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Smad2 and Smad3 (Smad2/3) are essential signal transducers
and transcription factors in the canonical transforming growth
factor-b (TGF-b) signalling pathway. Active Smad2/3 signalling in
the nucleus is terminated by dephosphorylation and subsequent
nuclear export of Smad2/3. Here we report that protein
phosphatase PPM1A regulates the nuclear export of Smad2/3
through targeting nuclear exporter RanBP3. PPM1A directly
interacted with and dephosphorylated RanBP3 at Ser 58 in vitro
and in vivo. Consistently, RanBP3 phosphorylation was elevated
in PPM1A-null mouse embryonic fibroblasts. Dephosphorylation
of RanBP3 at Ser 58 promoted its ability to export Smad2/3 and
terminate TGF-b responses. Our findings indicate the critical role
of PPM1A in maximizing exporter activity of RanBP3 for efficient
termination of canonical TGF-b signalling.
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INTRODUCTION
In eukaryotes, regulation of signalling mediators/effectors in the
nucleus is one of the principal mechanisms that govern duration
and strength of signalling. Smads are a family of structurally
related proteins with intrinsic nuclear shuttling ability that
primarily serve as signalling effectors for the ligands of transform-
ing growth factor-b (TGF-b) superfamily (Hill, 2009). On ligand
binding to its receptor at the cell membrane, TGF-b signalling
is activated by a short phosphorylation cascade, from

receptor phosphorylation to subsequent phosphorylation of the
receptor-activated Smads (R-Smads, such as Smad2/3), and
ultimately regulates the transcription of TGF-b target genes (ten
Dijke & Hill, 2004; Feng & Derynck, 2005; Massagué et al, 2005).
Tight control of these genes underscores the importance of TGF-b
signalling in regulating many biological processes from develop-
ment to pathogenesis including cancer (Massagué, 2008; Heldin
et al, 2009; Wu & Hill, 2009).

Although the level of nuclear R-Smads reflects the strength of
TGF-b signalling at any given time, the nuclear export of R-Smads
in terminating TGF-b signalling remains poorly understood.
The identification of nuclear phosphatases and/or transporters
for R-Smads shows two sequential steps during Smad2/3 export.
In the nucleus, PPM1A/PP2Ca, a member of the PPM family of
Ser/Thr protein phosphatases, specifically recognizes phosphory-
lated Smad2/3 and remove its C-terminal SXS phosphorylation
(Lin et al, 2006). Subsequent nuclear export of the un/dephos-
phorylated Smad2/3 is carried out by RanBP3 (Dai et al, 2009)
and/or Exportin 4 (Kurisaki et al, 2006).

Recently, Yoon et al (2008) reported that protein kinases
ribosomal S6 kinases (RSKs) and AKT phosphorylate RanBP3 at
Ser 58. This phosphorylation attenuates nuclear import of riboso-
mal protein L12 (Yoon et al, 2008). As RanBP3 mainly resides in
the nucleus (Mueller et al, 1998; Hendriksen et al, 2005; Dai et al,
2009), whether and how its phosphorylation modulates the
nuclear export role of RanBP3 remain unexplored. Here we
report that the Ser 58 phosphorylation inhibited the ability of
RanBP3 to export Smad2/3 and terminate TGF-b transcriptional
responses. Moreover, we provide clear evidence that PPM1A is a
bona fide RanBP3 phosphatase to regulate RanBP3 activity. These
results indicate the dual roles of PPM1A in dephosphorylating
both cargo Smad2/3 and exporter RanBP3 for efficient termination
of Smad2/3 signalling.

