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Abstract

Background—The amygdala is a key site where alterations in the regulation of the serotonin
transporter (5-HTT) may alter stress response. Deficient 5-HTT function and abnormal amygdala
activity have been hypothesized to contribute to the pathophysiology of posttraumatic stress
disorder (PTSD), but no study has evaluated the 5-HTT in humans with PTSD. Based upon
translational models, we hypothesized that patients diagnosed with PTSD would exhibit reduced
amygdala 5-HTT expression as measured with positron emission tomography (PET) and the
recently developed 5-HTT-selective radiotracer [M1C]JAFM.
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Methods—Fifteen participants with PTSD and 15 healthy control (HC) subjects without trauma
history underwent a resting-state PET scan.

Results—[1C]AFM binding potential (BPyp) within the combined bilateral amygdala ROI was
significantly reduced in the PTSD group compared to the HC group (p=0.027; 16.3% reduction),
which was largely driven by the between-group difference in the left amygdala (p=0.008; 20.5%
reduction). Further, amygdala [11C]JAFM BPyp was inversely correlated with both HAM-A scores
(r=—0.55, p=0.035) and MARDS scores (r=—0.56, p=0.029).

Conclusions—Our findings of abnormally reduced amygdala 5-HTT binding in PTSD and its
association with higher anxiety and depression symptoms in PTSD patients support a translational
neurobiological model of PTSD directly implicating dysregulated 5-HTT signaling within neural
systems underlying threat detection and fear learning.

Introduction

Brain serotonin (5-HT) systems have been linked to the neurobiology of posttraumatic stress
disorder (PTSD) based upon evidence from both preclinical and clinical studies (1-6). In
humans, the 5-HT agonist m-chlorophenylpiperazine (mCPP) was found to transiently evoke
panic attacks and trauma-related flashbacks in patients with PTSD (7) that were not
observed when mCPP was administered to patients with other psychiatric disorders (8-10).
Moreover, the 5-HT transporter protein (5-HTT) is the target of the two U.S. Food and Drug
Administration-approved pharmacotherapies for PTSD. The most direct evidence for the
importance of 5-HTT function in PTSD can be inferred from recent human genetic studies
showing that the short allele of the common repeat polymorphism in the promoter region of
the gene coding for the 5-HTT (5-HTTLRP) increases the vulnerability to develop PTSD (1,
5, 11, 12), and may predict poor treatment outcome (13). However, to date no study has
directly examined brain 5-HTT in patients with PTSD.

Fear conditioning experiments highlight the role of the amygdala as a key brain structure
responsible for processing and storing fear-related memories and for coordinating fear-
related behaviors (14-16), leading to the hypothesis that PTSD may be characterized by
amygdala over-activity or hyper-responsiveness to threatening stimuli in humans (17-19).
Indeed, a convergence of findings from functional neuroimaging investigations in clinical
populations supports a neurocircuitry model of PTSD characterized by abnormally elevated
amygdala activity coupled with deficient regulation by prefrontal cortical structures (20-27).
Studies specifically suggest that amygdala function may be enhanced during the acquisition
of conditioned fear in PTSD (26, 28), potentially leading to deficient fear extinction
hypothesized to play a role in PTSD (19, 29). Despite an emerging neurocircuitry model of
PTSD, the neurochemical regulation of this circuitry remains incompletely understood.

The amygdala is a major forebrain target of 5-HT neurons arising from the dorsal raphe (30)
and 5-HT signaling within the amygdala regulates normal fear and threat responsiveness (2,
31, 32), supporting the hypothesis that abnormal 5-HTT function within the amygdala
specifically may be an important mechanism in the pathophysiology of PTSD. In support of
this hypothesis, common genetic variants which lead to differential expression of 5-HTT are
associated with differences in the acquisition of a conditioned fear response and altered
startle response in humans (33, 34). In aggregate, these data suggest a model whereby
altered 5-HTT function influences amygdala activity to enhance the acquisition of
conditioned fear and/or decrease fear extinction, which in turn mediates a vulnerability to
PTSD.

Positron emission tomography (PET) imaging is the most direct, sensitive and
straightforward means of probing the functional neurochemistry of human subjects and
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assessing molecular targets in the brain in vivo, provided the proper tracer is available. In the
current study we utilized PET and the selective 5-HTT radioligand [11C]AFM (35, 36) to
characterize 5-HTT receptor binding in patients with PTSD and matched healthy control
(HC) subjects. Given that the low-expressing 5-HTT genotype (the short allele of the 5-
HTTLRP) is associated with elevated risk for PTSD and the important role of the amygdala
in fear-related neurocircuitry, we hypothesized reduced 5-HTT binding in the amygdala in
patients with PTSD.

