients with novel H1N1 influenza [63, 82, 83].
Patients with pulmonary TB also frequently show tree-in-bud and nodular textural patterns
(i.e. micro-nodules) in HRCT scans [84].

Computerized detection of tree-in-bud pattern: There are many technical obstacles to
detecting complex shape patterns such as tree-in-bud that are associated with pulmonary
infections. Not only are these patterns difficult to detect, but micro-nodules and other normal
and abnormal structures have strong shape and appearance similarities with existing
structures in the lungs, or they appear as a mixture of normal and abnormal patterns.
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Because it has not been easy to learn complicated shapes and configurations using only
shape-, texture-, and location-based features are combined seamlessly in implicit ways for
many CAD systems that detect complex structures other than tree-in-bud patterns. Because
no current CAD system is capable of automatically detecting a tree-in-bud pattern, there is a
need to develop such a system to improve the diagnosis of respiratory tract infections.

6. Computerized classification of disease
Ideally, a comprehensive CAD algorithm extracts texture and/or shape features from images
and trains them with classifiers to learn discriminative properties of the features (Figure 5).
This learnt information is used later in the detection step to classify a texture/shape feature
for any given test image. The most commonly used classifiers in CAD systems are nearest-
neighbour matching (k-NN), neural networks (NN) or artificial neural network (ANN),
Bayesian modelling, rule-based schemes, decision trees, linear discriminant analysis (LDA)
and support vector machines (SVM) [14, 29, 46, 49, 70, 71, 85–87]. Among these
classifiers, the superiority of SVMs for texture classification has been clearly demonstrated
[88, 89]. However, because of their simple implementation, rule-based, Bayesian and
nearest-neighbour classification methods are still in use. Furthermore, for complex
classifiers such as SVM and ANN, it is necessary to tune numerous parameters to obtain the
best phase of the classifiers. Apart from the computational cost, other criteria that affect the
choice of classifiers include the complexity of the overall system and the size and type of the
data set, so that a theoretically optimal classifier may not be the best practical choice. The
strengths and weaknesses of these classifiers are summarized in Table 2. Figure 6 illustrates
the organizational principles of the most commonly used classifiers for CAD systems.

6.1. Evaluation of CAD systems
The evaluation of a complete CAD system includes two different performance measures.
The first tests the correctness of a computer algorithm, by using data from the training step
to produce an output entirely from appropriate detection/classification schemes. In the
second level, the final decision about detection/diagnosis is made by expert radiologists who
use the computer output as an aid or “second opinion” in their interpretations. The overall
performance level of a CAD system is therefore equal to the performance achieved by the
radiologist who uses the system in making his final decision [3, 16].

Diagnostic accuracy is tested via the traditional measures of sensitivity and specificity [90,
91], which form the basis for the commonly used receiver operating characteristics (ROC)
method of evaluation. In ROC analysis, the observer classifies each image as normal or
abnormal, and he may also rate the extent of the abnormality. Because there are two discrete
cases (disease or non-disease), there are four possible outcomes. The sensitivity, also called
the true-positive fraction (TPF), describes the fraction of diseased patients who are correctly
classified by radiologists, while the specificity, also known as the true-negative fraction
(TNF), describes the fraction of non-diseased patients who are correctly classified [91]. The
other two parameters are the false-positive fraction (FPF), which denotes the fraction of
non-diseased patients who are incorrectly classified as diseased, and the false-negative
fraction (FNF), the fraction of diseased patients who are incorrectly classified by
radiologists as non-diseases. Based on these criteria, a highly accurate CAD system will
have high sensitivity and specificity, as independent variables. In ROC analysis, a curve is
plotted with TPF (sensitivity) on the y-axis and FPF (1-specificity) on the x-axis. A ROC
curve thus indicates the relative trade-offs between benefits (true positives) and costs (false
positives) [92].

