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Abstract
There is a need to develop multiscale models of vascular adaptations to understand tissue level
manifestations of cellular level mechanisms. Continuum based biomechanical models are well
suited for relating blood pressures and flows to stress-mediated changes in geometry and
properties, but less so for describing underlying mechanobiological processes. Discrete stochastic
agent based models are well suited for representing biological processes at a cellular level, but not
for describing tissue level mechanical changes. We present here a conceptually new approach to
facilitate the coupling of continuum and agent based models. Because of ubiquitous limitations in
both the tissue- and cell-level data from which one derives constitutive relations for continuum
models and rule-sets for agent based models, we suggest that model verification should enforce
congruency across scales. That is, multiscale model parameters initially determined from data sets
representing different scales should be refined, when possible, to ensure that common outputs are
consistent. Potential advantages of this approach are illustrated by comparing simulated aortic
responses to a sustained increase in blood pressure predicted by continuum and agent based
models both before and after instituting a genetic algorithm to refine 16 objectively bounded
model parameters. We show that congruency-based parameter refinement not only yielded
increased consistency across scales, it also yielded predictions that are closer to in vivo
observations.
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INTRODUCTION
Pioneering work in the 1960s and 1970s revealed the fundamental importance of mechanical
stimuli in arterial wall biology, something now studied widely in the allied fields of vascular
mechanics and mechanobiology. For example, via comparative studies across species,
Wolinsky and Glagov1 showed that the increased thickness of the aortic wall in larger
mammals correlates well with the increased luminal radius that is necessary to accommodate
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the increased volumetric blood flows, with wall tension per lamellar unit remaining nearly
constant at ~ 2 N/m. It thus became apparent that the normal aortic wall grows (changes
mass) and remodels (changes microstructure) during development and maturation so as to
achieve and maintain nearly constant a preferred value of the mean circumferential stress (σθ
= Pa/h, where P is pressure, a the luminal radius, and h the wall thickness).2,3 This general
finding is also consistent with an idea that emerged in hemodynamics during the same
period, namely, that the aortic wall grows, remodels, and adapts so as to maintain nearly
constant the mean wall shear stress (τw = 4μQ/πa3, where μ is viscosity and Q the volumetric
flow rate,2,4 with the particular target value of stress varying along the vascular tree and
across species).5 Wolinsky6 suggested further that thickening of the aortic wall in response
to hypertension is consistent with the concept that mean circumferential stress is maintained
nearly constant, a finding that has been confirmed by others.7,8

Continuum biomechanical models are now capable of describing and predicting many
salient features of arterial adaptations to altered hemodynamics,9-11 including hypertension,
yet it is becoming increasingly apparent that there is a need for integrative multiscale models
that can capture both the molecular and cellular mechanisms and their associated
manifestations at the tissue level.11-14 Toward that end, we suggested that coupling discrete
stochastic agent based models (ABMs) of cell level processes with continuum based
constrained mixture models (CMMs) of tissue level phenomena promises to increase our
understanding of the biology and physiology in health and disease.15 Whereas continuum
based models employ phenomenological constitutive relations, agent based models simulate
interactions of autonomous agents (e.g., individual cells) with each other and with their
environment based on a literature-derived set of rules.16

We now suggest further that effective coupling of such different types of models across
scales necessitates a new level of model verification. Although it is typically assumed that
lower scale data and models are inherently more reliable because the experiments are better
controlled, they need not be physiologically relevant. In contrast, higher scale data and
models can be physiologically relevant, but it is often difficult to identify, and therefore
model, all contributors to the observed behavior. In other words, ubiquitous limitations in
either the data or their interpretation exist at all scales. We thus suggest that increased
confidence in models built from data collected at different scales can be achieved by
ensuring that select outputs common to the different models are inherently self-consistent.
Therefore, notwithstanding our ultimate goal of building multiscale models that increase our
understanding of vascular adaptations and disease progression, the primary goal of this
paper is to introduce a conceptually new approach to verification in multiscale modeling. As
an illustrative example, we show that achieving congruency between ABM and CMM
predictions of time-dependent aortic adaptations to a sustained increase in pressure not only
increases consistency across scales, it can also yield overall model predictions that are closer
to in vivo reports. As it will be seen, the predicted arterial responses arise from growth
(changes in mass) and remodeling (changes in structure and thus tissue properties)
processes, which in turn result from changes in the production and removal of both
structurally and non-structurally significant constituents (e.g., collagen and smooth muscle
cells as well as vasoactive molecules, growth factors, and matrix metalloproteinases) that are
driven by changes in hemodynamically induced stresses. Hence, this example also reinforces
the need for integrative models of molecular, cellular, and tissue level changes.

