
Biophysical Journal Volume 101 November 2011 2223–2231 2223
Base-Flipping Mechanism in Postmismatch Recognition by MutS
Sean M. Law† and Michael Feig†‡*
†Department of Biochemistry & Molecular Biology and ‡Department of Chemistry, Michigan State University, East Lansing, Michigan
ABSTRACT DNAmismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokary-
otes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molec-
ular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the
DNA surrounding a G$T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the
mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further exam-
ined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of
~2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be
correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely
leading to sliding-clamp formation.
INTRODUCTION
The integrity of the genome is safeguarded from replication
errors by an evolutionarily conserved DNA mismatch repair
(MMR) pathway. MMR in Escherichia coli begins with the
mismatch recognition protein, MutS, scanning the DNA for
base-base mismatches and small insertion/deletion loops
(1). Upon mismatch recognition, MutL binds to MutS
followed by further downstream repair events to ultimately
restore the parental genotype (2–9). Defects in the MMR
pathway lead to replication and recombination errors and
have been linked to hereditary nonpolyposis colorectal
cancer in humans (10) and are likely to play a role in other
types of cancer as well (11).

Crystal structures of prokaryotic MutS and one of its
human homologs, MSH2-MSH6, bound to various DNA
mismatches, have provided mechanistic insight into the
mismatch recognition process (12–21). Heteroduplex
DNA bound to MutS (Fig. 1 A) is bent by ~45–60� toward
the major groove at the site of the mismatch. Mismatch
specific contacts are made by a conserved F36-X-E38 motif
(Fig. 1 B). The F36, first identified in cross-linking studies
(22), forms an aromatic ring stack on the 30 side of the
mismatched base. Mutation of F36 abolishes mismatch
binding in vitro and is associated with defective MMR
in vivo (23–25).

The intrusion of a Phe residue into the duplex stack
resembles intercalating residues commonly found in other
DNA repair systems such as DNA glycosylases, T4 endonu-
clease V, and DNA demethylases, all of which involve
a base-flipping mechanism (26,27). A similar base-flipping
mechanism has also been proposed for MutS (19,28–31)
but direct evidence has been lacking to date.

A recent FRET study has indicated that the MutS-DNA
complex may involve transient intermediate states and
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exhibit more dynamics than suggested by the crystal struc-
tures (32). More detailed insight into the dynamics of
the MutS-DNA complex during mismatch recognition is
difficult to obtain with experiments but can be gained
from computer simulations. Previous computational studies
of MutS and homologs include normal mode analysis
(33) and limited molecular dynamics (MD) simulations
(34–36). Here, we present results from submicrosecond
MD simulations of the MutS-DNA complex to focus on
the details of the postmismatch recognition process. In
particular, we describe the observation of spontaneous
base flipping of the base adjacent to the mismatch site
when bound to MutS. Quantitative aspects of the base-
opening transition were additionally analyzed with the
Hamiltonian replica exchange method (HREM) (37). Our
results suggest that flipping of the base adjacent to the
mismatch is energetically likely in the MutS-DNA complex.
Furthermore, it appears that base flipping may be coupled
to conformational changes in the protein, suggesting a mech-
anistic role during repair initiation by MutS.
MATERIALS AND METHODS

Simulated systems and molecular dynamics
protocol

Molecular dynamics (MD) simulations of E. coli MutS in complex with

DNA containing a G$T mismatch were carried out with explicit solvent.

