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The association of specific events with the context in which they occur is a fundamental feature of episodic memory.

However, the underlying network mechanisms generating what–where associations are poorly understood. Recently we

reported that some hippocampal principal neurons develop representations of specific events occurring in particular

locations (item-position cells). Here, we investigate the emergence of item-position selectivity as rats learn new associations

for reward and find that before the animal’s performance rises above chance in the task, neurons that will later become item-

position cells have a strong selective bias toward one of two behavioral responses, which the animal will subsequently make

to that stimulus. This response bias results in an asymmetry of neural activity on correct and error trials that could drive the

emergence of particular item specificities based on a simple reward-driven synaptic plasticity mechanism.

The hippocampus is critically involved in the acquisition of new
episodic memories (Scoville and Milner 1957; Eichenbaum
2000). In particular, the formation of associations between events
and the context where they occur, a fundamental feature of epi-
sodic memory, depends on hippocampal function (Manns and
Eichenbaum 2006; Eichenbaum et al. 2007).

We have recently shown that some hippocampal principal
neurons develop representations of specific events occurring in
particular locations (Komorowski et al. 2009). In this study, ani-
mals learned which of two stimulus items (what) was rewarded
depending on the environmental context (where) in which the
items were presented (Rajji et al. 2006; Manns and Eichenbaum
2009). On each trial, a rat initially explored one of the two con-
texts, after which the two stimulus items were placed into differ-
ent positions (corners) of the context (Fig. 1A); the animal then
investigated the items (scented flower pots), and should learn to
dig (Go response) for a buried food reward in the appropriate
pot for that context or not dig (NoGo) at pots where no reward
was buried. All animals performed at no better than chance
(50%) for the first 30 trials, then acquired the what–where associ-
ations, reaching an average accuracy of 86% in the last 30 trials of
the training session (Fig. 1B).

In this paradigm, we previously indentified principal neu-
rons showing differential firing during the sampling of one of
the two stimulus items when located in the same position
(Fig. 1C, left), which we called as item-position (IP) cells (Komor-
owski et al. 2009). IP cell responses did not distinguish the items
during the first 30 trials of the learning session, but did fire during
item sampling at particular locations. Subsequently, we showed

that many IP cells increased firing during the sampling of an
item-position combination in parallel with learning (Fig. 1C,
left). Importantly, we observed approximately equivalent selectiv-
ity for rewarded and nonrewarded item-position combinations
(Fig. 1C, middle). We also identified principal neurons that were
active during item sampling in a particular position, but without
distinguishing the items at any time; these cells were referred to as
P cells (Fig. 1C, right).

The mechanisms leading to the formation of particular asso-
ciations by hippocampal neurons remain largely unknown. What
determines whether a neuron will signal one association rather
than another, and why do some neurons not develop an associa-
tion? To better understand the emergence of IP cells, we have fur-
ther analyzed recordings previously collected (Komorowski et al.
2009). We hypothesized that reward should influence in shaping
neuronal activity during learning, and we sought to determine
whether cells that eventually become IP cells have differential
activity during trials that end or not in reward consumption
before behavioral learning takes place.

We find that prior to both task acquisition and the appear-
ance of item-position selectivity, IP cells that will later prefer a
rewarded item are strongly selective for Go behavioral responses,
whereas IP cells that will later prefer a nonrewarded item are
strongly selective for NoGo behavioral responses. This behavioral
bias consequently leads to different firing rates associated with
correct (rewarded) and error (nonrewarded) trial outcomes. We
propose a simple model in which item-position cell specificity
emerges through synaptic modifications of inputs carrying item
information based on the presence or absence of reward following
decision-making.

Results

In order to understand the evolution of item selectivity in IP cells,
as well as the lack of selectivity in P cells, we compared the firing
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patterns of these cells in the first 30 trials, when task performance
was at chance level and item-position selectivity had not devel-
oped, with patterns in the middle and last 30 trials, when
performance had raised above chance and reached its peak,
respectively. In the first 30 trials, we found that IP cells that would
later prefer a rewarded item-position combination (rewarded IP
cells) fired at much higher rates on sampling events followed by
a Go response than events that ended in a NoGo response
(Fig. 1D, left middle panel). Conversely, during the first 30 trials,
IP cells that would eventually prefer a nonrewarded item-position
combination (nonrewarded IP cells) fired at much higher rates on
sampling events. followed by a NoGo response (Fig. 1D, right mid-
dle panel). The behavior-selective bias by IP cells persisted in the
last 30 trials. On the other hand, P cells had no behavioral
response bias, either early or late in training (Fig. 1D, right). In
Figure 2 we show rasters and peri-event histograms of IP and P cells
for item-sampling events preceding Go and NoGo responses.
Thus, the IP cells that eventually come to prefer rewarded and
nonrewarded stimulus items can be characterized as “Go cells”
and “NoGo cells,” respectively. This behavioral selectivity also

exists while the animals’ performance is at chance (Fig. 1D;
Table 1) and, therefore, before the appearance of item-position
preferences (Fig. 1C). How do these Go and NoGo cells develop
item preferences?