METHODS
A comprehensive bio-chemo-mechanical model of arterial growth and remodeling will
ultimately need to account for the effects of hundreds of biochemically active molecules and
their mechanical consequences on the arterial wall, and vice versa. Toward this end, and for
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illustrative purposes, we begin by focusing on seven vasoactive, mitogenic / synthetic, and
proteolytic molecules that are particularly important to arterial adaptations in mild
hypertension: NO (nitric oxide), ET-1 (endothelin-1), TGF-b (transforming growth factor-
beta1), PDGF-AB (platelet derived growth factor - AB), and MMP-1, -2 and -9 (matrix
metalloproteinase-1, -2 and -9). Moreover, we consider a simple canonical problem wherein
a thin-walled, cylindrical artery (mouse aorta) remains axisymmetric during adaptation and
its luminal radius remains essentially unchanged due to a modest perturbation in blood
pressure in the absence of a change in flow. In this special case, the CMM and the ABM can
be run independently and their outputs can be compared. Such comparisons are essential
prior to coupling the different models tightly via information exchanges during a single
simulation.

Constrained Mixture Model (CMM)
The concept of a CMM of soft tissue growth and remodeling was introduced by Humphrey
and Rajagopal.17 This theoretical framework enforces full mixture equations of mass
balance for both structurally significant (insoluble) and structurally insignificant (soluble or
insoluble) constituents, but enforces the classical equation of linear momentum balance
quasi-statically in terms of a rule-of-mixtures relation for the stress response (i.e., individual
strain energy functions are assumed to be additive). Individual structurally significant
constituents are allowed to exhibit different natural (stress-free) configurations, rates of
turnover, and material properties despite being constrained to deform together with the
tissue as a whole. Over the past few years, CMMs of arterial adaptations have been verified
via numerical hypothesis testing and parametric sensitivity studies,14,18 and they have been
shown to capture salient features of diverse vascular adaptations and disease
processes.11,12,19

Mathematical details and descriptions of the data-driven formulations can be found
elsewhere,11 but note here that three classes of constitutive relations are needed for each of
the K = 1,2,…, n structurally significant constituents: stored energy functions (energy per
surface area in a thin-walled formuation) that describe elastic responses of individual
constituents, rates of mass density production (mass per surface area per time) that
mathematically account for cell proliferation and matrix synthesis, and survival functions
(non-dimensional and bounded from 0 to 1) that account for cell apoptosis / necrosis and
matrix degradation. Herein, we consider n = 3 primary structural constituents, amorphous
elastin, fibrillar collagens (types I and III combined), and smooth muscle that can exhibit
active and passive mechanical behaviors. Whereas classical relations have proven useful for
prescribing individual stored energy functions (e.g., neo-Hookean for elastin or exponential
for collagen and passive smooth muscle), first order approximations have been employed for
both the mass density production and survival functions. For example, mass density
production has commonly been assumed to deviate from its basal value in proportion to
differences in intramural and wall shear stress from target values, namely

(1)

where  is the basal rate of production and  and  are dimensionless gain-type
parameters that scale the stress-mediated changes in production at each growth and
remodeling time s. Differences in a scalar metric of intramural stress from baseline are

denoted by , where the subscript h denotes the homeostatic target value, and
similarly for differences in wall shear stress Ωτw. In this way, it is possible for individual
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constituents to increase their contribution to loading bearing when stresses exceed target
values; conversely, if stresses equal their target values, then the production rate equals its
basal value as it should. This “lumped parameter” relation is based on considerable tissue
level data that suggest sigmoidal relations between changes in the cellular production of
diverse effector molecules and changes in stress.13 For example, increased production of
TGF-b by stressed smooth muscle cells increases their production of collagen whereas
increased endothelial production of NO (at high wall shear stress) or ET-1 (at low wall shear
stress) decrease and increase, respectively, the production of collagen by smooth muscle
cells. The assumed linearity of Eq. (1) thus approximates the sigmoidal mechanical dose
responses when differences in stress from target are modest (noting, for example, that
homeostatic values in the mouse aorta are on the order of 100 kPa for intramural
circumferential stress and 10 Pa for wall shear stress). Copious tissue level data suggest
further that apoptosis and the degradation of extracellular constituents by matrix
metalloproteinases (MMPs) both tend to follow first-order type kinetics.20-24 Hence, a
commonly used form for the survival function is

(2)

where  is a rate-type parameter (having units of inverse days) and  denotes
differences between the current tension, at time s, and its homeostatic value, at time τ when
the constituent was synthesized and incorporated within the extant matrix. Note that if 
is zero and  is constant, then one recovers a first order kinetic decay. The tension
dependency is meant to capture some of the complexity of MMPs in stressed tissues, noting
that MMP production and activity can increase with increased stress on a cell while
degradation rates can decrease for collagen at higher stresses. Functional vascular elastin is
unique in that it tends to be deposited during the perinatal period and its half-life tends to be
on the order of the lifespan of the organism (e.g., 40 years in humans).25-28 Hence, one need
not prescribe kinetic functions for elastin under normal conditions in maturity.