The starting conformation of the MutS-DNA complex was taken from the

crystal structure 1W7A (18). Missing residues 660–667 in the S1 (mismatch

binding) monomer were completed using the loop modeling (38) function

inMODELER, version 9 (39). Visual comparison of the model with a recent

crystal structure of MutS where the disordered loop was resolved (20)

showed no appreciable differences. Missing residues in the homodimeric

S2 subunit were modeled after the S1 chain. Histidine ionization states

were predicted using PROPKA3.1 (40) and confirmed visually based on

the local protein environment. Nine simulations were carried out with all

possible combinations of bound ATP, bound ADP, or no nucleotide at either

the S1 or S2 ATPase domain. Positioning of the nucleotides was based on
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FIGURE 1 X-ray crystal structure of E. coli MutS (12). (A) MutS is

colored with respect to its DNA binding domains (red/pink), connector

domains (orange or pale orange), core domains (yellow or pale yellow),

clamp domains (green or pale green), and ATPase domains (blue or pale

blue). DNA (beige) bases and (brown) backbone. Bound nucleotides are

omitted for clarity. (B) A conserved Phe36-Xaa-Glu38 motif interacts with

the G$T mismatch through the DNA minor groove. (Green) Protein;

(pink) the mismatch; and (yellow) G/C(�1) basepair with the 50 adjacent
base C21. (Black dotted lines) Bifurcated basepair hydrogen bond in the

G$T mismatch and hydrogen bonding between Glu38 and T22.

2224 Law and Feig
resolved nucleotides in the 1E3M (12) and 1W7A (18) crystal structures.

The ‘‘X:X’’ notation is used here to denote which nucleotides are bound

to the S1 and S2 subunits, respectively (e.g., ATP:ADP means that ATP

is bound to S1 and ADP is bound to S2 while NONE:NONE is free

of nucleotides). In addition to the wild-type system, simulations of an

S1-F36A mutant with four different nucleotide combinations (ADP:NONE,

ADP:ADP, ADP:ATP, NONE:NONE) were also carried out (see Supporting

Material for more details).

Each structure was solvated using the TIP3P water model (41) and elec-

trically neutralized with sodium ions. The total dimension of each system

was ~155 Å � 117 Å � 94 Å and contained >165,000 atoms. The

particle-mesh Ewald method (42) was employed to account for electrostatic

interactions. The direct electrostatic sum and Lennard-Jones interactions

were truncated at 10 Å with a switching function becoming effective at

8.5 Å and a nonbonded list cutoff at 12.5 Å. The all-atom CHARMM27/

CMAP force field was used for all calculations (43–45) and chosen because

it has been extensively validated in many other simulations of protein-

nucleic acid simulations (46–48) including simulations describing base

flipping (49). Each system was independently minimized and equilibrated

followed by over 200 ns of production simulation (see in the Supporting

Material).
Hamiltonian replica exchange simulations
and free energy calculations

To investigate the energetics of base flipping, umbrella sampling simula-

tions were carried out. A harmonic biasing potential was applied to enhance

base flipping and to obtain sufficient statistical sampling for estimating the

free energy profile associated with base flipping. The reaction coordinate

used for the biasing potential is a pseudodihedral angle introduced earlier

(50). The pseudodihedral is based on the following four heavy atom sites:

1, center of mass of the G9, T22, C11, and G20 bases (flanking the base of

interest, i.e., the cytosine base next to the mismatch site, C21); 2), T22

phosphate; 3), C21 phosphate; and 4), center of mass of the C21 base

(see Fig. S4 A). Although other reaction coordinates have been utilized in

the past to study base flipping (49,51–53), this pseudodihedral angle
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definition provides an improvement over previous methods (50) and has

been shown to produce results that are in good agreement with experiment

(54). The biasing potential was applied using the miscellaneous mean-field

potential module (55) of CHARMM and has the form

wiðqÞ ¼ ki
2
ðq� qiÞ2; (1)