Fifteen participants with PTSD and 15 age- and sex-matched HC participants without
trauma history were recruited through public advertisement. After giving informed consent,
participants were screened and diagnosed using Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-1V) criteria and the Structured Clinical Interview for DSM-
IV (SCID) (37, 38). PTSD participants suffered both combat and non-combat trauma
exposures. Non-combat trauma exposure consisted of physical or sexual assault, domestic
violence or natural disaster. PTSD participants were free of co-morbid psychiatric disorders,
with the exception of major depressive disorder (MDD) if the primary diagnosis was
determined to be PTSD, which was defined by PTSD being the dominant clinical syndrome
and the onset of MDD occurred after the onset of PTSD. PTSD symptom severity was
measured using the Clinician-Administered PTSD Scale for DSM-1V (CAPS) (39) and
trauma history was quantified with the Traumatic Life Events Questionnaire (TLEQ) (40).
Depression and anxiety severity was assessed using the Montgomery-Asberg Depression
Rating Scale (MADRS) and the Hamilton Rating Scale for Anxiety (HAM-A), respectively
(41, 42). All participants were evaluated by physical examination, electrocardiogram,
standard laboratory tests, urine analysis and toxicology and were free of significant medical
or neurological conditions. None of the participants were receiving psychotherapy or
psychotropic medication for at least 4 weeks prior to scanning. The protocol was approved
by the Yale University School of Medicine Human Investigation Committee, the Human
Subjects Subcommittee of the Veterans Affairs Connecticut Healthcare System, the
Magnetic Resonance Research Center and the Yale New Haven Hospital Radiation Safety
Committee.

Scanning and Imaging Procedures

MR images were obtained for each subject on a Siemens 3T Trio system to exclude
individuals with anatomical abnormalities and for co-registration. Participants subsequently
underwent a resting PET scan with 20 mCi of [11C]JAFM (35, 36). PET scans were done on
a High Resolution Research Tomograph (HRRT) (Siemens Medical Solutions, Knoxville,
TN, USA), which acquires 207 slices (1.2 mm slice separation) with a reconstructed image
resolution of ~3 mm. Images were reconstructed with corrections for motion, attenuation,
scatter, randoms, and deadtime. A summed image (0—10 min post-injection) was created
from the motion-corrected PET data and registered to the subject’s MR image, which, in
turn, was registered (12-parameter affine transformation) to an MR template (MNI space).
The cerebellum ROI was taken from the template for SPM2 (Anatomical Automatic
Labeling) and applied to the PET data to produce time- activity curves for the reference
region (43). [1C]JAFM, pixel-wise BPyp images were created by SRTM2 (Simplified
Reference Tissue Model). Amygdalar BPyp values were extracted from the parametric
images using the template. Results from test-retest studies using [11C]JAFM BPyp from the
amygdala ROI demonstrate approximately 3% mean difference, indicating very good
reliability (Williams W, et al., unpublished).
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Statistical Analysis

Results

Independent sample t-tests were used to compare continuous clinical, demographic variables
and [11CJAFM BPyp values between PTSD and HC. Data were normally distributed as
determined by visual inspection and the Kolmogorov-Smirnov D test. Chi-square was used
in the case of dichotomous variables. Tests of association between continuous variables
were performed using Pearson’s product-moment correlations. All tests were performed
two-tailed, with results considered significant at p<0.05. Means and standard deviations are
reported. All statistical analyses were conducted using SPSS version 16.0 (SPSS Inc,
Chicago, IL, USA).

Demographics and Clinical Characteristics

Participants in the PTSD and HC groups were matched for age and gender frequency.
Participants in the PTSD group had a history of combat (n=5) or non-combat (n=10) index
trauma exposure. The mean age of onset of the first criteria A trauma was 15.6 £ 5.1 years
(range 8-25) and participants suffered from 5.4 + 3.0 lifetime criteria A traumas (range 1-
25). Participants in the PTSD group experienced moderate to severe PTSD symptom
severity as well as significant levels of depression and anxiety symptoms at the time of the
PET scan (see Table 1).

Neuroreceptor Imaging and Behavioral Correlations

[11C]JAFM BPyp within the combined bilateral amygdala ROI was significantly reduced in
the PTSD group compared to the HC group (HC: 3.38 + 0.63, PTSD: 2.83 £ 0.64, df=28,
t=2.33, p=0.027; 16.3% reduction). This finding was driven by the between- group
[11C]AFM BPyp difference in the left amygdala (HC: 3.61 + 0.69, PTSD: 2.87 + 0.73,
df=28, t=2.9, p=0.008; 20.5% reduction). The between-group difference in the right
amygdala did not reach statistical significance (HC: 3.17 + 0.63, PTSD: 2.80 + 0.59, df=28,
t=1.65, p=0.11; 11.7% reduction) (Figure 1).