Agent Based Model (ABM)
Individual cells, or agents, are identified in ABMs by their pixel location within a prescribed
computational grid and by the behaviors they are endowed with based on prescribed cell
specific rule-sets. For example, smooth muscle cells (SMCs) are allowed to proliferate,
migrate (move from one pixel to another), and synthesize and secrete diverse proteins,
including growth factors (PDGF-AB and TGF-b), extracellular matrix proteins (e.g.,
collagen type I), and proteases (e.g., MMP-1). As noted earlier, the rates and extents of
production of many of these factors by an individual SMC are regulated in part by the
circumferential stress that the cell experiences at a particular time. Endothelial cells (ECs)
are similarly capable of producing vasoactive molecules (e.g., ET-1 and NO), growth
factors, and MMPs. Soluble molecules, such as NO, ET-1, PDGF-AB, TGF-b, MMP-1, 2,
and 9, can diffuse throughout the computational domain based on a pixel-based algorithm
that approximates Fick’s second law of diffusion.29

A detailed description of procedures used to identify rule-sets for different types of vascular
cells and effector molecules of interest can be found elsewhere, and so too a listing of many
specific rules and parameter values.15 Here, therefore, we simply discuss two illustrative
examples. Data suggest that the production of TGF-b by smooth muscle cells in response to
changes in circumferential stress30,31 can be modeled via a simple linear rule (cf. Eq (1) for
the CMM), namely
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where m (pg/kPa) and b (pg) are parameters required to fit the data. Note that the basal
production is obtained when the circumferential stress is at its homeostatic target value. In
contrast, the rate of production of MMP-2 by smooth muscle cells in response to changes in
circumferential stress32,33 appears to demand a more complex rule,

where M is the maximum rate of production (e.g., 0.018 ng/cell/6 hrs), and δ, α, κ and n are
parameters required to fit the data. Given that MMPs are often produced in latent form (as
proMMPs), the parameter A further allows this relation to yield that percentage of the MMP
that is active. Regarding activity, note for example that the amount of active MMP-1 (pg) at
a particular pixel will degrade collagen I at that pixel proportional to enzyme present.
Similarly, the amount of PDGF-AB (in pg) at a particular pixel will cause the SMC at that
discrete location to proliferate accordingly, which in turn will contribute to overall arterial
growth via a radial increase in wall thickness. Consequences of the other 5 key molecules
are also modeled similarly. In summary, we reiterate that our ABM rule-sets have been
subjected to a formal confidence scoring as well as numerical testing of their ability to yield
both homeostatic stability and insensitivity to transient changes in stimuli.15 In other words,
we have previously required comparable levels of model verification for the ABM and the
CMM separately.

Illustrative Simulation
We adopted the models of arterial adaptation reported by Valentin et al.11 for the CMM and
Thorne et al.15 for the ABM. Both models were prescribed herein to have the same initial
geometry and mass fractions of solid constituents for an abdominal aorta from the mouse: an
initial pressurized inner radius of 230 μm, wall thickness of about 30 μm, and SMC, elastin,
and collagen mass fractions of 0.28, 0.28, and 0.44, respectively. Note that the ABM also
included a monolayer of ECs, but they did not play any role in the problem studied because
of the assumed near constancy of wall shear stress in the presence of a constant blood flow.
Constituent mass was distributed uniformly in the CMM. In contrast, SMC mass was
distributed in the ABM via approximately 3 layers of cells (Fig. 1), with each 10 μm × 10
μm pixel patch containing a SMC agent in addition to matrix (i.e., collagen and elastin) and
non-space occupying biochemical factors. The total mass of the ABM vessel due to the
simulated SMCs at each time point, i, was thus calculated as

(3)

where Vi was the current vessel volume (i.e., total number of pixels multiplied by a fixed
volume per pixel patch (1.0E-9 cm3/patch), ρ the mixture density of the artery (1.05 g/cm3),
and  and Emass the current mass of collagen and elastin, respectively. Hence, although
there was only one SMC agent at each pixel, the mass and size of that SMC could evolve
(i.e., hypertrophy or atrophy) depending on the mass of the other constituents at that pixel.
The average wall thickness of the vessel was calculated from the area of each pixel patch,
where
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(4)

with rl denoting the constant luminal radius (230 μm) and Ai the current vessel area or
number of patches multiplied by the area for each pixel.