where ki is the force constant set to 100 kcal/mol/rad2, q is the pseudodihe-

dral angle, and qi is the target value for the ith window. A total range of

0–162.5� was covered in 2.5� increments to result in 66 windows. Instead

of conventional umbrella sampling, we used HREM (37) with 66 replicas

corresponding to the umbrella windows to enhance sampling efficiency

further. These simulations involved the entire E. coli MutS-DNA complex

in explicit solvent. They were carried out using CHARMM (56) in conjunc-

tion with the MMTSB Tool Set (57). Starting structures for different

replicas were taken from one of the unbiased simulations where base

flipping was observed spontaneously. Each starting structure was initially

subjected to 200 ps of equilibration with the biasing potential of a given

replica. Each replica was then simulated for 10.5 ns (for a total simulation

time of 693 ns for all 66 replicas). Exchanges between neighboring replicas

were attempted every 1 ps. A quantity of 23–37% of the exchanges was

successful.
Analysis

Most of the analysis was carried out with the MMTSB Tool Set and

CHARMM, version c35a1, based on the 200-ns production time for

the unbiased simulations. Protein root mean-square deviation (RMSD)

values were calculated using Ca atoms. The DNA RMSD was calculated

using all heavy atoms omitting the ultimate and penultimate bases. One-

dimensional potentials of mean force (PMFs) were generated from the

replica exchange simulation using the weighted histogram analysis method

(58) after discarding the first 5 ns as equilibration. Two-dimensional PMFs

along additional degrees of freedom were estimated from the HREM simu-

lations (also with the first 5 ns removed as equilibration) using the standard

weighted histogram analysis method under the assumption that all other

degrees of freedom orthogonal to the pseudodihedral angle are thoroughly

sampled (59). All structural figures were generated using PyMOL (60).
RESULTS AND DISCUSSION

A series of nine 200-ns MD simulations of MutS in complex
with a G$T mismatch containing DNAwere analyzed with a
primary focus on MutS-DNA interactions and the dynamics
of mismatch DNA when bound to MutS. The simulations
differed in the nucleotide(s) bound in the ATPase sites
because the simulations were initially set up to study the
effect of different nucleotides on the MutS structure. During
the course of the simulations reported here, we did not see
significant structural perturbations that could be correlated
with the type of nucleotide bound to the ATPase domain.
In fact, we found that the MutS-DNA complex sampled
similar conformations in all nine simulations. The Ca

RMSDs were all within 3–4 Å relative to the x-ray structure
(see Fig. S1 A). Furthermore, clustering analysis shows that
structures from all simulations fall into closely related
conformations, with overlapping sampling of conformations
belonging to the four largest clusters (see Fig. S1 B). This
suggests that different nucleotides bound in the ATPase
domain do not dramatically affect the overall MutS structure
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on the submicrosecond timescales covered here. Conse-
quently, the simulations discussed here are treated as nine
independent simulations of essentially the same system,
providing a total of 1.8 ms of sampling of the MutS-DNA
complex.
Dynamics of DNA and base flipping
in the MutS-DNA complex

Overall, the DNA bound to MutS maintained its bent
structure in all simulations as indicated by a heavy-atom
RMSD of 1–4 Å (see Fig. S1 A). However, a more detailed
analysis of basepair hydrogen bonding revealed significant
base dynamics near the mismatch. More specifically, the
G/C(�1) basepair adjacent to the mismatch site on the 50-
side of the thymine of the G$T basepair lost Watson-Crick
hydrogen bonding in most of the simulations (Fig. 2 A).
The X/Y(5N) notation is used here to denote the X/Y
basepair relative to the thymine of the G$T mismatch (see
Table S1 in the Supporting Material). The G$T mismatch
remained stable in all but one of the simulations. In that sim-
ulation (NONE:ADP), a new N3-O6 hydrogen bond was
formed within the same basepair due to shearing of the
G$T basepair. The next-neighbor A/T(þ1) and C/G(�2)
basepairs stably maintained standard hydrogen bonding in
all simulations (Fig. 2 A).