In the PTSD group, amygdala [11C]JAFM BPyp was inversely correlated with both HAM-A
scores (r=—0.55, p=0.035) and MARDS scores (r=—0.56, p=0.029) (Figure 2). There was no
correlation between [11C]JAFM BPyp and total CAPS score (r=—0.21, p=0.45) or sub-score.
There were no associations between [11C]JAFM BPyp and age, gender or BMI in either
group and no associations between [11C]JAFM BPyp and number or age of traumatization in
the PTSD group.

Exploratory analyses of [I1C]JAFM BPyp in brain regions outside of the amygdala did not
reveal between-group differences any region (see Table 2).

Discussion

In this study we demonstrate in vivo reductions in 5-HTT availability in the amygdala with
[11C]JAFM BPyp in patients with PTSD compared to healthy control participants.
[11C]JAFM BPyp reductions are associated with characteristic features of the PTSD
phenotype such that lower levels of ligand binding were associated with higher levels of
both anxiety and depression. These results support the link between 5-HT regulation and the
role of the amygdala in the pathophysiology of PTSD and are consistent with prior studies
describing amygdala hyperactivity upon exposure to trauma- or fear-related stimuli in PTSD
(20-22, 25, 26, 28). The reduced availability of 5-HTT in patients with PTSD is in line with
prior animal studies that predict reductions in 5-HTT would be associated with increased
fear (2, 31, 32).
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The results of our study are consistent with a model of PTSD whereby reduced functioning
of 5-HTT, resulting from inheritance of the lesser-expressing short allele of the 5-HTTLRP
(1, 5, 11, 13, 44, 45) or other mechanism, leads to altered amygdala functioning which in
turn drives increased anxiety and vulnerability to the effects of stress and trauma. Support
for this model comes from preclinical studies showing deficient extinction recall, enhance
behavioral vulnerability to stress and altered morphology of basolateral amygdala (BLA) in
a 5-HTT knock-out (KO) mouse (2, 3). Conversely, overexpression of the human 5-HTT
gene in transgenic mice resulted in a low-anxiety phenotype (46).

It is notable that in the study by Wellman et al (2007), 5-HTT KO mice showed a selective
deficit in the recall of an extinguished fear memory 24 hours following a standard fear
conditioning and extinction paradigm (2). This selective deficient in extinction mirrors the
findings in human PTSD populations of persistently elevated fear responses often in the face
of normal fear acquisition (29, 47-49). Further, a recent fear conditioning-extinction
functional MRI (fMRI) study comparing PTSD to healthy volunteers found impaired
extinction recall in PTSD 24 hours following the conditioning-extinction protocol as
indexed by skin conductance response (SCR) whereas there was no difference in the
acquisition or early extinction phase in congruence with the selective effects of 5-HTT KO
on extinction recall reported Wellman et al (2007) (26). The authors also found greater
amygdala activation in the PTSD during fear acquisition, consistent with the hypothesized
role of enhanced amygdala activity driving the psychophysiological substrates of the
vulnerability to PTSD (26). This finding replicated an earlier PET study of cerebral blood
flow in women with childhood sexual abuse demonstrating elevated amygdala blood flow
during fear acquisition in a conditioned fear paradigm (28).

Although our model suggests that altered 5-HTT function is a risk factor for PTSD, the
current study was not designed to determine the causal relationship between ligand binding
to 5-HTT and PTSD. Genetic studies linking reduced 5-HTT gene expression (50) with both
increased amygdala activation during processing of emotional salient information with a
fear-provoking component (51, 52) and vulnerability to PTSD (1, 5, 11, 13, 44, 45) provide
compelling support for this model. However, stress and other environmental factors also
may lower 5-HTT gene expression (53). Thus, reductions in 5-HTT may in fact predispose
or be a consequence of extreme stress exposure and future studies will be necessary to test
these alternative models.