The response of the CMM to changes in pressure was determined by material parameters for
the aforementioned passive behavior of elastin (modeled as neo-Hookean) and collagen
(modeled as exponential), the active behavior of the smooth muscle (modeled using a
Rachev – Hayashi relation18), and growth and remodeling parameters for cell turnover and
matrix deposition and degradation (Tables 1 and 2). For example, muscle activation
parameters included the circumferential stretch at which contraction was maximum or
minimum plus the net ratio of constrictors to dilators. Most of these parameters are well
known or well bounded18. The behavior of each agent within the ABM was similarly
determined by a selected set of 17 rules governed by 37 parameters15 (Tables 1 and 2). Note
that EC production of NO, ET-1, and PDGF-AB in response to shear stress were fixed in
these simulations because of the constancy of flow and because inner radius did not change
appreciably in the ABM. The rules governing the removal of cleaved collagen and elastin by
gelatinases (i.e., MMP-2 and MMP-9) were also fixed based on pilot parameter sensitivity
studies. In summary, for the illustrative problem considered, only 4 parameters in the CMM
and 12 parameters in the ABM were deemed to be less well determined and thus required
further refinement (Table 2) via our proposed congruency check. Bounds for these
parameters were prescribed based on our prior parameter sensitivity studies (Table 2).15,18

Model Congruency
A strategy common in multiscale modeling is to let the lower scale models sequentially
inform the higher scale models, which ultimately should lead to tissue- or organ-level
behaviors of clinical importance. The tacit assumption underlying such a strategy is that the
lower scale models, or associated data, are more reliable. We suggest that this need not be
the case. Rather, all data are inherently limited and it is preferable to ensure model
congruency across scales by requiring outputs common to the models to be self-consistent.

We used predicted collagen and smooth muscle mass as outputs common to the ABM and
the CMM suitable for congruency checking. Whereas the CMM is designed to satisfy the
condition of tissue maintenance automatically (i.e., no net changes under conditions of
balanced turnover in unchanging configurations), this need not always be the case for the
ABM because of its inherent stochasticity and because data are generally collected
separately for production and removal. Moreover, the prior parameter sensitivity study for
the ABM was one-dimensional15; small changes to multiple ABM parameters that favor a
particular action (e.g. proliferation) could potentially lead to an unsteady response even
under normal conditions. Hence, we sought to ensure congruency for both the problem of
tissue maintenance over a 56 day simulation (i.e., normotension, or, NT) and the problem of
a long-term aortic adaptation to a sustained 30% increase in pressure (i.e., hypertension, or,
HT) that began on day 2 of a 500 day simulation. The durations of study for NT and HT
were motivated by prior results using a CMM11 and were not too computationally
expensive.

Mathematically, therefore, to increase congruency between the ABM and CMM, we sought
to minimize the following objective function,
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(5)

where C denotes mass of collagen present during each 6 hour time step j for either the ABM
or the CMM, and M likewise denotes the mass of smooth muscle predicted by either the
ABM or the CMM. Because of the lack of information otherwise, we did not weight the
minimization to favor either the ABM or CMM; that is, both were deemed to be equally
uncertain in general. When additional data become available, the minimization could be
weighted accordingly. Regardless, a genetic algorithm (GA) heuristic in MATLAB was used
to find optimal values of the 16 parameters by minimizing the value of e. Genetic algorithms
are based on concepts of natural selection and are well suited for stochastic or highly
nonlinear objective functions. Basically, the GA generates parameter sets (called
populations) derived from a parent set (i.e., set of parameters that gave the lowest value of
e). The number of parameter sets (population size) for each generation herein was set to 40,
and the process was repeated for 25 generations. Due to the stochastic nature of the ABM,
each population was simulated at least 10 times and these outputs (M and C) averaged
before comparison with the outputs from the CMM.