The instability of the G/C(�1) basepair was unexpected
and involved the loss of N1–N3 hydrogen bonding and at
least partial opening of the C21 base into the major groove.
FIGURE 2 DNA basepair hydrogen bonding for C/G(�2), G/C(�1), G$T mi

basepairs), and N1-O4 (G$T mismatch) distance time series in each simulation

3 Å. (A) Wild-type simulations with different nucleotide combinations. (B) F36
In one of the simulations (NONE:NONE) all of the G/C(�1)
hydrogen bonds were lost within the first 10 ns and the base
subsequently flipped out into the major groove, where it
remained for the rest of the simulation. This observation
appears to be in conflict with previous nuclear magnetic
resonance and molecular dynamics studies where significant
instability of G$T pairs over canonical basepairs has been
established (61,62). However, these studies were not con-
ducted in the presence of MutS and therefore do not account
for the severe bend in the DNA caused by interactions with
MutS (12,13,28). The bending leads to significant distor-
tions of the grooves near the mismatch site. In particular,
the major groove width is reduced to only 13 Å at the
G$T mismatch but increased to 18 Å at the G/C(�1) base-
pair (see Fig. S2) compared to the major groove width of
canonical B-DNA at ~17 Å (63). The narrow major groove
at the G$T pair effectively prevents base opening whereas
the wider major groove at the G/C(�1) basepair is more
favorable for base opening.

To test a possible role of F36 in stabilizing mismatch
basepairing and promoting G/C(�1) base flipping, we ran
four additional 60-ns simulations of a S1-F36A mutant.
We find that mismatch basepairing is stably maintained
without F36 (see Fig. 2 B), although the T22 base reorients
with different glycosyl rotation angles (see Fig. S3, C
and D). Interestingly, we again observed spontaneous base
opening of the G/C(�1) basepair in one of the simulations
(ADP:NONE:F36A) in a very similar manner as in the
NONE:NONE simulation (see Fig. 2 B). These results
smatch, and A/T(þ1) basepairs from N3-N1 (C/G basepairs), N1-N3 (A/T

are described here. (Blue dotted lines) Typical hydrogen-bond distances of

A mutant simulations.
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suggest that F36 does not play a significant role in either
stabilizing mismatch basepairing or promoting base opening
of the C/G(�1) basepair.

Progression of the base-flipping process was quantified
with the help of a pseudodihedral angle, q (see Materials
and Methods), with negative values as the base opens into
the major groove (see Fig. 3 A). Fig. 3 K shows snapshots
of key time points during the base-opening process. Initially,
G/C(�1) was perfectly basepaired (q z 0). The base then
rapidly lost basepair hydrogen bonds and stacking interac-
tions to reach a semiopen state (q ¼ �40�) that was stable
for a few nanoseconds. Further opening led to another
intermediate state that was stabilized by hydrogen-bonding
interactions to the DNA backbone (q ¼ �81�). This state
also persisted for a few nanoseconds. Eventually, the C21
base opened entirely at ~10 ns from the beginning of the
production phase of the simulation. The base was briefly
fully exposed to the solvent environment (q ¼ �130�) but
then began to interact with the DNA backbone of the
opposing strand (q ¼ �120�). This conformation persisted
from t z 20 ns to t z 120 ns. During the remainder of
the simulation, C21 moved back toward various semiopen
states but without re-forming a fully stacked configuration.
C21 base flipping was associated with a change in the
C21 backbone z-torsion angle from ~�150� to 150� (see
Figs. 3 B and 4 B, and see Fig. S3 A) as generally expected
for DNA base flipping (64). Otherwise, the DNA structure
remained largely unaffected by the opening of the C21
base on the timescale of our simulations.
FIGURE 3 Correlation of C21 base flipping in NONE:NONE simulation with

