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A Change in the Radius of Rotation of F1-ATPase Indicates a Tilting Motion
of the Central Shaft
Mitsuhiro Sugawa,6 Kaoru A. Okada,6 Tomoko Masaike, and Takayuki Nishizaka*
Department of Physics, Gakushuin University, Tokyo, Japan
ABSTRACT F1-ATPase is a water-soluble portion of FoF1-ATP synthase and rotary molecular motor that exhibits reversibility
in chemical reactions. The rotational motion of the shaft subunit g has been carefully scrutinized in previous studies, but a tilting
motion of the shaft has never been explicitly postulated. Here we found a change in the radius of rotation of the probe attached to
the shaft subunit g between two different intermediate states in ATP hydrolysis: one waiting for ATP binding, and the other wait-
ing for ATP hydrolysis and/or subsequent product release. Analysis of this radial difference indicates a ~4� outward tilting of the
g-subunit induced by ATP binding. The tilt angle is a new parameter, to our knowledge, representing the motion of the g-subunit
and provides a new constraint condition of the ATP-waiting conformation of F1-ATPase, which has not been determined as an
atomic structure from x-ray crystallography.
INTRODUCTION
FoF1-ATP synthase is a molecular motor exhibiting revers-
ibility of ATP hydrolysis and synthesis (1–3). The F1 sector
containinga3b3gdε subunits, called F1-ATPase, solely hydro-
lyzes ATP when isolated and the hydrolysis accompanies
counterclockwise rotation of the g-subunit when viewed
from the protruded side (4,5). Inversely, when the common
shaft is forced to rotate in a clockwise manner by the Fo
portion using the proton-motive force across a membrane,
ATP is synthesized from ADP and inorganic phosphate in
three catalytic sites located at the interface between the non-
catalytica-subunit and the catalytic b-subunit (6). The crystal
structure of F1-ATPase revealed that three noncatalytic
a-subunits and three catalytic b-subunits are alternately ar-
ranged around the central shaft g-subunit and three catalytic
sites are in different chemical states (7,8).

The coiled-coil domain of the g-subunit is not essential for
the rotational movement, but the rotation rate is greatly
reduced by truncation of the coiled-coil domain (9). This
study indicates that the g-subunit essentially mediates the
cooperative reactions in the three catalytic sites, and thus
F1-ATPase achieves a high efficiency of chemical reaction.
Therefore, how the g-subunit interacts with the other sub-
units is critical for understanding the rotation mechanism
of F1-ATPase. However, following the demonstration of rota-
tion of theg-subunit andmeasurement of its rotation angle by
single-molecule measurement, other motions were not as
widely investigated. We hypothesized that a tilting motion
of the g-subunit should occur in addition to its horizontal
rotation: the x-ray crystal structure clearly indicates that
the C-terminal domain in the b-subunit accompanies the
bending motion in the vertical direction from the open
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form (bE) to the closed form (bTP); the short helix of the
g-subunit (residues 80–96 in F1-ATPase from bovine mito-
chondria) directly interacts with the C-terminal domain in
the bTP subunit (7,10). Here, we scrutinize the radius of rota-
tion in an isolateda3b3g subcomplex (hereafter referred to as
F1) under an optical microscope and report a change in the
radius of rotation, which notably indicates a tilting motion
of the g-subunit between two chemical states.
MATERIALS AND METHODS

Preparation of F1

Thea3b3g subcomplex of F1-ATPasewas derived from thermophilicBacillus

PS3. For the rotation assay, we used the a3 b(His-10 at N-terminus)3
g(S109C/I212C), which is referred to as the wild-type (WT) F1 in main

text, and the a3 b(His-10 at N-terminus/E190D)3 g(S109C/I212C), which

is referred to as F1(bE190D). These subcomplexes were expressed in

Escherichia coli, purified, and biotinylated as reported elsewhere (11).
Microscopy

The rotation of a polystyrene bead on the g-subunit was visualized

by center-stop darkfield microscopy (11) using an inverted microscope

(IX71; Olympus, Tokyo, Japan) with an objective lens (Plan Apo 100�
or 60�, NA 1.45; Olympus), a center stop (circular reticle with 4 ¼ 500

mm; Qioptiq Photonics GmbH & Co KG, Göttingen, Germany), a halogen

lamp and a charge-coupled device (CCD) camera (Luca; Andor Technolo-

gies, Belfast, Ireland /CCD-300-RCX; Dage-MTI, Michigan City, IN).