Overall Accuracy is another term traditionally used to describe the usefulness of a CAD
system. It is defined as a summation of true positives and true negatives, normalized over all
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diseased and non-diseased patients. Overall accuracy and Az both fit well to clinical
applications involving binary decision tasks. However, if the clinical task does not fit the
binary model, precise evaluation through ROC analysis is compromised [98]. The complete
analysis of the advantages and limitations of ROC-based methods is beyond the scope of
this paper. For further reading on ROC analysis in the setting of CAD, see [86, 90–108].

In Tables 3,4, and 5, we summarize a number of published studies of pulmonary diseases
(mainly non-infectious) that display textural and shape patterns similar to those seen in
respiratory tract infections. For each study, the tables note the imaging modality, the features
extracted from the scans, the classifiers used in the CAD systems and the reported
performance, with evaluation criteria. Most of the studies are based on ROC analysis, and
report their success rate on the basis of sensitivity, specificity, and Az. Overall accuracy is
another criterion used for evaluation purposes.

6.2. Quantification
Because the textural patterns that identify infectious diseases are diffuse, rather than focal,
their quantification is challenging even for an expert radiologist. Although there is no
generally accepted, state-of-the-art method for quantifying the extent of lung disease in CT
and radiograph scans, a few commonly used methods such as subjective visual examination,
semi-automated quantification using morphological filtering and thresholding of grey level
histograms are reported in the literature. All of these methods are based on subjective visual
evaluation, but quantification of complex image features requires more sophisticated
methods. Features pertaining to respiratory tract infections, such as consolidation, GGO and
reticular patterns are non-specific; hence, in the following subsections we describe the
methods used to stage and determine the rate of progression for a variety of lung diseases.

6.2.1. Visual examination—The most widely used technique of quantifying the extent of
pulmonary disease is visual examination, expressed either using a score-based system or as
the percentage of lung involvement [1]. Visual examination is simple and fast, but inter-
observer variation is high. Although there have been attempts to develop more objective
methods, they are currently limited to a few diseases, such as the quantification of
emphysema with density mask and correlation with pulmonary functional tests [109]. The
co-existence of other lung diseases with mixed patterns, artefacts, and fuzzy areas with non-
specific textures (normal or abnormal) can considerably degrade the reliability of objective
quantification. Apart from density changes, CT density histograms can also be used to
quantify certain conditions (e.g. interstitial lung diseases), for which the density histogram is
more peaked and skewed to the left, compared to normal lung. The amount of difference and
skewness in density histograms might be used to quantify lung diseases when additional
clinical information (e.g. functional tests) is correlated with this finding.

6.2.2. Morphological tools—Subjective visual scoring in pulmonary imaging is strongly
operator dependent. Because of significant inter-observer variation, it is highly desirable to
quantitatively assess the clinical course [110–112]. The need for quantitative assessment of
inflammatory or infectious diseases has led researchers to develop semi-automated methods
that combine expert knowledge acquired through visual scoring in training and automatic
detection of size, texture and shape patterns using morphological tools. Basically, in the
training step, an expert radiologist scores the lung with observed textures such as GGO, and
the proportion of each abnormal tissue component and the overall proportion of diseased
lung within a pre-defined grid are then obtained by expressing the total score for each
component as a percentage of the total number of points scored on each slice or volume.
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These methods are only feasible for quantifying certain lung diseases, such as pulmonary
fibrosis, under certain conditions, which depend strongly on the scale of the grid. For
instance, computing the extent of disease with morphological tools such as a grid may not
always give accurate results, because the choice of scale used in the morphometric process is
not straightforward. If an inappropriate grid size is chosen, different textural patterns may
show similar characteristics. Also, one cannot always use size, volume, or area as
quantitative measures for all of the abnormal patterns observed in a scan. For example, large
areas of GGO produce large quantitative values in this method, while a small area of
consolidation or honeycombing produces a smaller quantitative value. However, it should be
noted that GGO is usually considered a reversible process, while consolidation or
honeycombing may be irreversible. A visual scoring system that has been optimized through
knowledge of disease stage and normal anatomy should therefore be incorporated into the
quantification process, in order to compensate for the deficiencies of semi-automated
methods.

