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  Interstitial lung diseases (ILDs) occur across the lifespan, from birth to advanced age. However, the causes, 
clinical manifestations, histopathology, and management of ILD differ greatly among infants, older children, 
and adults. The historical approach of classifying childhood ILD (chILD) using adult classifi cation schemes 
may therefore have done more harm than good. Nevertheless, identifi cation of novel forms of chILD in the past 
decade, such as surfactant metabolism dysfunction disorders and neuroendocrine cell hyperplasia of infancy 
(NEHI), as well as genomic analysis of adult ILDs, has taught us that identical genotypes may result in distinct 
phenotypes at different ages and developmental stages, and that lung developmental pathways and cellular 
phenotypes are often recapitulated in adult ILDs. Thus comparison of the pathophysiology of ILD in children 
and adults in the context of lung development is useful in understanding the pathogenesis of these disorders, 
and may lead to novel therapeutic interventions for ILDs at all ages.     

  Introduction 

 If there is any “central dogma” of chILD, it is a modifi ca-
tion of the overarching mantra of pediatrics, that is, that 

chILD is “not just small adult” ILD. Largely through the 
work of our pioneers in the fi eld, Dr. Hillman, Dr. Fan, and 
Dr. Langston, we have emphasized that shoe-horning child-
hood ILDs (chILDs) into adult classifi cation systems does 
far more harm than good.  1   Many of the early descriptions of 
chILD considered it a form of idiopathic pulmonary fi bro-
sis (IPF), which is now known to be a disease exclusively 
of adults. However, the child is often father of the man, as 
evidenced by recent resurgence of interest in developmental 
origins of adult disease, the hypothesis that many chronic 
disorders of adults arise during development.  2   ,   3   Thus, while 
from a clinical perspective it makes sense to maintain a 
bright line between chILD and adult ILD, from a teleological 
perspective it is useful to consider mechanisms that might 
be shared between the 2, as they may have critical therapeu-
tic implications. This brief review considers the connections 
between ILDs affecting children and adults, with a focus on 
2 of the “novel” chILD entities, surfactant metabolism dys-
function disorders and neuroendocrine cell hyperplasia of 
infancy (NEHI). Some of this material has been more exten-
sively reviewed elsewhere.  4   

  General pathophysiology of ILD 

 Most ILDs share in common structural remodeling of 
the distal airspaces leading to impaired gas exchange. In 
the past, such remodeling was felt to result from persistent 
infl ammation; however, the more recent paradigm has been 
tissue injury with aberrant wound healing, often resulting 
in collagenous fi brosis. Wound healing and fi brosis are com-
plex, involving numerous cellular processes and molecular 
pathways (eg, cell adhesion, migration, proliferation, apop-
tosis, extracellular matrix (ECM) biology, and phenotypic 
reprogramming). Fibrosis  per se  is more prominent in adult 
ILDs than in chILD disorders. The pathophysiology of lung 
fi brosis (from an adult ILD perspective) has been the sub-
ject of multiple reviews.  5–8   It is useful to start with what is 
known about fi brosis in considering the pathophysiologic 
derangements common to adult and chILDs. 

 Many types of ILDs follow some type of injury to the 
distal airspaces (eg, infection, radiation, environmental 
exposures), resulting in damage to the epithelial or endo-
thelial layers and the associated basement membrane. Many 
authors have thus conceptualized lung fi brosis as a form of 
aberrant repair.  9–12   In bleomycin-induced animal models, as 
well as in genetic models of surfactant disorders, apoptosis of 
the alveolar epithelium has been shown to be a critical early 
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 Genetic disorders in surfactant production and function 
in the lung have been demonstrated to cause signifi cant, 
often severe primary lung disease in full-term infants, a 
variable spectrum of alveolar and interstitial alterations 
in older children, and fi brotic disease in adults. Recent 
 laboratory work including studies in transgenic and knock-
out mice defi ne molecular mechanisms and genotype–
phenotype correlations for these disease entities, and may 
give clues about how age and stage of development affect 
the response to lung injury. The genetic basis of chILD, with 
an emphasis on inherited surfactant metabolic dysfunction 
disorders, is the subject of another review in this volume .17 
The relationship of these disorders to pathophysiology of 
ILD and presentation across the lifespan will be discussed 
here. 

 Hereditary surfactant protein (SP)-B defi ciency is usu-
ally a severe, rapidly progressive respiratory disease in 
newborns, often fatal by 3–6 months of age.  18–20   However, 
children with partial defects in SP-B production have been 
reported with severe chronic lung disease in infancy,  21   and 
2 children have survived beyond 2 years of age, both with 
chronic oxygen therapy. No disorders of SP-B have been 
reported in association with adult lung disease. 