The rotation of a gold nanoparticle was visualized by objective-type total

internal reflection darkfield microscopy (12) using an inverted microscopy

(IX71; Olympus) with an objective lens (Plan Apo 60�, NA 1.45; Nikon,

Tokyo, Japan), a laboratory-made perforated mirror (4 ¼ 6 mm), a

532-nm laser (Compass 215M-50; Coherent, Santa Clara, CA), and a

CCD camera (Luca; Andor Technologies).
Rotation assay

The methods for rotation assay were described previously (11,12), except

that the present assay mixture contained 10 mM HEPES-KOH, pH 8.0,
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1 mM MgCl2, and ATP, along with an ATP-regenerating system

(0.020 mg/ml creatine kinase and 0.082 mg/ml creatine phosphate). Obser-

vations were made at 24 5 2�C.
RESULTS

Change in radius of rotation of the mutant F1

In the rotation assay, we used a single polystyrene bead or
a spherical nanoparticle as a probe. Unlike an actin filament
or duplex bead, these probes are symmetrical about all (x, y,
and z) axes and therefore their projected shapes onto the x-y
plane are not changed when the g-subunit is tilted, which
enables us to measure the radius of rotation quantitatively.
F1 from thermophilic Bacillus PS3 (TF1) was used. The
g-subunit was biotinylated to attach a streptavidin-coated
probe specifically. The resulting F1-probe conjugates were
immobilized on a glass and imaged using darkfield micros-
copy (11,12).

In ATP hydrolysis, the unitary step of 120� consists of an
80� substep triggered by ATP binding and a 40� substep after
the catalytic events (chemical cleavage of ATP and release of
the product Pi) (13–16). The dwells before the 80� substeps
were hence named ATP-waiting dwells, and those before the
40� substeps, catalytic dwells. To distinguish between these
dwells, we used the mutant F1(bE190D), which cleaves ATP
100-fold more slowly (its reported ATP cleavage rate is
~3 s�1 (16)), so that the 80� and 40� substep can be observed
at the video rate. As with the rotation assay of F1(bE190D)
previously reported (16), the alternating steps of ~80� and
~40� were observed (Fig. 1 A inset). The plots of the position
of the 220-nm polystyrene bead clearly showed six dwelling
points, identifying three ATP-waiting dwells and three cata-
lytic dwells (Fig. 1 B). We found that a circle circumscribing
Biophysical Journal 101(9) 2201–2206
the triangle formed by the three catalytic dwells was clearly
outside the circle circumscribing the three ATP-waiting
dwells (Fig. 1 B). We also confirmed this finding by calcu-
lating the distances between the dwelling point in each dwell
and the circumcenter of ATP-waiting dwells. The mean
distance of the catalytic dwells (at 80�, 200�, 320�) tended
to be larger than that of the ATP-waiting dwells (at 0�,
120�, 240�) (Fig. 1 C).

We observed the rotations of 93 molecules and measured,
in each molecule, these two circumradii, each of which in-
cluded three averaged points of dwells that were ~120�

apart. The radius of rotation of catalytic dwells was always
larger than that of ATP-waiting dwells, and the difference
was estimated to be 2.6 5 1.0 nm (mean 5 SD, Fig. 1 D).
Possible explanations for this 2.6-nm displacement include
translation, or, alternatively, tilting of the g-subunit at the
transition from the ATP-waiting dwell to the catalytic dwell.
We considered this point from known atomic structures of
the a3b3g complex. Because an atomic structure of TF1
has not been reported, the crystal structures of bovine mito-
chondrial F1-ATPase were used to measure the cavity size
of the a3b3 cylinder (7,10). The distance between Ca of
E292 of the a-subunit and Ca of A278 of the b-subunit at
the opposite side was typically only 1.7 nm (Fig. S1 and
Fig. S2 in the Supporting Material). Considering this cavity
size of the a3b3 cylinder and the diameter of the g-subunit
itself, we surmise that the radial displacement of 2.6 nm is
not attributable to a translation of the coiled-coil domain
of the g-subunit. Furthermore, because the domain of the
g-subunit that protrudes from the a3b3 cylinder has been
suggested to be relatively rigid or stably folded (17), this
part of the g-subunit is unlikely to undergo such a large
conformational change that can result in the ~3-nm
FIGURE 1 Observation of rotation of the F1(bE190D)