RESULTS
Aortic responses to increased blood pressure (HT), defined herein as an abrupt but sustained
30% increase in mean arterial pressure from 96.4 to 125.3 mmHg34, was simulated
independently by the CMM and ABM. The CMM predicted an initial increase in
circumferential and axial stress and a decrease in wall shear stress due to the abrupt increase
in pressure and the associated elastic distension (increase in inner radius) and isochoric
thinning of the wall. Consistent with Eq. (1), the increased intramural stress and decreased
wall shear stress worked together to hasten an increase in both SMC and collagen mass,
which in turn thickened the wall and restored intramural stresses toward normal over time
(Fig. 2). Note that there was no change in elastin mass although all mass fractions changed
accordingly, and a rapid vasoconstriction returned the luminal diameter back toward its
original value. The ABM also responded to the sudden increase in circumferential stress,
which was estimated solely by the higher pressure at a constant radius by the
aforementioned Laplace’s equation, which in turn caused an associated increase in SMC
production of PDGF-AB, TGF-b, and each of the MMPs. Whereas PDGF-AB led to an
increase in SMC mass, TGF-b led to an increase in collagen production, which initially
outpaced degradation. Note that the amount of collagen tended to reach steady state around
day 220 when both TGF-b and MMP-1 also tended to plateau. Hence, the arterial wall also
thickened in the ABM (Fig. 2). The expected 30% thickening13 was achieved by both
models, albeit over different time courses. This thickening is illustrated visually in Fig. 1 for
the ABM, which shows actual screen-shots that contrast the mouse abdominal aorta in
normotensive (Fig. 1a) and hypertensive conditions after 500 days of elevated blood
pressure (Fig. 1b). The endothelial layer is shown in yellow and the media in red, with the
inner radius and number of ECs kept fixed.

The outputs in Fig. 2 resulted when using parameter values (initially determined directly
from data in the literature) corresponding to the two separate scales (i.e. tissue and cellular).
Given the different time courses for the two predictions, we sought to increase congruency
across the scales by simultaneously refining the less reliable parameters in each model (4 for
the CMM and 12 for the ABM). This refinement was accomplished using the genetic
algorithm to minimize the objective function in Eq. 5 based on two common outputs,
predicted SMC and collagen mass. Table 2 shows both the initial and the refined parameter
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values. The hypertensive simulation of Fig. 2 was then repeated with the refined parameters
(Fig. 3). Whereas all prior responses were preserved qualitatively, note the improved
agreement between the models throughout the time course of changing SMC and collagen
mass. For example, the percent difference between SMC and collagen mass, as predicted by
the CMM and ABM, was only 4.3%. Agreement was also improved between the models for
both wall thickness and circumferential stress. In particular, the refined parameter values
allowed the ABM to predict a faster increase in growth factors, metalloproteinases, and
gelatin mass. The sustained increase in SMC and collagen mass corresponded well with the
sustained increase in wall thickness after the artery remodeled in a new state within ~120
days. Fig. 4 shows a similarly good agreement between models for the case of a 15%
increase in blood pressure using the parameters from Table 2 and Fig. 3, which were based
on the required congruency for a 30% increase in pressure. This figure thus shows that
advantages of this simple verification step apply more broadly than for the single case
examined.

Finally, as shown in Supplemental Figure S1, note that geometry and mass did not deviate
significantly from baseline values in a 500 day simulation of normotension using the refined
parameter values. This finding resulted, in part, because parameter refinement sought
congruency under both normotensive and hypertensive conditions and the CMM has been
shown previously to be stable under homeostatic conditions for long periods18. Ensuring
balanced turnover (biological stability) is important because data informing the models often
come from studies wherein production (e.g, matrix synthesis) or removal (e.g., MMP
activity) are considered independently. Ensuring numerical stability is equally important for
it confirms that computational inaccuracies do not affect the results.

DISCUSSION
A common fallacy in multiscale modeling is that data at lower scales are necessarily more
reliable. Rather, we emphasize that whereas experiments conducted at lower scales are often
better controlled, which gives rise to data that are easier to interpret, the associated
experimental conditions (e.g., experiments on isolated cells cultured on 2-D membranes)
tend to render the cellular environment, and thus response, different from physiological.
Hence, one must often question the in vivo relevancy, and thus overall utility, of lower scale
assays. In contrast, experiments conducted at higher levels of biological scale (e.g., in vivo
studies) are, by definition, physiologically relevant, yet the plethora of uncontrolled effects
(hormonal or neural, artifacts induced by anesthesia, and so forth) render the interpretation
of the associated results difficult. Given our ultimate desire to understand tissue level
phenomena based on molecular and cellular level mechanisms, we must find ways to
overcome inherent limitations in the available data. In this paper, we suggest that multiscale
modeling may provide one logical means for extracting the best information from the
inherently limited data that are collected at different scales.

We suggest that multiscale modeling should not be viewed simply as a means to pass lower
scale information to higher scale models in order to ultimately address pathophysiologic
conditions. Rather, multiscale modeling can also be used to increase the utility of, and thus
confidence in, otherwise inherently limited information. Because there should always be
some overlap in the inputs or outputs of models at successive scales, it should be possible to
identify simple canonical problems for the purpose of evaluating congruency across scales
when the models act independently. Indeed, ensuring such congruency via parameter
refinement may help obviate the propagation of uncertainty in the original data to the model.