6.2.3. Quantification through user-defined thresholding—Grey-level thresholding
is a simple and efficient method that can be used to extract certain regions from lung
parenchyma. The extracted regions and patterns are then filtered by morphological tools to
detect the volume, size, and dimensions of pathological regions. Thresholding is often used
to identify areas of high attenuation, including GGO and consolidations, and to detect
reticular patterns. However, an accurate segmentation of lung parenchyma and airway trees
is needed prior to thresholding. Such segmentation can be quite challenging, especially
when the lungs contain pathologic abnormalities. Furthermore, the selection of threshold
intervals is based entirely on the regional and global distribution of pixel attenuation, as
defined by expert users in the training step. Thresholding also is not able to properly
separate regions containing both GGO and reticular patterns, resulting in mischaracterization
of the nature and extent of disease.

6.3. Other imaging methods
6.3.1. Positron emission tomography—Among the various molecular imaging
techniques that could supplement chest radiographs and CT scans for the characterization of
respiratory tract infections, PET appears to be the strongest candidate. PET imaging has
been used increasingly over the past 30 years to diagnose, stage and monitor malignancies
[113]. In pulmonary imaging, for example, it is often necessary to evaluate a nodule or a
non-specific opacity for malignancy. Characterization of such focal lung abnormalities with
chest radiographs, CT and MRI is a challenging task. In contrast to invasive techniques such
as bronchoscopy and biopsy that can assist in diagnosing these abnormalities, PET offers a
non-invasive and less expensive means of evaluating lung abnormalities. It has been
reported that the use of PET scans in combination with chest radiographs or CT leads to the
successful classification of focal pulmonary nodules and other non-specific pulmonary
opacities as benign or malignant with a specificity of 80–95% and a sensitivity of 89–100%
[114, 115].

Although its use in evaluating pulmonary infections is not well established, Figure 7 shows
that PET imaging can detect tree-in-bud patterns. Because such patterns are a strong
indicator of infection, PET and CT could potentially be used together to differentiate non-
specific patterns observed in CT images. Nevertheless, little use has been made of PET
imaging to identify respiratory tract infections, mainly because its efficacy in evaluating
pulmonary abnormalities other than focal nodules is still not known. False negatives may
also occur due to the relatively limited resolution of PET scans. The optimal algorithm
incorporating PET imaging to detect and characterize pulmonary abnormalities has not yet
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been identified, but the evolving applications of PET and texture analysis for thoracic
imaging appear promising [113, 116].

6.3.2. Ultrasound—Because US can identify vascular structures in real time without using
ionizing radiation or requiring the introduction of contrast material, it has attracted the
attention of radiologists for many years. US is increasingly used alongside radiography and
CT to image lesions of the lung, mediastinum and pleura through anatomical acoustic
windows. For example, pleural effusions, a common finding in infectious diseases, can
easily be detected by US [117]. Consolidation may also be amenable to US imaging,
because the filling of normal air spaces results in the conversion of portions of the lung into
solid structures that readily transmit sound. US scanning of infants is facilitated by low bone
density. Despite these advantages, US is not routinely used to detect pulmonary infections,
due to its inability to correctly classify textural patterns, determine the extent of a deep
lesion, visualize an entire region of interest in the chest or identify abnormalities that are
neither solid nor fluid [117, 118].