with a single 220-nm polystyrene bead at 2 mM ATP at

30 frames per second. (A) Time course of rotation. Inset,

magnified trajectory from the area indicated by brown

lines. The horizontal gray lines are 80� and 40� apart.

(B) Trace of a single bead rotation (purple solid circle)

in ~1800 consecutive frames. Blue and red dotted lines

represent the circumscribed circles of the three ATP-wait-

ing dwells and the three catalytic dwells, respectively. (C)

Mean distances in each dwell from the circumcenter of the

ATP-waiting dwells. The ATP-waiting dwells and the

catalytic dwells are indicated by blue and red solid circles,

respectively. (D) Histogram of the difference between

circumradii of the ATP-waiting dwells and the catalytic

dwells.
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extension that is necessary to result in the observed change of
rotation radius (Fig. S2). Therefore, the tilting motion of the
g-subunit is the most probable cause for the change in the
radius of rotation between the two different chemical states
(Fig. S2).
Change in radius of rotation of the WT F1

Next, we performed an experiment using the WT F1. In the
WT F1, the catalytic dwelling points cannot be observed at
the video rate because the time constant of the catalytic
dwell is only a few milliseconds (15). Instead, we analyzed
the position of long pauses (the time constant of 30~100 s)
caused by ADP inhibition, which occasionally occurs at the
same angle as the catalytic dwells (18). The probe position
in the ADP inhibited state was obviously outside the circum-
scribed circle of the ATP-waiting dwells (Fig. 2 A). The
radial displacement of the ADP inhibited state was 2.3 5
3.7 nm (mean 5 SD; n ¼ 18 in 16 molecules, paired t-
test p < 0.02) (Fig. 2 B), comparable to the results for
F1(bE190D). Furthermore, we also performed the experi-
ment using ATPgS, in which the catalytic dwell was
extended to ~70 ms (16), instead of ATP. The rotation trajec-
tory in the presence of ATPgS was similar to that of
F1(bE190D) (Fig. 2 C, see also Fig. 1 B). The difference
FIGURE 2 Observation of rotation of the WT F1. (A) Trace of consecu-

tive rotation, and the pause due to ADP-inhibition (arrow), observed with

a single 220-nm polystyrene bead at 0.2 mM ATP at 30 frames per second.

(B) Histogram of the displacement of the pause of ADP inhibition from the

circumradius of the ATP-waiting dwells. (C) Trace of rotation of the WT

observed with a single 108-nm polystyrene bead at 1 mM ATPgS at 200

frames per second. (D) Histogram of difference between circumradii of

the ATP-waiting dwells and the catalytic dwells in the presence of ATPgS.
in the radius of rotation between the ATP-waiting dwells
and catalytic dwells was 2.5 5 1.7 nm (mean 5 SD; n ¼
32 molecules, Fig. 2 D). Therefore, the radial displacement
in rotation is a general feature of F1. Furthermore, we note
that in this particular case (Fig. 2 C) the two circles were
not concentric, but whether or not the circles are concentric
does not affect the result that the circumradius of the cata-
lytic dwells is larger than that of the ATP-waiting dwells
(see also Fig. S3).
Evaluation of the tilt angle of the g-subunit