In our illustrative example, the ABM was built on cell-level data whereas the CMM was
built based largely on tissue-level data. Hence, one should not expect the two models
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initially to predict the same values of common outputs, as, for example, the proliferation of
particular cells (e.g., SMCs) or production of particular molecules (e.g., collagen) by the
ABM and the associated accumulation of mass due to such cells or molecules by the CMM.
Indeed, this was borne out by the initial simulations (Fig. 2). Yet, there should be a unique
production / accumulation in any actual situation independent of the models used. As we
showed (Fig. 3), minimizing differences in common outputs (i.e., collagen and SMC mass)
allowed an iterative refinement of parameters in both models, which in turn led to increased
congruency in other predictions.

In summary, it is increasingly realized that multiscale models will be essential for
integrating information from the tissue / organ level, at which diseases such as
atherosclerosis and aneurysms present and can be treated clinically (e.g., stents or
endografts), with information at the molecular / cell level, at which underlying mechanisms
exist and can be treated (e.g., pharmacologically). In Thorne et al.15, we showed that agent
based models can be subjected to verification tests that have proven useful for continuum
mixture models, including numerical stability that allows one to simulate long-term
homeostasis and insensitivity to transient perturbations that are not expected to affect long-
term remodeling. In this way, models at two scales are rendered internally consistent and
more amenable to linking in a multiscale sense. In this paper, we extended the requirement
of internal consistency to include an additional level of congruency. That is, we suggest that,
albeit for different reasons, experimental data are inherently limited at all scales and the
associated modeling parameters should similarly be expected to be limited. By identifying
appropriate canonical problems, outputs common to models at multiple scales can be
compared for the same simulations; when these outputs differ, an iterative process can be
used to increase model congruency. To illustrate the potential utility of this multiscale
congruency approach, we simulated cell-mediated large artery adaptation to a sustained
increase in blood pressure. Both models initially predicted characteristic observations of
aortic adaptations to hypertension; that is, the arterial wall thickened proportional to the
increase in pressure, due in large part to increased SMC and fibrillar collagen mass, and
thereby restored circumferential stress toward normal while maintaining a constant inner
radius and thus wall shear stress. Nevertheless, parameter refinement via the congruency
checks brought these characteristic predictions into much closer agreement over the period
of interest. Moreover, both predictions also appeared to come into closer agreement with
data in the literature.

Wolinsky showed in a series of Goldblatt hypertension studies (systolic pressure increase of
≥ 24%) in rats that wall stress in the aorta is significantly greater than control at 70 days but
returns to normal by 140 days.35 Matsumoto and Hayashi similarly showed in Goldblatt
hypertensive (systolic pressure increase of ≥ 30%) rats that circumferential stress in the
aorta did not return to normal until 126 days.8 The ABM alone, governed primarily by
experimental data from cell culture studies, predicted a delayed remodeling response
wherein circumferential stress did not return to within 1% of its target value until day 350.
In contrast, the CMM, when governed primarily by data from tissue-level turnover rates plus
stored energy functions for normal structurally significant constituents, predicted a faster
remodeling response, returning hoop stress to within 1% of its target value by day 70.
Following parameter refinement via the congruency check, both models predicted a
recovery within 1% of the target circumferential stress by day 125 (Fig. 3b), which is closer
to that measured experimentally in the two rodent models discussed. Although there remains
a need for new experiments both to formulate improved constitutive relations for CMMs and
rule-sets for ABMs and to validate single- and multi-scaled models, we submit that ensuring
congruency in models across scales may help correct uncertainties that are otherwise
inherent to data and models built on single-scale studies alone.
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APPENDIX

Symbol (units) Classification Definition

Kσθ
c CMM: Bounded Gain parameter governing circumferential-stress mediated

rate of production of collagen. See Eq. (1)

Kσθ
m CMM: Bounded Gain parameter governing circumferential-stress mediated

rate of production of smooth muscle. See Eq. (1)

Kτw
c CMM: Bounded Gain parameter governing shear-stress mediated rate of

production of collagen. See Eq. (1)

Kτw
m CMM: Bounded Gain parameter governing shear-stress mediated rate of

production of smooth muscle. See Eq. (1)

MMP-10 (pg) ABM: Bounded Baseline mass of MMP-1

MMP-1%A (%) ABM: Bounded Percent of MMP-1 that is active

C0 (pg) ABM: Bounded Baseline mass of collagen

CTGF ABM: Bounded Rate parameter governing TBFb mediated rate of
production of collagen (pg of collagen per pg of TGFb)

Mp ABM: Bounded Rate parameter governing PDGF mediated SMC
proliferation rate (pg of SMC per pg of PDGF)

M0 (pg) ABM: Bounded Baseline SMC proliferation rate (pg)