We knew from our previous study (Komorowski et al. 2009)
that IP cell responses are higher on correct than on error trials after
learning (Fig. 3A). Based on the above results, however, we rea-
soned that selective Go and NoGo firing patterns should also
result in differential firing rates for the different items during
sampling on trials that subsequently ended with a reward (correct
trials) vs. trials that ended without reward (errors), even before
learning has taken place. This expectation was confirmed in
that, during the first 30 trials, neurons that would later become
IP cells preferring the rewarded stimulus fired at higher rates pre-
ceding correct Go responses when the rewarded item was pre-
sented, and at higher rates preceding incorrect Go responses to
the nonrewarded item (Fig. 3B, top, middle). Conversely, neurons
that would later become IP cells preferring the nonrewarded item
fired at higher rates preceding correct NoGo responses when a
nonrewarded item was presented, and preceding incorrect NoGo
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Figure 1. Hippocampal principal cells that develop conjunctive what–where representations are behavior-selective cells. (A) Task scheme. Animals have
to learn to associate contexts to items (scented pots) for reward. A 40-sec period of context exploration is allowed before items presentation. An item
is considered “chosen” when the rat digs its pot searching for reward. (B) Average task performance accuracy during the first, middle, and last block
of 30 trials. (∗) P , 0.01 (t-test) when compared with chance performance (50% in this task). (C, left) Mean IP cell firing rates during sampling of the
preferred and nonpreferred items in the same position before learning (left set of bars) and after learning (right sets of bars). (Other panels) Mean
firing rates during the sampling of the rewarded and nonrewarded item are shown for the two types of IP cells (as labeled) separately and for P cells.
(∗) P , 0.01 (t-test). (D) Mean firing rates of IP and P cells on item samplings occurring preceding Go and NoGo responses before and after learning.
(∗) P , 0.01 (t-test).
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responses when a rewarded item was presented (Fig. 3B, bottom
middle panel). P cells were similarly active on correct and error tri-
als (Fig. 3B, right panel).

The firing rate asymmetries in rewarded and nonrewarded
trials suggest that mechanisms of reward-driven synaptic
strengthening and weakening of connections between sensory
inputs from the item stimuli and IP cells could lead to the
observed item selectivity of these cells. To better understand
this, we have elaborated a simple computational model of
decision-making in this task. In this model we begin with the
Go and NoGo cells in the network and assume that they compete
with each other (Fig. 4A). Therefore, Go cells fire at higher rates
and suppress the NoGo cells during item sampling prior to a Go
response, and NoGo cells fire at higher rates and suppress
the Go cells during item sampling prior to NoGo responses. The
probability of a Go or a NoGo response following each item
sampling event is modeled as dependent on the relative synaptic
strength of sensory inputs from the item stimuli to the Go and
NoGo cells. For example, when sampling item X, the probability
of digging (Go) will be higher than withholding digging (NoGo)
if the connection strength from item X sensory inputs to the
Go cell population is higher than that to the NoGo cell pop-
ulation (see Fig. 4B). Finally, we make the assumption of two plas-
ticity mechanisms acting following the Go/NoGo response: (1)
Reward following a correct response leads to a strengthening of
the synaptic connections between sensory afferents carrying
information about the item and cells that were active (see below)
during item sampling, whereas (2) nonreward leads to a weaken-
ing of these synaptic connections. These synaptic changes are
modeled as proportional to the firing rate of the cell during item
sampling. Therefore, cells that were firing at a low rate during
item sampling are subjected to low plasticity effects, whereas cells
firing at a higher rate are subjected to a greater level of plasticity
(Fig. 4C).

The details of the model implementation are as follows: The
choice between a Go (digging) or a NoGo response (withhold dig-
ging) after each item sampling event in the same position is mod-
eled as a random variable following conditional probabilities;
P(Go|X) is the probability of digging given item X is examined,
P(NoGo|X) is the probability of withhold digging given item X

is examined, and similarly for P(Go|Y) and P(NoGo|Y). The
probability of a Go response following item X sampling is given
by P(Go|X) ¼ f(WX,Go/(WX,Go + WX,NoGo)), where WX,Go and
WX,NoGo denote the synaptic weights from item X sensory affer-
ents to the Go and NoGo cells, respectively (see Fig. 4B). The
function f :[0,1] � [0,1] is a sigmoid function7 defined by f(x) ¼
1./(1 + exp(28(x 2 0.5)). Similar formulas hold for the other
conditional probabilities (notice that P(Go|X) + P(NoGo|X) ¼
P(Go|Y) + P(NoGo|Y) ¼ 1). The firing rate of each cell population
during item sampling is modeled as proportional to the synap-
tic weight of afferents carrying information from that item:
FCellType ¼ 1WItem,CellType + h, with the subscripts Item standing
for X or Y, CellType denotes Go or NoGo cells, and h represents
Gaussian noise with mean 0 and variance 1. The factor 1 denotes
a gain (1gain . 1) or a suppression (1suppression , 1) factor: associ-
ated with Go responses, 1 ¼ 1gain for Go cells and 1 ¼ 1suppression

for NoGo cells, with the opposite happening associated with
NoGo responses. Synaptic weights are subject to changes after
each response, with the following 2 equations being responsible
for the update of the synaptic weights: WItem,CellType ¼

WItem,CellType + D if the correct (rewarded) behavioral response for
that item was emitted, and WItem,CellType ¼WItem,CellType 2 D for
the error (nonrewarded) response. Finally, the increment/decre-
ment factor D is proportional to the firing rate during item sam-
pling: D ¼ d FCellType, with d . 0.