We assume hereafter that the main cause of the change in
radius of rotation is the tilting of the shaft, and quantitatively
evaluate the angle of the tilting. To do this, markers with
different diameters were employed in addition to the
220-nm polystyrene bead: a 108-nm single polystyrene
bead, 489-nm single polystyrene bead, and 40-nm Au nano-
particle. Fig. 3 summarizes the relationship between the
circumradius of the ATP-waiting dwells and that of the
catalytic dwells in all experiments using F1(bE190D). We
evaluated the tilt angle of the g-subunit by trigonometry
(Fig. 3 A), and estimated the angles as 0.8�, 1.3�, 2.6�, and
3.7� with 489-nm, 220-nm, 108-nm, and 40-nm markers,
respectively (Fig. 3, B–E). The results showed that the
g-subunit tilted up to ~4� at the transition from the ATP-
waiting dwell to the catalytic dwell, and notably, the rotation
of the shaft itself was not disturbed even when the angle was
reduced to ~1�, which was likely due to hindrance of the
large markers. In the case of the WT F1 in the presence of
ATPgS with a single 108-nm polystyrene bead, the tilt angle
of the g-subunit was 2.8�, which is consistent with that of
F1(bE190D) with a single 108-nm bead (Fig. S4). Note
that in all observed molecules, the triangles of the ATP-
waiting dwells or the catalytic dwells were acute triangles,
meaning all circumcenters of the ATP-waiting dwells or
the catalytic dwells were inside the triangles.
DISCUSSION

This study shows that the radius of rotation of the g-subunit
is different between the ATP-waiting dwells and the cata-
lytic dwells. This finding was confirmed not only by anal-
ysis of the ATP-driven rotation of the F1(bE190D) mutant,
which cleaved ATP 100-fold more slowly, but also by exam-
ination of the ATPgS-driven rotation of the WT F1. The cir-
cumradius of the three dwelling points of the probe at the
catalytic dwell was larger than that at the ATP-waiting dwell
(Figs. 1 and 2), and this tendency was quantitatively con-
firmed by four markers with different diameters (Fig. 3).
We conclude that our observation was most likely attribut-
able to the tilting of the shaft, because 1), the radius change
was dependent on the size of the marker; and 2), other
factors, such as a shift or an elongation of the subunit par-
allel to the surface, were improbable when we take the
Biophysical Journal 101(9) 2201–2206



FIGURE 3 Evaluation of the tilt angle of the

g-subunit. (A) Schematic diagrams of the geometry

of the rotation assay. The relationship of the cir-

cumradius of the ATP-waiting dwells (x nm) and

that of catalytic dwells (y nm) was expressed by

the formula y ¼ xcosqþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � x2
p

sinq, where q

is the tilt angle from the ATP-waiting dwell to

the catalytic dwell, and b is the radius of the probe

including the size of streptavidin (5 nm) and the

linker length of biotinylation (1 nm). (B–E) Rela-

tionship between the circumradius of the ATP-

waiting dwells and that of the catalytic dwells.

Each point represents one molecule. The red line

represents the fitting line by the formula. The black

line represents the line y ¼ x, meaning that the cir-

cumradius of the catalytic dwells is equal to that of

the ATP-waiting dwells.
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protein size and structure into account. We also found that
dwelling points at the ADP-inhibition state were located
outside the circumradius of the three ATP-waiting dwells
(Fig. 2, A and B). It has been reported that rotation angles
are similar at the states between ADP inhibition and cata-
lytic dwell (16,18). Here, our results indicate that the tilting
direction is also the same between these two different chem-
ical states. This similarity would be important when atomic
structures of F1-ATPase revealed by crystallography are
compared and assessed in terms of their chemical states.

The crucial characteristic of radius change revealed
herein has presumably been overlooked in previous contri-
butions, although it can be observed in rotation traces.
Many of the researchers in this field prefer to use asym-
metric probes, such as an actin filament of micrometer
Biophysical Journal 101(9) 2201–2206
size (4,5), a bead duplex (11,14,15,18), or magnetic beads
(13), to increase the resolution in the rotational direction
of the shaft. These probes have been proven to efficiently
amplify the rotation radius because of their large size; how-
ever, on the other hand, they hinder quantification of the
tilting motions because of their asymmetric shapes. In the
case of a bead duplex, for example, even though the first
bead can precisely bind to the tip of the shaft with a certain
specific angle, the orientation of the second bead to the first
one should be nonspecifically set by chance. Hence, the
centroid of the bead duplex can locate anywhere around
the rotation axis, as the size of each marker is far larger
than a single protein. This constraint to use asymmetric
probes makes it impossible to detect a change in tilt against
the rotation axis at the molecular scale.