Ma1 ABM: Bounded Apoptosis chance for SMC (1)

Ma2 ABM: Bounded Baseline apoptosis chance for SMC (2)

PDGFσθ(pg/kPa) ABM: Bounded Rate parameter governing hoop stress mediated rate of
production of PDGF (pg of PDGF per kPa of stress)

PDGF0 (pg) ABM: Bounded Baseline mass of PDGF

TGFβσθ (pg) ABM: Bounded Rate parameter governing hoop stress mediated rate of
production of TGFb (pg of TGFb per kPa of stress)

TGFβ0 (pg) ABM: Bounded Baseline mass of TGFb

Gh
e CMM: Observed Homeostatic stretch when elastin is deposited

Gh
c CMM: Observed Homeostatic stretch when collagen is deposited

Gh
m CMM: Observed Homeostatic stretch when SMC is deposited

Ce (kPa) CMM: Calculated Neo-Hookean material parameter for the stored energy of
elastin

c1
c(kPa) CMM: Calculated Fung-type exponential material parameter for the stored

energy of collagen (1)

c1
m(kPa) CMM: Calculated Fung-type exponential material parameter for the stored

energy of SMC (1)

c2
c CMM: Observed Fung-type exponential material parameter for the stored

energy of collagen (2)
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Symbol (units) Classification Definition

c2
m CMM: Observed Fung-type exponential material parameter for the stored

energy of SMC (2)

Tm(kPa) CMM: Observed Maximum stress generated by SMC

λM CMM: Observed Circumferential stretch where active stress is maximum

λ0 CMM: Observed Circumferential stretch where active stress is zero

CB CMM: Observed Material parameter for the ratio of constrictor
concentration to dilator concentration

CS CMM: Observed Scaling parameter for shear stress induced change in
constrictor concentration scaling factor

ϕc(0) CMM: Observed Initial mass fraction of collagen in the arterial wall

ϕe(0) CMM: Observed Initial mass fraction of elastin in the arterial wall

ϕm(0) CMM: Observed Initial mass fraction of SMC in the arterial wall

Kh
m(days −1) CMM: Observed Half-life of SMC

Kh
c(days −1) CMM: Observed Half-life of collagen

NO0 (pg) ABM: Observed Baseline mass of NO

NOτw ABM: Observed Rate parameter governing shear stress mediated rate of
production of NO (pg of NO per kPa of stress)

δPDGF (pg)
αPDGF

κPDGF(kPa−1)
nPDGF

MPDGF

ABM: Observed Parameters of the sigmoid function:
PDGF = M (δ + α(1 – e−kxn))

Maximum rate of PDGF production

δET–1 (pg)
αET–1

κET–1 (kPa−1

nET–1

MET–1

ABM: Observed Parameters of the sigmoid function:
ET1 = M (δ + α(1 – e−kxn))

Maximum rate of ET-1 production

δMMP–2 (pg)
αMMP–2

κMMP–2 (kPa−1)
nMMP–2

MMMP–2

AMMP–2 (%)

ABM: Observed Parameters of the sigmoid function:
MMP2 = A (M (δ +α(1 – e−kxn)))

Maximum rate of MMP-2 production
Percent of MMP-2 Active

DMMP–2 ABM: Observed Degradation rate of MMP-2

δMMP–9 (pg)
αMMP–9

κMMP–9 (KPa−1

nMMP–9

MMMP–9

AMMP–9 (%)

ABM: Observed Parameters of the sigmoid function:
MMP9 = A (M (δ +α(1 – e−kxn)))

Maximum rate of MMP-9 production
Percent of MMP-9 Active

DMMP–9 ABM: Observed Degradation rate of MMP-9

DMMP–1 ABM: Observed Degradation rate of MMP-1

Note: Parameters within the ABM or CMM are classified as observed, bounded, or calculated. Observed parameters were
either cited elsewhere or obtained via direct measurements or fits to experimental data. Bounded parameters are less well
known, but are expected to fall within specified range. Lastly, calculated parameters include those that are needed to satisfy
equilibrium under homeostatic conditions.
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FIGURE 1.
Graphical display of an ABM model of a mouse abdominal aorta (a) before and (b) after a
simulated hypertension (defined herein as a sustained 30% increase in mean pressure).
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FIGURE 2.
Illustrative results, before parameter refinement via the genetic algorithm, for a 30%
increase in mean luminal pressure using initial parameters (Table 2). CMM (dashed line)
and ABM (solid line) predictions of (a) pressure and (d,e,f) stresses normalized with respect
to the homeostatic values, (b) luminal diameter and (c) thickness normalized with respect to
original values, (g-i) intramural constituents, and (j-o) soluble molecular masses. Elastin
mass, but not mass fraction, is constant in the CMM and currently not predicted by the
ABM. Axial stress cannot be estimated by the ABM and was not considered within the
CMM to alter turnover rates in this illustrative simulation.
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FIGURE 3.
Similar to Figure 2 (for 30% increase in pressure) except based on values of the parameters
(Table 2) that increased congruency between ABM and CMM model predictions of collagen
and smooth muscle mass; these parameters were determined by minimizing Eq. (5) using the
genetic algorithm.
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FIGURE 4.
Similar to Figure 3 except for a 15% increase in pressure. Note, however, that the parameter
values were the same as used in Figure 3, which were found to increase congruency between
the ABM and CMM for the case of a 30% increase in pressure. Hence, this result shows the
broader applicability of the minimization procedure.
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TABLE 1