RESULTS AND DISCUSSION
RanBP3 phosphorylation modulates TGF-b signalling
We previously reported that RanBP3 mediates nuclear export of
Smad2/3 in TGF-b signalling in a Ran binding-dependent manner
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(Dai et al, 2009). As RanBP3 is regulated by phosphorylation at
Ser 58 (Yoon et al, 2008), we sought to investigate whether
RanBP3 phosphorylation modulates TGF-b signalling. To this end,
we generated the phosphorylation-mimic mutant RanBP3-S58D

and phosphorylation-dead mutant RanBP3-S58L. The effects of
these mutants on TGF-b signalling were first examined using a
synthetic TGF-b responsive reporter SBE-Luc (Zawel et al, 1998). As
shown in Fig 1A, the phosphorylation-dead mutant RanBP3-S58L
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Fig 1 | S58D substitution impairs the inhibitory function of RanBP3 in transforming growth factor-b (TGF-b) signalling. (A) Effect of RanBP3

phosphorylation mutants on SBE-Luc response. HaCaT cells were transfected with indicated plasmids and treated with 2 ng/ml TGF-b for 20 h, and

cell lysates were subjected to reporter assays. Values and error bars represent average and standard deviation of three independent experiments.

The expression level of RanBP3 (wild type, WT) and its mutants were examined by western blotting using Myc antibody (bottom). (B) Effect of

RanBP3 phosphorylation mutants on the natural p21 promoter (p21-Luc) activity in HaCaT cells. Values and error bars represent average and

standard deviation of four independent experiments. (C) Quantitative real-time reverse transcription–polymerase chain reaction (qRT–PCR) analysis

of p21 messenger RNA (mRNA). HaCaT cells stably expressing Flag-tagged RanBP3 (WT, S58D, S58L) and parental HaCaT cells (CTRL) were treated

with TGF-b (2 ng/ml) for up to 8 h, and were subjected to total RNA extraction. Values and error bars represent average and standard deviation of

three independent experiments. (D) qRT–PCR analysis of PAI1 mRNA. Values and error bars represent average and standard deviation of three

independent experiments. (E) Western blotting analysis of p21 and PAI1. HaCaT cells stably expressing Flag-tagged RanBP3 (WT, S58D, S58L) and

parental HaCaT cells (CTRL) were treated with TGF-b (2 ng/ml) for 8 h and cell lysates collected at indicated times. The levels of p21, Plasminogen

activator inhibitor 1 (PAI1) and RanBP3 proteins were examined by western blotting using indicated antibodies. The glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) blot serves as a loading control. SBE, Smad-binding element; RLU, Relative luciferase unit; wv, RanBP3 Ran-binding mutant.
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profoundly inhibited the SBE-Luc expression to the same extent as
wild-type (WT) RanBP3. Consistently, RanBP3 and RanBP3-S58L
mutant showed similar inhibitory effects on the promoter activity of
the gene encoding cyclin-dependent kinase inhibitor p21WAF1/CIP1

(Fig 1B), one of the key effectors mediating TGF-b-induced growth
inhibition (Datto et al, 1995). However, phosphorylation-mimic
mutant RanBP3-S58D and the Ran-binding mutant RanBP3-wv
could not block either SBE-luc (Fig 1A) or the p21-luc reporter
response (Fig 1B).

To extend our analysis at the physiological level, we generated
HaCaT cell lines stably expressing RanBP3 or its mutants at similar
expression levels (Fig 1E, blot c). In parent HaCaT cells (CTRL),
TGF-b treatment for 8 h induced rapid accumulation of p21
(Fig 1C) and plasminogen activator inhibitor 1 (PAI1) messenger
RNA (Fig 1D). Overexpression of RanBP3 and RanBP3-S58L
significantly attenuated accumulation of p21 and PAI1 messenger
RNA, whereas gain-of-phosphorylation mutant RanBP-S58D had
no effect (Fig 1C,D). Consistently, TGF-b-induced p21 and PAI1
protein expression was inhibited in the cells stably expressing
RanBP3-S58L mutant (Fig 1E, lane 7–9), but not RanBP3-S58D
mutant (Fig 1E, lane 4–6). These results indicate that Ser 58
phosphorylation of RanBP3 profoundly dampens its role in
terminating TGF-b signalling.