We ran simulations starting with the connections from
either item (X or Y) to either cell population (Go or NoGo cells)
having the same weight. On each trial, item X (rewarded item in
the model) or Y (nonrewarded item) is randomly presented.
Following each response, synaptic weights are updated dependent
on whether a Go (correct for item X; error for item Y) or a NoGo
(error for item X; correct for item Y) response was emitted.
Model performance simulated both the course of behavioral
learning (Fig. 5A) and the development of item selectivity in Go
and NoGo cells (Fig. 5B, top), which showed behavioral response
bias before and after learning (Fig. 5B, bottom).

The model is based on reward-based plasticity rules and the
differential firing rates associated with correct and erroneous
responses. Thus, Go cells become IP cells that will later prefer
the rewarded stimulus because the high firing rate associated
with Go responses to that item will be followed by reward, leading
to a strengthening of the synaptic connections from the stimulus
item to this cell (Fig. 5C,D). Conversely, when the nonrewarded
item is presented and the rat emits a Go response, the high firing
rate by Go cells to that item will not be followed by a reward, lead-
ing to a weakening of synaptic connection strength from the item
to the cell (Fig. 5C,D). Also, when either stimulus item is pre-
sented and the animal emits a NoGo response, the firing rate of
Go cells is relatively low, and therefore the effect of plasticity
mechanisms is modest in this condition. This accounts for why
the synaptic connections from the rewarded item to the Go cell
are only slightly weakened following an error after sampling of
this item, while the connections from the nonrewarded item to
this cell also remain largely unchanged following a correct
response (in both cases, a NoGo response is emitted). A comple-
mentary combination of mechanisms accounts for NoGo cells,

Table 1. Mean spike frequency of IP and P cells (M+SEM)a

First 30 trials Middle 30 trials Last 30 trials

IP cells coding for a rewarded item
Preferred position 2.35+0.64 Hz 3.99+1.42 Hz 3.68+1.08 Hz
Go response 2.50+0.66 Hz 4.61+1.46 Hz 5.04+1.19 Hz
NoGo response 1.14+0.39 Hz 1.66+0.73 Hz 1.51+0.58 Hz
Nonpreferred

position
0.40+0.18 Hz 0.33+0.19 Hz 0.42+0.16 Hz

IP cells coding for a nonrewarded item
Preferred position 2.60+0.64 Hz 2.29+0.37 Hz 2.80+0.63 Hz
Go response 1.74+0.62 Hz 1.25+0.27 Hz 0.98+0.26 Hz
NoGo response 3.40+0.78 Hz 4.05+0.64 Hz 4.94+0.84 Hz
Nonpreferred

position
0.20+0.06 Hz 0.10+0.04 Hz 0.14+0.06 Hz

P cells
Preferred position 3.02+0.73 Hz 3.42+0.87 Hz 3.21+0.72 Hz
Nonpreferred

position
0.49+0.14 Hz 0.63+0.18 Hz 0.60+0.16 Hz

aMean over the average spike frequency of individual cells.

Figure 2. Examples of IP and P cells. Shown are spike rasters (top) and peri-event histograms (middle) for stimulus sampling events preceding Go and
NoGo responses, along with the mean spike frequency (bottom) during sampling of the rewarded and nonrewarded item in the first 30 trials (“First Trials”)
and all other trials (“Last Trials”). The red bar in the peri-event histograms corresponds to the time period between 0 and 1 sec, which is the time period
used for the statistical analyses shown in this and all other figures.

7During the writing of this work, it came to our attention that a very similar
model of decision-making based on a sigmoidal probability curve also depen-
dent on synaptic weights was used before in Fusi et al. (2007).
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which are the IP cells that eventually prefer the nonrewarded
item. Notice that it is assumed that the high firing rate during cor-
rect NoGo responses to the nonrewarded stimulus is associated
with a delayed reward, which occurs after the animal digs the cor-
rect item in the other position of the arena (see Discussion).

The model predicts that Go and NoGo cells should develop
differential firing rates preceding the same behavioral responses,
depending on which item is examined (Fig. 6A). Namely, upon
learning, Go (NoGo) cells should exhibit a higher firing rate dur-
ing samplings of their preferred rather than nonpreferred items
that end with a Go (NoGo) response. In Figure 6B we show that
this prediction is in fact confirmed: After learning, IP cells coding
for the rewarded item spike more during sampling of the rewarded
than the nonrewarded item preceding Go responses, while IP cells
coding for the nonrewarded item spike more during sampling of
this item preceding NoGo responses. Notice that this result also
means that even though IP cells start out as pure Go/NoGo cells,
they do develop a genuine item preference even after controlling
for the behavioral response emitted; that is, after learning, Go/
NoGo-place responses can be separated from item-position cod-
ing. According to the model, this is due to the fact that an
increased activity during sampling of the later preferred item early
in training was associated with reward signals, while an increased
activity during sampling of the later nonpreferred item was not
(Figs. 3B, 5C): The proposed plasticity rules predict that this asym-
metry leads to a specific increase of the synaptic connections from
the later preferred item (Fig. 5D). Curiously, since the firing rate is