Pseudodihedral angle. (B) C21 backbone z-torsion angle. (C) Movement of the S

(E) Movement of S2-D1 along Y. (F) Movement of S2-D1 along Z. (G) S2 Ser66

Salt bridge distance between S2 Arg667 and S1 Glu594 measured between heavy a

Ca-RMSD of the S2 signature loop. (K) Snapshots of base-flipping progress view

for clarity. (Pink) G$T. (Yellow) G/C(�1). (Gray) C/G(�2). (Red arrow) C21.
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Our observation of spontaneous base flipping in DNA
complexed to MutS provides new molecular-level evidence
for the previously proposed idea that base flipping may play
a role in mismatch recognition (19,28–31). To gain more
quantitative insight we also carried out an HREM simula-
tion of the NONE:NONE MutS-DNA complex where
sampling along the base-flipping reaction coordinate was
enhanced with a total 10.5 ns of simulation time for each
replica. The main result is a PMF free energy profile along
the base-flipping reaction coordinate (see Fig. 4 A). The
PMF has a prominent minimum near 0� for the fully base-
paired state and a second minimum at ~�105� correspond-
ing to the flipped-out state. The two states are estimated to
be separated by a 2 kcal/mol energy barrier. To examine
the convergence of the PMF we compared it to PMFs with
shorter simulation lengths (7.5 ns/replica and 9 ns/replica)
and found negligible change between the 9.5 ns/replica
and 10.5 ns/replica PMFs (see Fig. S4 C). Based on the vari-
ation of the PMF over time, we roughly estimate the uncer-
tainty to be between 0.1 and 0.5 kcal/mol. Thus, the HREM
simulation confirms the existence of a favorable, flipped-out
state. Based on the PMF we calculate that the G/C(�1)
basepair is intact (q R �20�) for 69% of the time, but the
C21 is flipped-out to varying degrees during the remaining
31% with an estimated uncertainty of 5–10% based on the
uncertainty of the PMF.

The observed 2 kcal/mol barrier suggests conformational
transitions on nanosecond timescales. This is in apparent
contradiction with the rarity of full base-opening/-closing
various structural quantities (see Materials and Methods for definitions): (A)

1 DNA binding domain (S1-D1) along X. (D) Movement of S2-D1 along X.
8 to S1 Asn616 Ca-Ca distance. (H) S1 Asn

616 J backbone torsion angle. (I)

toms. (Blue line) A distance of 3 Å corresponding to hydrogen bonding. (J)

ed from the major groove. Protein, water, and additional DNA are omitted



FIGURE 4 Free energy profiles from the HREM simulation: (A) Free

energy of base flipping (10.5 ns/replica). (B) C21 backbone z-torsion angle

versus base flipping. (C) Movement of S1-D1 along X versus base flipping.

(D) Movement of S2-D1 along X versus base flipping. (E) Movement of S2-

D1 along Y versus base flipping. (F) Movement of S2-D1 along Z versus

base flipping. (G) S2 Ser668 to S1 Arg616 Ca-Ca distance versus base flip-

ping. (H) S1 Arg616 J backbone torsion angle versus base flipping.
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events in the unbiased simulations. In the replica exchange
simulations, complete base-opening/-closing was also never
observed for any individual replica, although significant
sampling overlap from many replicas at each pseudodihe-
dral value (see Fig. S4 B) suggests that the PMF presented
in Fig. 4 A is realistic. This suggests the presence of signif-
icantly higher kinetic barriers in orthogonal degrees of
freedom not captured by the projection onto the C21
pseudodihedral angle. One source for such barriers is likely
the torsional dynamics of the z-backbone dihedral with
a barrier height estimated to be >5 kcal/mol in previous
simulations of base opening (65). Another source for slow
base-opening/-closing kinetics appears to be the presence
of long-lived water molecules at the constrained protein-
DNA interface (see Fig. S5, A and B). An analysis of resi-
dence times of water molecules located within 4 Å of the
G10 base from the NONE:NONE simulation found that
waters located on the major groove side and within the
cavity left by the flipped out C21 base had residence times
up to 500 ps (compared to ~50 ps of surface-bound waters,
see Fig. S5, C and D), whereas waters that managed to enter
the cramped minor groove side essentially become trapped
near the N2, N3, and N9 atoms of the G10 base with even
longer residence times in the nanosecond range (see
Fig. S5, E and F). The presence of these long-lived water
molecules likely hinders base closing, which cannot be
accomplished unless these waters are displaced. This would
explain why C21 never fully restacked in the NONE:NONE
simulation despite the z-torsion reverting to the �150�

range near the end of the simulation.
Our results suggest that base opening may occur on sub-

microsecond timescales because it was observed spontane-
ously in two of our simulations. Most likely, base-opening
kinetics is dominated by the kinetic barrier for z-backbone
dihedral transitions. Base closing, on the other hand,
appears to involve much longer timescales due to obstruc-
tion by long-lived water molecules. This would imply that
the flipped-out state may be kinetically stabilized for
a long time despite being thermodynamically slightly less
favorable than the fully stacked state according to our
analysis.
Opening of the 50 adjacent base next to the
mismatch is in agreement with experiment

Direct structural evidence for DNA base flipping in the
MutS-DNA complex is lacking, but there is indirect exper-
imental evidence for at least partial opening of the 50 adja-
cent base next to the mismatch: before the discovery of
the MutS structure, chemical footprinting was used to
uncover the interactions between Thermus aquaticus MutS
and the DNA minor groove (66). MutS-bound DNA with
a G$T mismatch was found to be protected on the 30 side
of the lesion but not on the 50 side of the mismatched
thymine where the �4, �2, and �1 positions were hyperre-
active to oxidative attack. This was attributed to widening of
the minor groove when the crystal structure became avail-
able (13). To further understand this data, we analyzed the
effect of MutS on solvent-accessibility of H10 (the hydrogen
attached to the C10 attack site located in the minor groove)
from our simulations. We found that without base flipping
(in ATP:NONE), access to the �4 base is fully maintained,
access to the �2 base is partially hindered, but the �1 base
is largely occluded (see Fig. S5 G). Base flipping (in
NONE:NONE), on the other hand, fully exposes the �1
base so that all three bases become vulnerable to oxidative
attack as indicated by experiment.

In a more recent study, 2-aminopurine, a fluorescent
adenine analog often used to probe DNA base flipping,
was incorporated into various positions next to a G$T
mismatch (67). It was found that the mean fluorescence
lifetime increased when the mismatch was bound by
MutS. Furthermore, the level of increase in the observed
mean fluorescence lifetime was significantly higher when
the probe was placed on the 50 side of the mismatch as
compared to other positions. This increase was attributed
to an increased amplitude of the longest lifetime component,
Biophysical Journal 101(9) 2223–2231
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which could be explained by an increased fraction of extra-
helical states. Interestingly, the relative population with the
increased fluorescence lifetime, calculated by summing up
the fractional amplitude of the two longest lifetimes, was
estimated to be ~31% (67), the same percentage as the frac-
tion of flipped-out conformations in our HREM simulation.
Although we believe that a qualitative comparison with the
experiment is meaningful, the surprisingly good quantitative
agreement is likely fortuitous because of uncertainties in
both the experimental and computational results as well as
differences between experiment and simulation. In the
experimental results, each reported lifetime results from
numerous conformers with comparable quenching rates.
Furthermore, the experimental study describes opening of
an A/T (or 2-aminopurine/T) basepair that is known to
have different base-opening rates than G/C basepairs (62),
as in the MutS-DNA complex studied here.
Changes in MutS as a result of base flipping

Experiments suggest that initial mismatch recognition is fol-
lowed by three changes in MutS: First, biochemical data
indicate altered activity of the ATPase domain as a result
of mismatch recognition where ADP is exchanged for
ATP and hydrolysis is stalled (21,68–71). Second, the
affinity for MutS-MutL complex formation is increased.
Third, a transition to a sliding clamp formation has been
suggested to allow MutS to leave the mismatch site after
initial recognition so that DNA repair can take place
(7,8,71,72). Thus, if base flipping plays a role in postmis-
match recognition, sliding-clamp formation, and/or initia-
tion of repair, one would expect that there are correlated
changes in the MutS structure in the DNA binding domains,
the core and connector domains where MutL is proposed to
bind (73), or in the ATPase domains. In our simulations we
identified changes in the DNA binding domains of both
chains and local rearrangements in the ATPase domains,
but no significant changes in the core and connector
domains of MutS correlated with base flipping.