RanBP3 phosphorylation inhibits Smad2/3 export
We next determined how phosphorylation impairs the ability of
RanBP3 to inhibit TGF-b signalling. We found that Ser 58
mutations did not affect RanBP3–Smad2/3 interaction (supple-
mentary Fig S1 online), nor did it change the Smad-binding
specificity of RanBP3 (supplementary Fig S2 online). These data
implies that RanBP3 phosphorylation does not inhibit Smad2/3
export through disruption of the Smad2/3–RanBP3 association.
Because the RanBP3 mutants resided exclusively in the nucleus,
we examined the effects of these mutants on nuclear accumula-
tion of Smad2/3 in HaCaT cells. Quantitative analysis showed that
nuclear Smad3 decreased in 66.7% (n¼ 24) and 62.5% (n¼ 24) of
cells transiently expressing RanBP3 or RanBP-S58L, respectively,
but in only 8.3% (n¼ 24) of RanBP3-S58D-positive cells (Fig 2A).
In agreement with this notion that RanBP3-S58D could not inhibit
nuclear accumulation of Smad2/3, epidermal growth factor (EGF)
or insulin stimulation, which induces RanBP3 phosphorylation
(Yoon et al, 2008), induced Smad2 nuclear accumulation in
HaCaT cells (supplementary Fig S3 online). Together, these results
indicate that phosphorylation or its mimicry disables RanBP3 to
inhibit TGF-b signalling.

To specifically evaluate Smad2/3 export, we compared
the redistribution of nuclear Smad2/3 into the cytoplasm in
HaCaT cells in the presence of overexpressed RanBP3 mutants.
TGF-b-induced nuclear accumulation of Smad2/3 was reflected
by the decreased level of Smad2/3 in the cytoplasm and the
increased level of Smad2/3 in the nucleus. After removal of TGF-b
and additional treatment with the TbRI inhibitor SB431542, which
blocks phosphorylation and nuclear import of new Smad2/3, the
level of cytoplasmic Smad2/3 gradually increased in 30 min
mostly due to Smad2/3 nuclear export (Fig 2B, lane 1–4). Stable
expression of WT RanBP3 or RanBP3-S58L in HaCaT cells
promoted the nuclear Smad2/3 export (supplementary Fig S4
online, lanes 5–12 versus lanes 1–4). When comparing the two
phosphorylation mutants of RanBP3, we observed a more

rapid accumulation of the cytoplasmic Smad2/3 in the S58L-
expressing stable cells than that in S58D-expressing stable cells
(Fig 2B, lanes 5–12). We further compared RanBP3 and RanBP3
mutants in a highly sensitive quantitative export assay (Dai et al,
2009). In agreement with the results above, RanBP3-S58D
was ineffective in exporting Smad2, whereas unphosphorylatable
RanBP3-S58L showed the same activity as WT RanBP3
in promoting Smad2 export (Fig 2C). In conclusion, S58
phosphorylation disrupts the ability of RanBP3 to mediate nuclear
export of Smad2/3.

Despite its role as a cofactor in CRM1-mediated nuclear
protein export (Englmeier et al, 2001; Lindsay et al, 2001;
Nemergut et al, 2002), RanBP3 can function independently of
CRM1 to mediate nuclear export of Smad2/3 (this study) and b-
catenin (Hendriksen et al, 2005). We observed a similar effect of
S58 phosphorylation in Wnt signalling. RanBP3 and RanBP3-
S58L, but not RanBP3-S58D, inhibited b-catenin-dependent
reporter expression (TOPFlash) (supplementary Fig S5 online).
Therefore, Ser 58 phosphorylation seems to modulate the export
function of RanBP3 in a cargo-independent manner. Notably,
Ser 58 resides in the N-terminal domain of RanBP3, which
contains FXFG nucleoporin-binding motifs that are characteristic
of nucleoporins (Mueller et al, 1998). It remains to be investigated
whether and how Ser 58 phosphorylation of RanBP3 impacts
cargo transport through the nuclear pore.