modeled as proportional to the synaptic
weights (i.e., F � 1W), the higher the
W, the higher the firing rate, even when
the cells are suppressed (that is, when
1 ¼ 1suppression). Therefore, the model
also predicts that Go (NoGo) cells should
spike more to the rewarded (nonre-
warded) item preceding NoGo (Go)
responses after learning (Fig. 6A). In
accordance with this model prediction,
IP cells coding for the rewarded item
also come to spike more during sam-
plings of the rewarded than nonre-
warded item preceding NoGo responses
(Fig. 6B, top). However, IP cells coding
for the nonrewarded item did not spike
differentially during item samplings of
either item preceding Go responses
(Fig. 6B, bottom). We speculate that this
different characteristic between the two
types of IP cells may be due to different
temporal proximity of reward following
Go and NoGo responses (see Discussion).

In contrast to the patterns of activ-
ity in IP cells, P cells fired at equal rates
on item sampling events that precede
Go and NoGo responses (Fig. 1D, right)
and end in reward and nonreward (Fig.
3B, right). We considered two hypothe-
ses about why P cells would not become
item specific with learning: P cells might
not develop specificity for an item
because they lack the reward asymmetry
seen in behavior-selective cells (Fig. 3B).
Alternatively, P cells might not follow
the plasticity rules because they do not
receive inputs about the stimuli and/or
reward. We tested these hypotheses by
adding a P-cell population into the

model. P cells were modeled as not influencing the behavior,
but they followed the same plasticity rules as Go and NoGo cells.
We found that the model P-cell population does not develop item
selectivity with learning (Fig. 7A), in accordance with experimen-
tal results. This is because, as expected, P cells fire at the same rate
on correct and error trials following the sampling of either the
rewarded or the nonrewarded item (Fig. 7B). Hence, the plasticity
mechanisms act similarly in connections carrying inputs from
either item. However, in this model P cells increase their
firing rate to both items with learning (Fig. 7A). This nonselective
increase occurs because correct responses are emitted more often
following the sampling of either item after learning; hence, the
model dictates that the reward-based plasticity should increase
the synaptic connections from both items to the P cells
(Fig. 7C). Since we did not observe such an increase in firing rates
for P cells (Fig. 1C, right; Table 1), our results suggest that P cells
are not subjected to the same plasticity effects as the IP cells, either
because they do not receive item information, and/or because
they do not receive reward signals.

Discussion

The present findings suggest that firing patterns associated with
different behavioral responses leading to asymmetrical firing rates
on rewarded and nonrewarded events could underlie the develop-
ment of specific item-position coding. Current theories in reward-
based reinforcement learning are compatible with these findings.
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Figure 3. Item-position cells present differential firing rates on correct and error trials before learning.
(A) Mean spiking frequency of IP cells in their preferred position on correct and error trials during the
first (left set of bars) and last (right set of bars) 30 trials of the learning session. (∗) P , 0.01 (t-test).
(B, left) Mean firing rates of IP cells on correct and error trials for the later preferred and nonpreferred
item in the same position during the first 30 trials of the session (i.e., during chance performance).
(Other panels) Mean firing rates on correct and error trials during samplings of the rewarded and non-
rewarded item before learning is shown for the two types of IP cells separately and for P cells. (∗) P ,

0.05 (two-way ANOVA interaction of item type with trial outcome).
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In particular, the influence of reward in shaping neuronal activity
has been well demonstrated by a number of studies (Huang and
Kandel 1995; Okatan 2009). The required feedback of trial out-
comes to the hippocampus may be provided by dopaminergic
inputs. Indeed, activation of D1/D5 receptors can increase the
duration of Schaffer collateral LTP in response to a stimulus
(Huang and Kandel 1995) and, in turn, modulate place cell stabil-
ity (Kentros et al. 2004). Of note, a recent study using monkeys
reported the existence of hippocampal cells able to signal trial
outcome (Wirth et al. 2009). Although their findings differ from
ours because such cells were found following trial outcome, and
not preceding it, they provide important evidence that the hippo-
campus has information about the trial outcome.

Our results are in accordance with previous reports showing
that different hippocampal cells can code for different sensory
and behavioral features of events (Ranck 1973; Berger et al.
1976; Wiener et al. 1989; Wood et al. 1999). In our data set, we
found that early in training some cells did not present spatial cod-
ing, other cells exhibited pure spatial coding, while others coded
for both position and behavioral responses. Cells of the latter type
also came to code for a specific item in parallel with behavioral
learning, thus becoming IP cells. On the other hand, cells that pre-
sented pure position coding during the first trials remained only
position selective throughout the learning session, and were
thus denoted as P cells. Since P cells did not present behavioral
bias, they lacked the reward asymmetry (see Fig. 3B) required by
our model for the emergence of item coding. It remains to be
established why and how different cells are endowed with differ-
ent coding properties (more below).