 Age of onset of respiratory symptoms in patients with 
 SFTPC  mutations is highly variable including both early 
(newborn) and late (>70 years) presentation.  22   The 10%–15% 
of affected patients develop respiratory symptoms within the 
fi rst month of life, while 40% develop symptoms between 1 
and 6 months of life. The histopathologic appearance appears 
to vary with age at presentation. In infants, the most common 
histopathologic diagnosis is chronic pneumonitis of infancy. 
Other histopathology diagnoses in children with  SFTPC  
mutations include neonatal pulmonary alveolar proteinosis 
(PAP), infantile desquamative interstitial pneumonia (DIP), 
and nonspecifi c interstitial pneumonia (NSIP). In adults 
with  SFTPC  mutations and chronic ILD, the most common 
histopathologic diagnosis is pulmonary fi brosis with either 
NSIP or nonspecifi c interstitial pneumonia (UIP).  22   ,   23    SFTPC  
mutations rarely cause ILD in adults; in 2 recent studies of 
adults with sporadic UIP or NSIP, only 1 patient out of 135 
was identifi ed with an  SFTPC  mutation.  24   ,   25   Progression of 
disease is variable ranging from no oxygen supplementation 
to need for lung transplantation. Asymptomatic individuals 
with  SFTPC  mutations have also been identifi ed.  22   The wide 
variability in age of presentation, severity, and progression 
with  SFTPC  mutations suggest that additional genetic or en-
vironmental factors modify lung disease. Most of the  SFTPC  
mutations are thought to cause misfolding of pro-SP-C and 
preclude processing of the precursor protein to the mature 
peptide. A primary cellular mechanism to deal with delete-
rious mutant proteins includes the endoplasmic reticulum 
(ER)-based stress response pathways that aid degradation or 
slow production of an offending protein. ER stress response 
proteins are increased in the fi brotic lung tissue of individu-
als with  SFTPC  mutations consistent with aberrant stress re-
sponse as a component of disease.  26–28   

 Expression of a common human  SFTPC  mutation spe-
cifi cally in the lungs of mice resulted in severe disruption 
of lung development.  29   This fi nding is consistent with the 
deleterious effects of the mutated pro-SP-C in human lung 
disease wherein the adaptive mechanisms to cope with a cy-
totoxic or misfolded pro-SP-C are overwhelmed. SP-C has 

event. Infl ammation is present in many types of ILD, and 
many forms of ILD are triggered by infl ammatory events, 
such as infection or hypersensitivity. However, lung infl am-
mation does not necessarily result in fi brotic remodeling, 
and fi brosis can occur in the absence of infl ammation; there-
fore, infl ammation has a prominent, but not an essential, 
role in lung remodeling and fi brosis. ILD occurring in the 
setting of infl ammatory or autoimmune disease occurs in 
both children and adults, and would seem to be where adult 
ILDs and chILDs are most alike, although there have been 
few studies comparing clinical or pathologic manifestations 
of immune-mediated ILD at different ages. Angiogenesis is 
prominent in several animal models of ILD and substantially 
affects outcomes. Many ILDs feature fi broblast proliferation 
and excessive elaboration of ECM molecules such as colla-
gen. Fibroblasts, which normally reside in the scant intersti-
tial spaces between alveoli and surrounding small airways 
and blood vessels, are critical in both lung development and 
remodeling. Fibroblasts also produce proteases, protease 
inhibitors, cytokines, and chemokines, and thus have major 
effects on other cell types and the overall milieu. Recent data 
have demonstrated alternate origins of fi broblasts, including 
circulating precursors such as fi brocytes and mesenchymal 
stem cells, and transdifferentiation of other cells, such as 
epithelial–mesenchymal transition (EMT). Although many 
of these events are essential for repair of the injured lung, 
excessive activation or failure of resolution of these path-
ways is felt to result in disabling fi brosis.  