The negative role of RanBP3 phosphorylation in nuclear export
(Fig 2) is apparently opposite to its positive function in nuclear
import (Yoon et al, 2008). To examine whether RanBP3
phosphorylation also regulates Smad2 import, we examined the
Smad2 nuclear import in the same stable cells using in vitro import
assays (Fig 2D). Smad2 added in digitonin-permeabilized HaCaT
parental cells was imported into the nucleus as monitored by the
increasing amount of nuclear Smad2 (Fig 2D, lanes 4–6).
Compared with HaCaT parental cells, neither RanBP3 nor
phosphorylation mutants affected the nuclear accumulation of
Smad2, suggesting that RanBP3 or its phosphorylation does not
regulate Smad2 import.

PPM1A is a RanBP3 phosphatase
Protein kinases Akt and RSK are reported to phosphorylate
RanBP3 at Ser 58 (Yoon et al, 2008). Because of the important
role of phosphorylation in regulating the transport activity of
RanBP3, an equally important question has been: what is the
identity of the RanBP3 phosphatase? By screening the human
serine/threonine phosphatome, we looked for phosphatase(s) that
potently reduced the P-RanBP3 level induced by a constitutively
active AKT-DDD mutant (data not shown). We found that PPM1A,
which is a Smad2/3 nuclear phosphatase (Lin et al, 2006), was the
strongest candidate for RanBP3 dephosphorylation.

As shown in Fig 3A, expression of Flag-PPM1A (green) clearly
resulted in a marked decrease in the EGF-induced nuclear P-
RanBP3 level (red) in comparison with the neighbouring non-
transfected cells. In sharp contrast, PPM1A-D239N, a catalytically
inactive mutant of PPM1A (Lin et al, 2006), could not decrease the
nuclear P-RanBP3 level, indicating that the phosphatase activity of
PPM1A is required for reducing P-RanBP3 (Fig 3A). Other
members in the PPM family such as PPM1F and PPM1G could
not block EGF-induced nuclear P-RanBP3 accumulation, con-
firming that the effect of PPM1A on RanBP3 is specific
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(supplementary Fig S6 online). Western blotting analysis further
showed that WT PPM1A, but not the mutant D239N, reduced the
level of P-RanBP3 (Fig 3B). This PPM1A-induced reduction of P-
RanBP3 was not due to the proteasome-dependent degradation
because the proteasome inhibitor MG132 did not reverse the
effect of PPM1A on the P-RanBP3 level (Fig 3C). To rule out the
possibility that PPM1A activates another phosphatase in cells that
could be the direct RanBP3 phosphatase, we performed an in vitro

phosphatase assay using recombinant PPM1A. PPM1A, but not the
D239N mutant, evidently dephosphorylated RanBP3 (Fig 3D) and
Smad3 (supplementary Fig S7 online). These data strongly support
PPM1A as a bona fide RanBP3 phosphatase.

To further elucidate the physiological role of PPM1A as a
RanBP3 phosphatase, we took a loss-of-function approach using
mouse embryonic fibroblasts (MEFs) derived from PPM1A�/�

mutant mice (PPM1A-knock out (KO)) and WT control mice
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(WT). As expected, insulin stimulation (1 h) induced a gradual
increase of P-RanBP3 in WT MEFs (Fig 3E, lanes 1–3). Notably,
insulin could induce a higher level of P-RanBP3 in PPM1A-KO
MEFs (Fig 3E, lanes 7–9). After being stopped by addition of
LY294002 (1.5 h), insulin-induced RanBP3 phosphorylation
gradually decreased in WT MEFs (Fig 3E, lanes 4–6), and
yet was sustainable for longer in PPM1A-KO MEFs (Fig 3E,

lanes 10–12). These results collectively showed a specific inverse
correlation between PPM1A activity and nuclear RanBP3
phosphorylation level.