We showed that a simple model of
reward-dependent synaptic plasticity is
able to account for the development of
item specificity by cells whose activity
correlates with the behavioral response
emitted. Importantly, animals are not
rewarded for correct or erroneous NoGo
responses, so many sampling events are
not followed by immediate feedback.
Nevertheless, a correct NoGo response
to the nonrewarded item in one position
of the arena can lead to reward consump-
tion at the end of the trial if the animal
decides to dig the rewarded item located
in the other position of the arena. In
this case, we postulate that the same
reward signal reinforces both the connec-
tions from the rewarded stimulus to
the Go cells and from the nonrewarded
stimulus to the NoGo cells. The require-
ment of changing synaptic weights after
a cell is active (in this case, the NoGo
cells) and the sensory stimuli are no
longer present (in this case, the nonre-
warded item) is a long standing problem
in reinforcement-based learning theory,
and has been called the “distal reward
problem” (Izhikevich 2007) or “credit
assignment problem” (Schultz et al.
1997; Sutton and Barto 1998; Jin et al.
2009). This problem is solved by some
theories hypothesizing that under cer-
tain conditions some synapses would
become “tagged” or “eligible” for sub-
sequent modifications should reinforce-
ment/punishment signals later arrive
(Sutton and Barto 1998; Izhikevich

2007; Redondo and Morris 2011). The present model incorporates
such a distal reward mechanism to explain the reinforcement (or
punishment) of connections arriving at the NoGo cells.

The model assumes that neurons conveying information
about the items project to the hippocampus, and, in particular,
to Go and NoGo cells. This assumption is in accordance with a
wealth of evidence showing that the hippocampus is indirectly
connected to sensory areas in the cortex (Witter et al. 1989;
Burwell et al. 1995; Burwell and Amaral 1998; Lavenex and
Amaral 2000; Brown and Aggleton 2001; Pereira et al. 2007).
Sensory information from multiple modalities and associational
areas arrive at the hippocampus after a relay in postrhinal and
perirhinal cortices and in the entorhinal cortex (Witter et al.
1989; Burwell et al. 1995; Burwell and Amaral 1998; Lavenex
and Amaral 2000). The sensory information reaching the hippo-
campus is therefore already highly processed and likely to convey
higher order attributes, such as those required for object identity,
as postulated by the model.

In our model, two units (Go and NoGo cell populations)
compete with one another through mutual inhibition, and only
one unit wins the competition on each item-sampling event.
This feature is similar to those used in competitive learning algo-
rithms (Rumelhart and Zipser 1985; Grossberg 1987; McClelland
and Rumelhart 1988); in fact, this part of our model can be
regarded as a competitive learning network composed of a single
cluster with two units. However, simple competitive learning net-
works cannot model our results, since the assignment of units
in the cluster to the input patterns is a random process (i.e., the
Go cell unit could be randomly assigned to the nonrewarded
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Figure 4. Model scheme. (A) Afferents carrying sensory information from each stimulus (just one
stimulus is depicted in this figure) impinge on a population of Go and NoGo cells, which compete
with each other for determining behavior. (B) The probability of a Go action upon sampling of item
X (P(Go|X)) is dependent on the relative synaptic weights from item X sensory stimuli to the cell popu-
lations. The probability of a NoGo action is given by P(NoGo|X) ¼ 1 2 P(Go|X), and similar formulas
hold for P(Go|Y) and P(NoGo|Y). (C) Shown are possible outcomes following Go (top) and NoGo
(bottom) responses to an item. A strengthening of connections between the stimulus and the cell popu-
lation determining behavior occurs if the behavior led to reward; otherwise, a weakening of these con-
nections occurs.
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item). This is because competitive learning networks perform
unsupervised learning, in which there is no feedback from the
environment. The plasticity in our model, on the other hand,
relies on error and reward signals, which are responsible for
assigning each unit to the appropriate item. Therefore, in our
model the assumption of mutual inhibition is required to set
the winner of the competition (as in competitive learning), while
feedback from the environment is required for allowing the plas-
ticity to occur at the appropriate synapses (as in reinforcement
learning).

We note that even though the model successfully accounts
for the development of item selectivity, it does not explain all of
the findings: In particular, the model predicts symmetric changes
in firing rate of Go and NoGo cells (Figs. 5, 6A), which was not
always observed experimentally (Figs. 1D, 6B). Thus, the firing
rate of actual NoGo cells prior to the emission of NoGo responses
does not increase as much with learning as the firing rate of actual
Go cells prior to Go responses (Figs. 1D, 6B). Moreover, actual
NoGo cells contradict the model’s prediction of increased firing
during samplings of the nonrewarded item prior to Go responses
after learning (Fig. 6). The asymmetry of firing rate changes in
actual Go and NoGo cells may be related to the different temporal
proximity of reward following Go and NoGo responses: While
reward immediately follows a correct Go response, reward
consumption occurs a few seconds after a correct NoGo response.
Therefore, the “synaptic eligibility trace” (Sutton and Barto 1998)
would have a higher decay in NoGo than Go cells when reward

signals arrive (see Izhikevich 2007), mak-
ing the synaptic reinforcement less
prominent in NoGo cells, which would
account for the lack of symmetry in firing
pattern changes between Go and NoGo
cells. In accordance with this scenario,
asymmetric changes in firing rates can
be simulated by modification of the
model to selectively reduce the magni-
tude of the synaptic plasticity after
NoGo responses (data not shown).