  Role of developmental pathways 

 Selman et al. had a major impact on the fi eld by pro-
posing reconsideration of IPF as a disorder of epithelial–
fi broblast interaction.  6   Interactions between the epithelium 
and mesenchyme are known to be critical in developmen-
tal morphogenesis of the lung,  13   and are also prominent in 
lung fi brogenesis. Expression array data from both IPF and 
experimental models have demonstrated the recapitulation 
during fi brosis of expression patterns and signaling path-
ways critical during lung development.  14   ,   15   Thus it seems that 
many of the cellular and molecular events critical to “model-
ing” of the lung are recapitulated during the “remodeling” 
following injury or during the pathogenesis of ILD. We and 
others have thus suggested that fi brosis and ILDs may be 
conceptualized as “disordered redevelopment” of the lung. 4   

  Role of the alveolar epithelium and surfactant 
metabolism 

 The lung alveolar epithelium is the fi nal barrier interface 
between the bloodstream and the environment. The epithe-
lium, along with alveolar macrophages, responds to envi-
ronmental insults via interactions with mesenchymal and 
vascular cells, and thus is critical to normal alveolar homeo-
stasis. Intrinsic or extrinsic epithelial cell stress can lead 
to surfactant dysfunction, epithelial apoptosis, impaired 
innate immunity, altered injury response, and promote 
abnormal epithelial–mesenchymal signaling, and a variable 
degree of remodeling up to and including fi brosis.  16   Genetic 
abnormalities of surfactant proteins are teaching us a great 
deal about how disturbances of alveolar homeostasis result 
in disease. 
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in the lungs of mice decreased the expression of fatty acid, 
cholesterol, lipid biosynthetic genes, and  ABCA3  in embry-
onic lung.  40   ,   41   Expression of both SCAP and SREBP-1a are 
controlled by the transcription factor STAT3. When STAT3 
was inactivated in lung epithelial cells, the type II cells had 
reduced ABCA3 expression and lacked normal lamellar bod-
ies.  42   These fi ndings identify a central role for lipid-sensitive 
factors in controlling a network of genes that sustain  ABCA3  
and related lung lipid metabolism. Abnormalities in these 
may account for as yet undefi ned rare cases of ILD. 

 A recent study reported an association between 2 hetero-
zygous mutations in the  SFTPA2  gene and familial pulmo-
nary fi brosis that segregated with lung cancer in adults.  43   
Preliminary studies suggested that the mutations caused 
misfolding and trapping of SP-A in the ER. As SP-A knockout 
mice have normal lung structure and function and do not 
develop ILD, the  SFTPA2  mutations likely exert a toxic gain-
of-function effect as seen in  STFPC  mutations. 

 An important insight that has emerged from the study 
of surfactant dysfunction disorders is that mutations in a 
single gene can cause different disease manifestations at dif-
ferent ages and stages of development. This can be the result 
of different mutations that affect the physiology of the gene 
product in different ways, or perhaps an identical mutation 
that results in an abnormal response to an environmental 
insult (“second hit”) that may occur at a specifi c develop-
mental stage. Another example is some forms of α-1 pro-
teinase defi ciency, in which a mutation may result in toxic 
gain-of-function causing neonatal jaundice or later cirrhosis, 
and loss-of-function resulting in emphysema in response to 
smoke exposure. Thus in addition to genotype and pheno-
type, it may be useful to consider “auxotype” (Greek root 
 aúx(ein)  to grow; generally used to refer to microorganisms 
differentiated on the basis of environmental conditions 
required for growth) in understanding interstitial lung dis-
eases (ILDs) in children and adults.  

  Neuroendocrine cells and diffuse lung disease 

 Neurendocrine cell hyperplasia of infancy remains some-
what enigmatic since its original description by Deterding 
et al. in 2005.  44   As implied by the name, and by its location 
in the new chILD classifi cation system,  45   this is primarily 
a condition of infancy. Mean age at presentation was 3.8 
months. However, at the time of publication two-third of the 
patients, then at school age, had persistent respiratory symp-
toms and some showed continued evidence of air trapping 
and/or oxygen requirement. This cohort of patients would 
now be in their teens; it would be interesting to see if any 
remain symptomatic. There are reports and small series 
of a similar syndrome in adults. In a series of 19 patients 
with diffuse idiopathic pulmonary neuroendocrine cell 
hyperplasia (DIPNCH), cough and dyspnea were the most 
frequent symptoms, with an average symptom duration of 
8.6 years before diagnosis. Symptomatic and asymptomatic 
individuals showed mainly stable disease without treat-
ment, although one patient progressed to severe airfl ow 
obstruction and one was diagnosed at single lung transplan-
tation. Mosaicism with nodule(s) was the typical pattern of 
DIPNCH on HRCT. Lung function tests showed obstruc-
tive ( n  = 8), mixed ( n  = 3), or normal ( n  = 5) physiology.  46   In 
another report of patients aged 49–76 years from Brazil, all 