PPM1A directly interacts with RanBP3
To investigate how PPM1A dephosphorylates RanBP3, we
examined whether PPM1A bound to RanBP3 in protein interaction
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assays. Their direct interaction was assessed using in vitro
glutathione S-transferase (GST) binding assays. Results indicated
that recombinant PPM1A bound to recombinant GST–RanBP3
fusion protein, but not GST alone (Fig 4A, lane 5 versus lane 1).
We also mapped the regions of RanBP3 that could bind to PPM1A,
and found RanBP3-R (residues 290–499) mainly mediated the
RanBP3–PPM1A interaction (Fig 4A, lane 4). In comparison,
pull-down using GST–RanBP3-N (residues 1–185) could retrieve a
marginal level of PPM1A (Fig 4A, lane 2), and RanBP3-F
(middle region, residues 182–292) did not interact with PPM1A
(Fig 4A, lane 3).

We then determined whether phosphorylation influenced the
interaction. We found that PPM1A bound to the phosphorylation-
mimic mutant RanBP3-S58D more strongly than the phosphoryla-
tion-dead RanBP3-S58L (Fig 4B, lane 4 versus lane 5), implying
that PPM1A binding to RanBP3 might depend on Ser 58
phosphorylation. To further evaluate this, we examined the
RanBP3–PPM1A interaction in the presence of AKT-DDD, the
constitutively active form of AKT. Overexpression of AKT-DDD

induced RanBP3 phosphorylation, and increased the PPM1A
interaction with RanBP3 (Fig 4C, lane 3 versus lane 2), but not
with RanBP3-S58L (Fig 4C, lane 5 versus lane 4). Consistent with
these results, insulin treatment enhanced RanBP3 phosphorylation
in HaCaT cells (Fig 4D, lane 2 versus lane 1) and consequently the
endogenous PPM1A–RanBP3 interaction (Fig 4D, right panel, lane
6 versus lane 5). These data strongly indicate that PPM1A
preferentially recognizes RanBP3 in its phosphorylated form.
However, neither insulin nor TGF-b stimulation affected PPM1A
activity toward P-RanBP3 (supplementary Fig S8 online). There-
fore, PPM1A action on RanBP3 in these signalling contexts seems
to be regulated through the substrate recognition by the
phosphatase in the nucleus.

In summary, we discovered that PPM1A has dual functions
in terminating Smad2/3 signalling. In addition to its established
role in dephosphorylating Smad2/3 (Lin et al, 2006), PPM1A
also dephosphorylates RanBP3 at the phosphorylation site Ser 58.
This duality of PPM1A, which has not been reported before,
has significant implications. As a net result, PPM1A promotes
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efficient nuclear export of Smad2/3 by coupling and coordinating
the two sequential steps for Smad signal termination; that is,
preparing the cargo for export (in other words, Smad2/3 depho-
sphorylation) and increasing the nuclear exporter activity (RanBP3
dephosphorylation; Fig 5).

METHODS
Details on plasmids, antibodies used/made in the study and other
methods are provided in the supplementary information online.
In vitro phosphatase assay. The phosphatase reaction was
performed at 30 1C for 30 min in a buffer (150 mM Tris–HCl
(pH 7.5), 30 mM MgCl2, 5 mM dithiothreitol and 1 mg/ml BSA)
with recombinant PPM1A and RanBP3, and the dephosphoryla-
tion of Ser 58 was analysed by western blotting with
anti-p-Ser 58 antibody.
Cell fractionation. HaCaT parental or its stable cells were
collected with fractionation buffer (10 mM HEPES (pH 7.9),
1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol, 0.5% NP40
and protease inhibitors) for 20 min on ice, and then fractionated
by centrifugation (1,000 r.p.m., 5 min) at 4 1C to pellet nuclei.
The supernatant were collected as the cytoplasmic fraction.
The fractions were analysed by SDS–PAGE and western
blotting analysis.
Quantitative Smad2 export assay. This was essentially done as
described (Lin et al, 2006). Briefly, HEK293T cells were
transfected with plasmids for MS2-Smad2, CAT reporter
pDM128/8xMS2 and b-galactosidase plasmid (for normalization)
and additional factors under examination. After 45 h transfection,
cell lysates were analysed for chloramphenicol acetyltransferase
activity using ELISA-based assay (Roche). Relative export activity
is calculated by normalizing the CAT activity with b-galactosidase
activity in each sample.

See supplementary information online for additional Methods.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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