Values of model parameters used in the ABM and CMM to simulate the bio-chemo-mechanical response of a
mouse abdominal aorta to altered blood pressure. These values were inferred from the literature and deemed
either to be reliable or to be reasonable based on prior parameter sensitivity studies; hence, they were fixed
and not optimized in the minimization procedure to increase congruency. For detailed information on the
constitutive relations or rules in which the parameters occur, please see the original papers15,18.

Prescribed (Fixed) Parameters

CMM References

    Prestretches and Elastic Parameters

  Gh
e = 1.4, Gh

c = 1.08, Gh
m = 1.3 [12]

  ce = 58.8 KPa, c1
c = 560.4kPa, c1

m = 12.7kPa, c2
c = 22, c2

m = 3.5

    Muscle Activation and Shear-Constrictor Ratio

  TM = 150 KPa, λM = 1.6, λ0 = 0.83 [36]

  CB = 0.68 [18]

    Initial Mass Fractions and Half-lives

  ϕc(0) = 0.44, ϕe(0) = 0.28 ϕm(0) = 0.28 [37,38]

  Kh
m = 1 ∕ 80day −1,Kh

c = 1 ∕ 80day −1 [2,39]

      ABM

      Growth Factors

   δPDGF = 0.15, αPDGF = 0.84, ΚPDGF = 0.42, nPDGF = 1.24 [40,41]

MPDGF = 0.78 pg cell−1 6hr−1

      Vasoactive Factors

   δET−1 = 0.60, αET−1 = 0.40, κET−1 = 3.63, nET−1 = 1.68 [42,43]

   MET−1 = 0.01 pg cell−1 6hr−1

      Removal Factors

   δMMP−2 = 0.03, αMMP−2 = 0.52, κMMP−2 = 2.0E – 06, nMMP−2 = 2.84 [32,33]

   MMMP−2 = 1 pg cell−1 6hr−1, DMMP−2 = 99, AMMP−2 = 0.001

   δMMP−9 = 0.04, αMMP−9 = 0.44, κMMP−9 = 4.0E – 06, nMMP−9 = 2.88 [32,44]

   MMMP−9 = 0.002 pg cell−1 6hr−1, DMMP−9 = 87, AMMP−9 = 0.003, DMMP−1 = 80.6
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TABLE 2

Listed are both the initial values of the parameters and the bounds that defined the search space used in the
genetic algorithm to improve congruency between ABM and CMM predictions of smooth muscle and
collagen mass via Eq. (5). Note that 16 parameters were allowed to vary: CMM (top 4 rows) and ABM
(bottom 12 rows). See Eqs. (1) and (2), the Appendix, and Table 1 in Thorne et al.15 for associated constitutive
equations, definitions, or rules. Also listed are the final values of the parameters following minimization.

Parameter Initial Value Lower Bound Upper Bound After Genetic
Algorithm

Kσθ
c

1 0.1 10 1.11

Kσθ
m

10 0.1 10 3.85

Kτw
c

1 0.1 10 2.85

Kτw
m

10 0.1 10 8.75

MMP-10 2.69E-04 2.69E-05 2.69E-03 9.47E-04

MMP-1%A 0.39 0.039 3.93 1.04

C0 0.009 0.0009 0.09 0.07

CTGF 114.94 11.49 1149.42 134.57

Mp −1.45E+09 −1.45E+10 −9.69E+08 −1.53E+09

M0 80000 53333.33 120000 6.12E+04

Ma1 71020 7102 106530 9.89E+04

Ma2 100 66.66 1000 223.21

PDGFσθ 4.79E-07 3.19E-07 7.19E-07 7.03E-07

PDGF0 4.17E-05 4.17E-06 6.25E-05 6.17E-05

TGFβσθ 1.65E-06 1.65E-07 1.65E+05 7.87E-06

TGFβ0 1.03E-04 1.03E-05 1.03E-03 3.69E-04
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