Although spatial coding (place
cells) is considered a hallmark of hip-
pocampal activity (O’Keefe and Dostrov-
sky 1971), there is also strong evidence
that hippocampal neurons code for other
types of information (Eichenbaum et al.
1999). Starting with Ranck (1973), sev-
eral experiments have identified firing
patterns of hippocampal neurons related
to nonspatial stimuli, as well as cognitive
and behavioral events (Ranck 1973;
Berger et al. 1976; Wiener et al. 1989;
Wood et al. 1999). Among the clearest
of these are single hippocampal neurons
that fire predicting eye-blink responses in
a classical conditioning paradigm (Berger
et al. 1983). A more recent striking
example is hippocampal neurons that
code for a “jump” response in a condi-
tioned avoidance task (Lenck-Santini
et al. 2008). Hippocampal neurons that
fire associated with specific behavioral
actions were also recently reported in
humans (Mukamel et al. 2010). These
previous results are consistent with our
current findings that identified hippo-
campal neurons whose activity predict
Go and NoGo behavioral responses. It

is yet to be determined, however, whether these behavioral
correlates pre-exist, develop during training before the implanta-
tion surgery (see Fig. 8; Materials and Methods), or develop
exceedingly quickly early in learning the item-context problem
analyzed here. Moreover, it also remains to be determined
whether the behavioral selectivity is originated from place field
representations, which are likely formed during context habit-
uation (Fig. 8). Regardless of the source of these initial behavioral
correlates, these findings and others suggest that hippocampal
cells code for the conjunction of “what,” “where,” and “what
to do.”

In summary, the present results suggest mechanisms under-
lying the emergence of neural coding for specific what–where
representations. The proposed mechanisms are based on a combi-
nation of asymmetric initial conditions that vary among cells and
are consequences of behavioral biases, while the animal was at
chance performance, along with simple plasticity rules dependent
on the presence or absence of reward following the animal’s
response. Such mechanisms could also be responsible for the for-
mation of a range of firing specificities observed in neurons in
higher order areas of the brain.

Materials and Methods

Training and data acquisition
Behavioral training and electrophysiology recording methods are
described in full detail in Komorowski et al. (2009). Figure 8 shows
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Figure 5. Computational model of reward-dependent synaptic plasticity is able to account for the
development of item specificity in behavior-selective cells. (A) Network performance for item sampling
events occurring before and after learning (labeled as “first” and “last trials”). (B, top) Mean firing rates
of model Go and NoGo cells before and after learning for the rewarded and nonrewarded item.
(Bottom) Mean firing rates associated with Go and NoGo responses. (C) Mean firing rates of model
Go and NoGo cells on correct and error trials for the rewarded and nonrewarded items during item
sampling events occurring before learning. (D) Mean synaptic weights (WItem,CellType) changes as a func-
tion of the item sampling event number. G ¼ Go cells; NG ¼ NoGo cells. Results represent the mean
over 100 simulations.
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the experimental timeline. Briefly, six male Long-Evans rats
weighing 400–450 g were maintained at a minimum of 85% of
normal body weight. Rats first learned to dig in 10-cm-tall,
11-cm-wide terra cotta pots filled with common playground
sand for one-quarter Froot Loop (Kellogg’s) pieces. Next, animals
were trained on a simple discrimination between two pots filled
with sand and scented with different oil fragrances (aloe vs. clove)
placed side by side simultaneously in the home cage. The
positions of the two stimuli were pseudorandomized, although
they were never located in the same positions on more than three
consecutive trials. The rat could dig in the aloe-scented pot for
one-quarter of a Froot Loop, but digging in the clove-scented
pot resulted in a 5-sec timeout. Rats achieved a performance crite-
rion of eight correct of 10 consecutive trials in this simple discrim-
ination task within a single session.

During the next days, rats were then trained on a first condi-
tional discrimination task in a two-sided arena (each side is
referred to as a context) (Fig. 1A). A detailed description of this
task is provided in the next section. Briefly, rats should learn
which of two stimuli (or items) is the correct choice depending
on in which context they are located. The items were scented

pots as in the simple discrimination task; the same two items
were used in each trial, which occurred in one of the two contexts
in a pseudorandom order. Rats learned this first conditional dis-
crimination task in 3–5 d (�80 trials per day).