DNA binding domain motions were characterized by a
local coordinate system: X corresponds to motion along
the DNA helical axis, Y to motion perpendicular to the heli-
cal axis toward the tips of the clamp domains, and Z to
motion across the S1-S2 dimer interface (see Fig. S6 A).
The S1 DNA binding domain (S1-D1), which interacts
specifically with the DNA mismatch, showed a significant
shift by, on average, 1–1.5 Å along X in the simulation
where the base is flipped out (Fig. 3 C) compared to all of
the other simulations where the base did not flip out (see
Fig. S6, C and E). Motion of S1 along Yand Z was not corre-
lated with base flipping (see Fig. S7, A and B). Due to the
bent shape of the DNA, this motion effectively moves the
domain away from the DNA (see Fig. S6 B). The S2 DNA
binding domain shows a significant shift along Z, laterally
away from the DNA toward the S1 core and a moderate
Biophysical Journal 101(9) 2223–2231
shift along X and Y (see Fig. S6, F–H). As a result of the
motion of the S2 domain, MutS-DNA interactions are also
reduced (see Fig. S6 B) and these motions appear to be
closely coupled to base flipping (Fig. 3, D–F). Additional
analysis based on data from the HREM simulations
confirms a strong correlation between base flipping and
the motion of S2 along X, Y, and Z (see Fig. 4, D–F) and
to a lesser extent for S1 along X (see Fig. 4 C) but not along
Y or Z (see Fig. S7, C and D). An apparent correlation
between motion of the DNA binding domain and base
flipping, points at a possible connection with sliding-clamp
formation that is assumed to involve reduced MutS-DNA
interactions. Recently, it was demonstrated that MutS
undergoes an ATP-induced conformational change that
involves interactions between the DNA binding domain
and the connector domain (74). These observations may
be related to the domain motions described by our
simulations.

Functional coupling between mismatch recognition and
ATPase activity requires allosteric signaling over 90 Å
from the DNA binding domains to the ATPase domains
(see Fig. 1 A). Based on the MutS structure, it appears
that such communication would involve the core and
connector domains that provide the structural connection.
In fact, there is a string of highly conserved residues from
the DNA-binding to the ATPase domains (see Fig. S8 A).
In our simulations we did not observe motions along this
pathway that could be uniquely attributed to base flipping,
but we did identify changes in the ATPase domain itself in
the vicinity of the S1 nucleotide binding pocket that appear
to be correlated to base flipping.

Ser668, a conserved residue in MutS homologs, was previ-
ously implicated in ATP hydrolysis (18,20,75). Crystal
structures suggest that Ser668 in the S2 monomer may
move closer to the opposing S1 nucleotide binding site by
~5 Å to take part in ATP hydrolysis (18,20) (see Fig. S8
B). Although the exact mechanism is unclear, it has been
postulated that S2 Ser668, located at the end of an a-helix,
could convey the positive charge generated from the
helix dipole to the g-phosphate to assist with catalysis of
the hydrolysis reaction (18,20). For this structural rearrange-
ment to occur, Asn616, situated in the P-loop (see Fig. S8 B),
has to move away from the dimer interface to allow Ser668 to
complete the active site (18). Significant reduction in
ATPase activity after mutation of either Asn616 or Ser668

supports such a mechanism (18,75).
In our simulations, we found that the S2 Ser668-to-S1