6.3.3. Magnetic resonance imaging—Although MRI allows the acquisition of high-
definition images with great sensitivity, it is only rarely chosen as an imaging modality for
pulmonary diseases because of its poor specificity. The only setting in which MRI has an
advantage over CT is in identifying infections of the pleura and chest wall, for which the use
of MRI can minimize radiation exposure and define chest wall involvement [117]. MRI can
also be used to characterize fetal chest anatomy during pregnancy, providing more accurate
information than US alone and avoiding radiation exposure. In this specific scenario, T2-
weighted sequences are the most useful, because the significant volume of fluid in the fetal
chest causes the lung signal to be homogeneously high [118]. Although MRI can identify a
hydrothorax (abnormal accumulation of fluid in the pleural space), it cannot determine if the
condition is caused by infection or by a chromosomal abnormality [118]. Because of its
relatively high cost, the frequent need for sedation and poor visualization of the lung
parenchyma, the use of MRI is limited. HRCT therefore remains the “gold standard” for
imaging pulmonary diseases.

7. Conclusion
CAD systems can be applied to the imaging of respiratory tract infections by following by
two basic analyses: imaging findings from infectious diseases in general (i.e. texture and
shape patterns) and computerized recognition of those findings in a computational platform.
In discussing the first step, we have focused on texture and shape patterns seen in pulmonary
infections such as TB or H1N1 influenza. For the second, we have manifested computational
tools such as feature extraction and classifier design that are required to design a robust and
successful CAD system.
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Figure 1.
Anatomical lung segments: B1: Apical, B2: Posterior, B3: Anterior, B4: Lateral, B5:
Medial, B6: Superior, B7: Basal Medial, B8: Basal Anterior, B9: Basal Lateral, B10: Basal
Posterior (Partly from [119], with permission).
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Figure 2.
Overview of different feature sets used in CAD systems for lung diseases.

Bagci et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
a. Consolidation, b. nodules and nodular structures, c. ground glass nodular opacities.
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Figure 4.
(a) Reticular, (b) GGO, (c) tree-in-bud patterns.
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Figure 5.
An example of a CAD system using CT scans. Texture analysis is based on manual labelling
of textures or shapes.
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Figure 6.
The most commonly used classifiers for CAD systems, with their organizational principles.
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Figure 7.
Tree-in-bud detection with PET imaging (Left: CT, Middle: PET, Right: superimposed PET-
CT, Rightmost: zoomed)
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Table 1

Characteristic patterns of chest radiography and CT imaging.

General feature Examples

Reticular or linear abnormality • Septal thickening (smooth, irregular or nodular)

• Bronchovascular thickening

Nodular abnormality • Miliary Centrilobular Perilymphatic

Altered attenuation • Increased attenuation (GGO)

• Decreased attenuation (cysts, emphysema, cavities, honeycombing)

• Mosaic (primary vascular, primary airway, patchy infiltrative lung disease

Mixture • Tree-in-bud and Crazy paving
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Table 2

Advantages and disadvantages of the classifiers most commonly used in CAD systems.

Classifier Advantages Disadvantages

Rule-based Simple to implement, and can be integrated into k-
NN, ANN or decision trees.

Selection of cutoff threshold to classify abnormal and normal is
manual, hence suboptimal [125].

k-NN Gives consistent classification results. Consistency
increases with the amount of data.

Finding an optimal value for “k” is challenging [44–108]. A large
dataset is needed.

ANN Have ability to learn complex input-output
relationships, and have low dependence on domain
specific knowledge [126].

Need numerous parameters to tune classifiers. Computational
complexity is high, and overtraining is often inevitable.

Decision Trees Low computational complexity. Can be integrated
into other classifiers. Less extensive prior
information is necessary [127].

Not guaranteed to have a globally optimal solution. Pruning the
data is needed to avoid over-fitting.

Naïve Bayes Optimal with respect to classification error
probability.

Assumptions such as Normal and Cauchy distribution of the data
and independency of features are often invalid.

LDA Analytically simple, and computationally less
extensive.

Regularization is often needed to hold the feature dimension below
a certain level [128].

SVM Globally optimal. Algorithmic complexity is high. Unbalanced training may cause
overriding minority class by majority class.
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