After reaching the performance criterion, rats were im-
planted with a recording headstage above the left dorsal hippo-
campus centered at +3.6 mm posterior and +2.9 mm lateral to
bregma. The headstage contained 12–18 independently movable
tetrodes aimed at CA1 and CA3. Each tetrode was composed of
four 12.5-mm nichrome wires with the tips plated with gold to
bring the impedance to 200 kV at 1 kHz. Animals recovered for
7–10 d, after which the tetrodes were moved down slowly over
the course of 1–2 wk, until the tips reached the pyramidal cell
layer of CA1 or CA3. The locations of these tetrodes was estimated
in vivo using driver turn counts to determine electrode depth as
well as electrophysiological events, including the appearance of
complex spikes, u modulated spiking, as well as the presence of
u and high-frequency ripples in the local field potentials.
Electrode location was confirmed by passing a 25-mA current for
20 sec through each tetrode immediately before perfusion to cre-
ate a lesion visible after histological processing with Nissl stain.

After surgery and placement of tetrodes, rats continued to
perform the first conditional discrimination task (Fig. 8) until
their performance had exceeded 80% for three consecutive pre-
vious days. Finally, the animals were introduced to a novel arena
with the same general configuration, but with new flooring and
new wallpaper defining each context. After habituation to this
environment (15–20 min), animals were tested on a second con-
ditional discrimination problem using pots with new scented oils
and digging media. Rats learned this second conditional discrim-
ination task within a single recording session (Fig. 1B). All results
shown in the present work were obtained from the analysis of this
latter learning session.

During all recording sessions, spike activity was amplified
(10,000×), filtered (600–6000 Hz), and saved for offline analysis
using the software Spike (written by Loren Frank, University of
California, San Francisco). Single-unit waveforms recorded from
each tetrode during a �2-h recording session were isolated offline
and determined to be stable through their clustering as identified
using three-dimension projections of spike peak, valley, principal
components, and timestamps using Offline Sorter software
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Figure 7. Model P cells do not develop item specificity with learning,
but increase firing rates to both items. (A) Mean firing rate of model P
cells before and after learning for the rewarded and nonrewarded item
(left) and associated with Go and NoGo responses (right). (B) Mean
firing rate of model P cells on correct and error trials for the rewarded
and nonrewarded items during item sampling events occurring before
learning. (C) Mean synaptic weights changes. Same simulations as in
Figure 5.
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(Plexon). Thus, neuronal waveforms fit the same cluster parame-
ters in the first, middle, and last 30 trial blocks. In addition, behav-
ior was recorded with digital video (30 frames/sec) that was
synchronized with the acquisition of neural data. The animal’s
location was tracked with one or two light-emitting diodes
located on the recording head stages. The onset of stimulus (or
item) sampling was defined by scanning the video and manually
marking the frame on which the rat’s nose crossed the rim of the
pot; this timestamp corresponds to time 0 in the peri-event histo-
grams shown in Figure 2. Mean spike frequencies shown in
Figures 1, 3, and 6 were calculated during the stimulus-sampling
period, which was defined from 0 to 1 sec following the onset of
stimulus sampling. Rare cases of stimulus sampling events occur-
ring ,1 sec apart were excluded from the analysis. Timestamps for
the onset of stimulus sampling and for spikes were imported into
MATLAB for subsequent data analyses. The results reported here
were obtained from the data of the same five rats investigated in
Komorowski et al. (2009), plus one additional animal.

Conditional discrimination task
The environment consisted of two 37 × 37 cm boxes connected
by a central alley that allowed the rat to shuttle between them
(Fig. 1A). Before the task, rats were first habituated to the environ-
ment for 15–20 min and were allowed to forage for scattered food
on the floor. The entrance to the central alley could be closed with
dividers at each end of the alley to block the animal within either
box. Each box differed substantially in contextual cues, which
included different flooring (wood vs. black paper) and different
wallpaper (white paper vs. black paper). Rats were trained to alter-
nate between the two contexts by traversing the central alleyway
when the dividers were lifted. On each trial of the conditional dis-
crimination task, the rat was allowed to enter a context, after
which a divider would close, and the animal was permitted to
explore the contextual cues for 40 sec (Fig. 1A). The animal was
then blocked within one side of the context using another divider
and two items were placed in different corners of the context. In
this work, each of the four possible corners (two per context) is
referred to as a “position.” Both items were common terra cotta
flowerpots, each scented with a different odor (e.g., grapefruit
and geranium) and filled with a different digging media (e.g.,
white foam and purple beads). The positions of the items were
pseudo-randomized such that they appeared in each position
equally, but never in the same position on more than three con-
secutive trials. In Context A, Item X (i.e., grapefruit-white foam)
would contain the Froot Loop reward, whereas in Context B,
Item Y (i.e., geranium-purple beads) would contain the reward.
Notice that while there is one correct item per context, there are
two rewarded and two nonrewarded item-position combinations
associated to each context (e.g., item X in either position [top or
bottom left corner] of Context A is a rewarded item-position com-
bination). Digging in the correct pot yielded the buried reward,
but digging in the incorrect pot resulted in the removal of both
pots and a 5-sec time-out. The next trial immediately followed
the previous one.