also been inactivated in the lung by gene targeting; SP-C 
null mice developed an ILD-like disease with age. The ILD 
histopathology in SP-C null mice was heterogeneous and 
dependent on the strain of mice suggesting that genetic 
modifi ers infl uence the disease, consistent with the clinical 
variability described earlier.  30   Fibrosis was increased in the 
lungs of SP-C null mice exposed to bleomycin indicating that 
SP-C-defi cient lungs are predisposed to profi brotic injury.  31   
Exacerbations of disease in SP-C-defi cient individuals have 
been linked to infections. SP-C null mice are susceptible 
to infection with the pulmonary pathogens  Pseudomonas 
aeruginosa  and respiratory syncytial virus (RSV).  32   ,   33   The in-
creased sensitivity of SP-C-defi cient mice to RSV was linked 
to increased expression of a cellular innate immune re-
ceptor, TLR3 that responds to viral double-stranded RNA 
(dsRNA). Infl ammation was more severe in the lungs of SP-C 
null mice exposed to synthetic dsRNA. SP-C was shown to 
block dsRNA stimulation of TLR3 signaling  in vitro  suggest-
ing that SP-C may modulate early events in viral infection 
including receptor activity.  33   The infection susceptibility of 
SP-C-defi cient mice and infection-related exacerbation in 
humans is consistent with the emerging view that SP-C is an 
essential component of pulmonary innate host defense. 

 Mutations in the  ABCA3  gene are currently the most com-
mon genetic cause of respiratory failure in full-term infants 
with >150 distinct mutations identifi ed. Most infants with 
 ABCA3  mutations present with severe respiratory distress 
that requires ventilatory support in the immediate newborn 
period. However, a common mutation of the  ABCA3  protein 
has been identifi ed in older children with chronic ILD with 
the onset of symptoms varying from milder neonatal disease 
to presentation later in childhood. Mutations in  ABCA3  have 
also been identifi ed in adolescents and adults with chronic 
ILD with histological features of UIP.  34   ,   35   The direct impact 
of an individual mutation on ABCA3 structure and function 
in relation to the clinical course has been determined for a 
small number of defi ned  ABCA3  mutations.  36   When muta-
tions associated with mild disease were expressed  in vitro , 
the mutant ABCA3 protein was found to retain residual 
transport activity and acquire a subcellular localization sim-
ilar to wild-type ABCA3. These results were interpreted to 
indicate retention of partial catalytic and transport function 
accounts for the mild disease. In contrast  ABCA3  mutations 
located in predicted critical functional domains were devoid 
of any enzymatic activity, correlating with the observed 
poor clinical outcome.  ABCA3  may also be a modifi er gene 
in lung disease caused by  SFTPC  mutations, as patients het-
erozygous for both an  ABCA3  and an  SFTPC  mutation had 
more severe lung disease than family members with only 
the  SFTPC  mutation.  37   

 Inactivation of the  ABCA3  gene by gene targeting in mice 
causes respiratory failure and death in the immediate neo-
natal period.  38   ,   39   Lungs of  ABCA3 -defi cient mice had mal-
formed lamellar bodies, and surfactant phosphatidylcholine 
and phosphatidylglycerol levels were decreased, similar to 
the disturbance of human surfactant composition. Insights 
into regulation of  ABCA3 -dependent surfactant production 
have come from  ABCA3  promoter analysis. Sterol respon-
sive transcription factors sterol response element-binding 
protein-1a (SREBP-1a) and SREBP cleavage-activating pro-
tein (SCAP) affect  ABCA3  promoter activity. SREBP-1a stim-
ulated ABCA3 promoter activity  in vitro  while SCAP deletion 
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result in disease phenotypes in children that are not a 
mechanism of ILD in the relatively “static” non-growing 
adult lung. Pedigrees of  SFTPC  mutations exist where the 
same genetic lesion elicits severe respiratory symptoms at 
several months of age in some individuals while others are 
not diagnosed until the second to fi fth decade of life. Such 
a continuum of disease indicates that carefully defi ning the 
regulatory networks that infl uence gene expression, as well 
as the consequence of an aberrant gene product, may reveal 
the etiology of a subset of adult ILD that overlaps with infant 
disease. Thus it is critical to consider age and developmental 
stage, or “auxotype,” in addition to genotype, in considering 
the phenotype of a diffuse lung disease. In addition, there 
are unanticipated fi ndings such as compound heterozy-
gous individuals for a single gene ( SPTPB  or  ABCA3 ) or for 
2 distinct genes in a common process that together amplify 
the apparent ILD ( SFTPC  and  ABCA3 ). Re-creation of the 
genetic defects in mice and careful study of cellular pheno-
type alterations  in vitro , combined with coordinated clinical 
assessment of genotype, phenotype, and “auxotype,” will 
aid in discerning mechanisms and factors that modify the 
severity of disease as well as provide rational targets for 
therapeutic testing.   
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