There are several limitations of the current study. This study focused on the amygdala given
its significance for PTSD and only secondarily explored [11C]JAFM BPyp in other regions
outside our a priori ROI. Although we did not find evidence for abnormal binding outside of
the amygdala, the sample size of the study may have limited our power to detect smaller
differences between groups. Our findings of reduced amygdala [11C]JAFM BPyp in PTSD
appeared to be driven by the left amygdala (20.5%), while reductions in the right amygdala
(11.7%) did not reach statistical significance. The reason for the laterality of our finding is
not clear, although it is possible that the lack of significance in the right amygdala represents
a type 11 error given the modest sample size and the within-group variability in [11C]JAFM
BPnp. Our study did not include a trauma-control group, leaving open the possibility that
our findings reflect trauma exposure per se. Future studies utilizing a three-group design
will be required to further explore this possibility. Whether our observation of low 5-HTT
availability represents a state or trait finding is not addressed by the current cross-sectional
study and future longitudinal studies are needed to address this important question. The
absence of an association between [11C]JAFM BPyp and specific PTSD symptoms as
measured by CAPS score, and in contrast the association between lower[21CJAFM BPyp
and both higher depression and anxiety symptoms, suggests that 5-HTT reductions
contribute to but do not fully explain the complex phenotype of PTSD. Finally, we did not
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collect genetic data, which may have contributed to explaining the observed 5-HTT
reductions in the PTSD cohort given the findings of human genetic studies.

Altogether, our findings support a translational neurobiological model implicating
dysregulated amygdala 5-HTT signaling in the neurobiology of PTSD. Whether reduced 5-
HTT binding is a pre-existing condition enhancing the vulnerability to develop PTSD after
trauma, or is alternatively a consequence of trauma exposure, remains to be determined.
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Figure 1. Reduced amygdala [11C]AFM BPyNp in PTSD compared to healthy subjects

Upper panel: plot showing [{1C]JAFM binding potential (BPyp) differences in the combined
bilateral amygdala region of interest (ROI) and in both left and right amygdala ROI between
patients with posttraumatic stress disorder (PTSD) and healthy control subjects (HC). *
indicates p<0.05, two-tailed.

Lower panel: Averaged [LLC]AFM positron emission tomography (PET) images (coronal
view) illustrate reduced amygdala distribution volume in PTSD (left) relative to HC (right).

Biol Psychiatry. Author manuscript; available in PMC 2012 December 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Murrough et al.

Page 11

301
1 [ N ]
e [ J
5 .
(&) o
0 920
<| .
E -
<
I e
‘.—g 10-.
[ J [ J
2 j =055
. p=0.035
1 2 3 4 5
[''C] AFM Binding Potential
501
o :
g 40 T
n :
7 ;
@ 30
<Q( ]
s 20
s
2 10 r=-0.56
] p=0.029
1 2 3 4 5

[1'C] AFM Binding Potential

Figure 2. Correlation between [11C]AFM BPNpD and levels of anxiety and depression in

individuals with PTSD

In the PTSD group (n=15) amygdala [11C]JAFM BPyp was inversely correlated with both
Hamilton Rating Scale for Anxiety (HAM-A) scores (r=—0.55, p=0.035) and Montgomery-
Asberg Depression Rating Scale (MADRS) scores (r=—0.56, p=0.029). Tests of association
between continuous variables were performed using Pearson’s product-moment correlations.
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Demographic, Clinical and Positron Emission Tomography Procedural Characteristics

Table 1

PTSD (n=15) | Healthy Control (n=15) | P Value
Age (yrs) 329938 30.110.0 0.45
Range 21-51 18-49 -
Sex (M, F) 9M, 6F 10M, 5F 0.71
Ethnicity 4C, 5AA, 5H 10C, 4AA -
BMI 29.75.2 26.54.6 0.09
Smoking status (Y/N) 2/15 1/15 0.54
Index Trauma Type(Combat/Non-Combat&) 5/10 - -
No. Lifetime Criteria A Traumas 5430 -
CAPS Total Score 68.415.8 - -
CAPS Re-Experiencing Sub-Score 18.85.6 - -
CAPS Avoidance Sub- Score 27581 - -
CAPS Hyperarousal Sub- Score 22.16.2 - -
HAM-A Total Score 18.56.9 2551 <0.001
MADRS Total Score 26.58.6 4244 <0.001
Injected Dose (MBQ) 710 38 699 53 0.53
Specific Activity(MBQ/nmol) 203 144 219124 0.75
Injected Mass (ug) 1.571.04 1.340.85 0.52

Data presented in mean * standard deviation, unless otherwise indicated. P values determined by independent sample t-tests for continuous

variables or by chi-square for dichotomous variables.

Page 12

AA, African-American; AS, Asian-American; BMI, body mass index; C, Caucasian; F, female; H, Hispanic; HAMA-A, Hamilton Anxiety Scale;

M, male; MARDS, Montgomery-Asberg Depression Rating Scale; PTSD, posttraumatic stress disorder; N, nonsmoker; S, smoker.

a . . L .
Non-combat trauma exposure consisted of physical or sexual assault, domestic violence or natural disaster.
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