Data analysis
All analyses were done with built-in and custom-written routines
in MATLAB. The identification of IP cells was based on a signifi-
cant interaction (P , 0.05) between item and position during

the last 30 trials of the session, as assessed
by ANOVA. As in our previous study
(Komorowski et al. 2009), we did not
find differences in the firing patterns of
CA1 and CA3 neurons, which were there-
fore combined for the analyses. A total of
22 IP cells was found across all animals
(n ¼ 6). A total of 12 IP cells showed
item selectivity in only one position,
eight IP cells showed item selectivity in
two positions, one IP cell showed item-
selectivity in three positions, and one IP

cell showed item selectivity in all four positions. Nine IP cells
coded for the rewarded item, and nine IP cells coded for the non-
rewarded item. Four IP cells coded for the rewarded item in one
position, and for the nonrewarded item in another position. A
total of 23 P cells were identified. Table 2 depicts the distribution
of cells in each animal.

The spiking data from all IP cells were pooled; the bar graphs
shown in the figures represent mean spiking frequency +SEM
over individual item sampling events across all cells of the rele-
vant type in each panel (e.g., in Figs. 1C,D and 3B, the left panel
was obtained from the pool of 22 IP cells, the middle panels
from the pool of 13 IP cells, the right panel from the pool of 23
P cells). The number of item samplings events in each pool is dis-
played in the figures. In Table 1 we show that our main result
holds when analyzing the mean spike frequency over each cell
activity.

Computational model
The model simulates the appearance of item coding on top of an
already existent position coding. The model is phenomenological
and based on a competition between two cell populations for
action selection. One cell population codes for a “dig” action
(Go cells), whereas the other population codes for a “withhold
digging” action (NoGo cells). Notice, therefore, that the position
selectivity and the selectivity for a behavioral response are
assumed from the start and their development is not explicitly
modeled (see Discussion). We modeled only one context and
one position. We assume that this position corresponds to a posi-
tion where the cell is active (i.e., a “preferred position”) (see
Table 1). As cells were typically not active in their “nonpreferred
positions” (Table 1), no plasticity effects would occur in these
locations (see plasticity rules below). Therefore, there is no loss
of generality in modeling just one position. In cases of cells that
are active in more than one position, we assume that the develop-
ment of item coding in each position is independent from each
other and can be treated separately.

The rewarded item was chosen to be X, so that there was only
one rewarded (X) and one nonrewarded (Y) stimulus in the model.
All model equations are described in detail in the Results section
(see also Fig. 4 for a model scheme). Briefly, we assume that Go
and NoGo cells receive sensory inputs carrying information about
each stimulus. These connections start with the same strength in
both cell populations, but are subjected to plasticity depending on
trial outcome. On each item-sampling event, Go and NoGo cells
compete with each other, and one population is able to suppress
the other and drive behavior. The competition is modeled as a ran-
dom process with probability dependent on the relative synaptic
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Figure 8. Experimental timeline.

Table 2. Cell distribution

# Active cells
(CA3/CA1)

# P cells
(CA3/CA1)

# IP cells
(CA3/CA1)

Rat 1 10 (10/0) 5 (5/0) 4 (4/0)
Rat 2 10 (10/0) 2 (2/0) 2 (2/0)
Rat 3 13 (13/0) 3 (3/0) 4 (4/0)
Rat 4 14 (7/7) 5 (2/3) 3 (2/1)
Rat 5 11 (7/4) 2 (1/1) 5 (1/4)
Rat 6 13 (0/13) 6 (0/6) 4 (0/4)
Total 71 (47/24) 23 (13/10) 22 (13/9)
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weights from the stimulus afferents to the cells. Although we do
not explicitly model the network mechanism underlying the
competition between Go and NoGo cells, we think of it as being
mediated by inhibition. We speculate that the specific pattern of
network connections leading to the reciprocal inhibition between
Go and NoGo cell populations emerges during training prior to
surgery (see Fig. 8). On each simulated trial, we assume that the
cell population that is most active recruits a pool of interneurons
and inhibits the other cell population by feedforward lateral
inhibition. Therefore, the stronger the synaptic connections
from a stimulus to a given cell population relative to the other,
the higher the chance of this cell population to determine the
behavioral response to that stimulus. Of note, there is evidence
to suggest that “winner-takes all” processes of this kind exist in
the hippocampus (Klausberger and Somogyi 2008; Klausberger
2009). If Go cells win the competition, we consider that the rat
digs the sampled item. If NoGo cells win the competition, it is
assumed that the rat digs the other item in the other position of
the context (not explicitly modeled). Note, therefore, that
NoGo actions can also lead to (delayed) reward signals (see also
Discussion). Synaptic plasticity is modeled to occur following trial
termination depending on the presence or absence of reward and
is proportional to the firing rate of the cells during item sampling.
In a practical way, this means that only connections to the cells
that determined behavior (which fired at increased rate and sup-
pressed the others) are subjected to major plasticity effects.
Therefore, upon trial termination, the presence of reward leads
to reinforcement between afferent connections carrying stimulus
information and the population that determined the behavioral
response for that stimulus, while the absence of reward decreases
the strength of these synapses.

The model was implemented in MATLAB. We assumed that
the synaptic weights (W) saturate at 5. We used as initial condi-
tions W ¼ 2.5 for Go/NoGo cells, and W ¼ 3.5 for P cells. Model
parameters were d ¼ 0.02, 1suppression ¼ 0.5, 1gain ¼ 1.5. See the
Results section for model equations.
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