FIGURE 4 Structure of the a-subunits (light

orange), the b-subunits (orange), and the g-subunit

(cyan) of bovine mitochondrial F1-ATPase (BF1)

(PDB 1e79 (10.)). The short helix of the g-subunit

(residues 80–96 in BF1) and the DELSEED

(DELSDED in the thermophilic Bacillus PS3

F1-ATPase) region of the b-subunit (residues 394–

400 in BF1) are indicated by a space filling model.

Two biotinylated residues of the g-subunit identi-

fied by sequence alignment are indicated by green

spheres (residue 101 (biotin1) and 200 (biotin2) in

BF1). Note that the actual biotinylated site for

biotin1 is residue 99 in BF1, but because of the

partial gap in the x-ray crystal structure, we alterna-

tively show the closest neighbor residue 101.
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Our findings also indicate that the markers we used here
preferentially attach to the specific side of the tip of the
g-subunit. To make a firm link between the shaft and a
marker, we used a mutant that contains two cysteines (15):
one at the end of the longer helix that comprises the coiled-
coil structure protruding cylinder (biotin2 in Fig. 4); and
one at the top side of the short helix, which directly interacts
with the DELSEED region in the C-terminal domain of the
b-subunit (biotin1 in Fig. 4). These two cysteines were
successfully biotinylated, and therefore bound to the avidin
coated on the surface of a single marker so as to make the
curvature of the marker fit with their surfaces. The configura-
tion of the attachment in our experimental procedure would
be well reproducible, which made it possible for us to
measure the change in radius. Note that if therewere a variety
of orientations for the shaft-marker binding, the radius of the
rotation could be both larger and smaller when the shaft tilts,
because the radius change depends on the geometry of the
center of the marker against the rotation axis.

Our results indicate that the g-subunit tilts ~1–4� at the
transition from the ATP-waiting dwell to the catalytic dwell.
This estimation depends on the size of the markers (Fig. 3);
the tilting angle decreased to ~1� when the diameter was
increased to 500 nm, which is 50 times larger than the
size of a single F1 molecule. The apparent tilting angle could
be underestimated for larger probes, presumably because
their stochastic collision with the glass substrate under
Brownian motion decreases the deviation toward the glass
and thus makes the estimation of the average angle smaller.
Here, we conclude that the tilting angle was 4�, as estimated
from the smallest marker, which had a diameter of 40 nm,
close to the protein scale. In addition, the rotation rates
are slower for the larger probes (see Table S1). Note that
the effect of viscous friction on the probe against the
medium is negligible in our measurement (5,15); the rota-
tional motion of the probe during each step was much faster
than the time resolution of our measurement. Therefore, we
surmise that consecutive rotation could be affected to some
extent by larger probes, perhaps in the form of their sto-
chastic collision to a substrate surface. Evaluation of the
tilting angle and rotation rate is thus beneficial to check
whether nanoparticle markers work properly to detect the
intact behavior of molecules.

We found that the binding of ATP and the subsequent
hydrolysis not only caused the g shaft to take þ80�

and þ40� rotational steps in the rotational direction (13–16),
but also þ4� and �4� movements in the tilting direction,
respectively. However, our results could not be tested against
known atomic structures because the previously reported
crystal structures of F1-ATPase were found to mimic the
conformation in the catalytic dwell or in the ADP inhibition
state (11,19,20), and thus the ATP-waiting conformation of
F1-ATPase remains unresolved. Okazaki and Takada (21)
analyzed all the previously reported atomic structures using
principal compartment analysis, and reported that the tilting
angle of the g shaft varies �2� to þ3� around the averaged
atomic structure, with its angle being particularly dependent
on the conformational changes of the b-subunit. Although
their analysis did not include the ATP-waiting conformation,
we believe that their result supports our conclusion. Here,
we present, to our knowledge, a new constraint condition
of the ATP-waiting conformation. Our previous study also
revealed the previously undescribed conformational set of
three b-subunits in the ATP-waiting dwell (11). As additional
constraint conditions are revealed in future studies, we will
gain needed information for constructing a conformation
model in the ATP-waiting dwell.
SUPPORTING MATERIAL

A table and four figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(11)01074-5.
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