Asn616 distance, the backbone conformation of Asn616 in
the S1 monomer, and the ability to form a salt bridge
between Glu594 of the S1 monomer and Arg667 of the S2
monomer, are all correlated with base flipping. Changes in
the backbone of Asn616 were measured by the J (N-Ca-
C-N) torsion angle. Fig. 3 G shows a significant decrease
in the Ser668-to-Asn616 Ca-Ca distance from ~9 Å to 5 Å
upon base flipping that may promote nucleotide hydrolysis
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as indicated by the biochemical data. As shown in Fig. 3 H,
the Asn616 J angle changes from 125� to �30� at the same
time as the base flips out and, as a result, allows Ser668 to
approach the S1 active site. A correlation with base flipping
is confirmed from the HREM data where base opening
appears to limit the Ca-Ca distance between Ser668 and
Asn616 to 6–8 Å instead of 6–12 Å when the base is fully
stacked (Fig. 4 G). Similarly, base flipping seems to broaden
the conformational sampling of the Asn616 J value to the
full range from �50 to 180� whereas only extended
conformations are observed for fully base-stacked DNA
(see Fig. 4 H).

Repositioning of S1 Asn616 also allows the S2 Arg667 side
chain to relocate and form a salt bridge with S1 Glu594

(Fig. 3 I and see Fig. S8 C). The interaction between these
two residues further stabilizes the S2 signature loop in
which Ser668 resides (see Fig. 3 J) and Arg667 is also posi-
tioned to hydrogen-bond with the ribose of adenosine (see
Fig. S8 C). Based on these results, we speculate that base
flipping may promote (or restore) the ability to hydrolyze
ATP in the S1 binding site. However, there remains uncer-
tainty about the exact mechanism of how variations in
MutS-DNA interactions are communicated to the distant
ATPase domain.

Known crystal structures of MutS are very similar with
either ATP (18) or ADP bound in the ATPase domains
(12). This suggests that they more likely represent the post-
mismatch recognition state where ATP hydrolysis is stalled
and MutS is poised for sliding-clamp formation. The simu-
lation results suggest that this structure may promote base
flipping in DNA, which in turn seems to initiate sliding-
clamp formation. The correlated changes in the ATPase
domain suggest a connection to ATPase activity. The coin-
cidence of apparent changes in the ATPase domain and
DNA binding domain as a result of base flipping would be
consistent with a previously suggested role of ATP hydro-
lysis during sliding-clamp formation (8,76). However, this
idea is inconsistent with a hydrolysis-independent model
for sliding-clamp formation that is supported by other
studies (7,71). A recent study appears to reconcile these
two models by demonstrating that two nonequivalent
MutS dimers bind to the mismatched DNA and, in the
presence of ATP, one MutS dimer remains bound to (or
near the site of) the mismatch, and at the same time, the
second dimer is free to move along the DNAwhile retaining
its interactions with the first dimer (77). We speculate that
the MutS-DNA conformation observed in our simulations
may correspond to the dimer that can slide along the DNA.
CONCLUSIONS

Submicrosecond computer simulations were used to report
direct structural evidence for DNA base flipping in the large
MutS-DNA system. The instability in DNA basepairing was
found to be specific for the 50 adjacent basepair instead of
the mismatch. This is in contrast to previous hypotheses
but appears to be in good agreement with experimental
data. Energetic analysis of the base-flipping process con-
firmed the existence of a stable flipped-out state in the pres-
ence of MutS and revealed an estimated 2–2.5 kcal/mol
activation energy barrier for base flipping. Kinetic rates
for base flipping were estimated to be in the microsecond
range due to slow DNA backbone and water rearrange-
ments. Further analysis of changes in the MutS structure
suggests that base flipping leads to motions of the DNA-
binding domains away from the DNA and more subtle
changes in the ATPase domain.

Taken together, our simulations suggest that base flipping
may be the key step that allows MutS to transition from the
postmismatch recognition complex to the sliding-clamp
formation. We hope that our results will motivate further
computational and experimental studies to better understand
the mechanistic details of DNA mismatch repair initiation
by MutS.
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