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Abstract
In this paper, we propose a novel method to reduce the magnitude of 4D CT artifacts by stitching
two images with a data-driven regularization constrain, which helps preserve the local anatomy
structures. Our method first computes an interface seam for the stitching in the overlapping region
of the first image, which passes through the “smoothest” region, to reduce the structure complexity
along the stitching interface. Then, we compute the displacements of the seam by matching the
corresponding interface seam in the second image. We use sparse 3D features as the structure cues
to guide the seam matching, in which a regularization term is incorporated to keep the structure
consistency. The energy function is minimized by solving a multiple-label problem in Markov
Random Fields with an anatomical structure preserving regularization term. The displacements are
propagated to the rest of second image and the two image are stitched along the interface seams
based on the computed displacement field. The method was tested on both simulated data and
clinical 4D CT images. The experiments on simulated data demonstrated that the proposed method
was able to reduce the landmark distance error on average from 2.9 mm to 1.3 mm, outperforming
the registration-based method by about 55%. For clinical 4D CT image data, the image quality
was evaluated by three medical experts, and all identified much fewer artifacts from the resulting
images by our method than from those by the compared method.

1. Introduction
The spatial accuracy of reconstructed medical images is critically important in radiation
therapy, both for tumors and for the surrounding normal tissue. Four dimensional computed
tomography (4D CT) provides a way of reducing the uncertainties caused by respiratory
motion. With 4D CT images one can assess the three dimensional (3D) position of the tumor
and avoidance structures at specified phases of the respiratory cycle and directly incorporate
that information into treatment planning. The fundamental problem in 4D CT image
reconstruction is to stitch two image stacks from the “same” phase of two consecutive
breathing cycles to form a coherent image (Fig. 1 ). However, due to the variability of the
respiratory motion, those two image stacks may not come from exactly the same phase,
which substantially complicates the reconstruction problem. In recent years, a great amount
of efforts have been devoted on improving 4D CT imaging, including (1) using breathing
training to improve the respiratory regularity [18]; (2) improving the sorting algorithms [17];
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(3) using internal anatomical features instead of external surrogates [15]; and (4) post-scan
processing [3, 4 ]. However, the problem remains very challenging. In fact, a recent study
[21, 5] shows that all current 4D CT acquisition and reconstruction methods frequently lead
to spatial artifacts and those artifacts occur with an alarmingly high frequency and spatial
magnitude. Hence, significant improvement on reducing the artifacts is needed in 4D CT
imaging.

One way to solve this image stitching problem is to use deformable registration [3] to
account for the respiratory motion. However, general deformable registration methods may
not be structure-aware, causing structure inconsistency and further producing visual
artifacts. The most closely related work of our approach is the optimal seam-based method
[6]. Our method shares a similar framework. One drawback of that method is, again, the lack
of the capability of making use of the rich structures of the lung CT images. It does not
explicitly align the anatomical structures while stitching two image stacks, causing
anatomical inconsistence.

In this paper, we proposed a novel method based on graph algorithms for solving the 4D CT
artifacts reduction problem. Our method is of structure-awareness and has the capability of
substantially reducing the misalignment of the anatomy structures. In our method, we first
compute an interface seam for stitching in the overlapping region of the first image, which
passes through the “smoothest” region to reduce the structure complexity along the stitching
interface. Then, the corresponding seam is obtained while mapping the first interface seam
to the overlapping region of the second image stack, which is essentially to solving a
multiple-label problem in Markov Random Fields. We use sparse 3D features as the
structure cues to guide the seam mapping, in which a regularization term is incorporated to
enforce the structure consistency. The displacements of the second seam are propagated to
the rest of second image and the two images are stitched along the interface seams based on
the computed displacements field.

1.1. 4D CT Artifacts Problem
Due to current spatio-temporal limitation of CT scanners, the entire body can not be imaged
in a single respiratory period. One widely used method in clinic to acquire 4D CT images of
a patient is to use the CT scanner in the helical mode, that is, image data for adjacent couch
positions are continuously acquired sequentially. To obtain time-resolved image data with
periodic motion, multiple image slices must be reconstructed at each couch position for a
time interval equal to the duration of a full respiratory period, which can be achieved in the
helical mode with a very low pitch (i.e., the couch moves at a speed low enough so that a
sufficient number of slices can be acquired for a full respiratory period). The image slices
acquired at each couch position form an image stack, which is associated with a measured
respiratory phase and covers only part of the patient’s body. In the post-processing stage, the
stacks from all the respiratory periods associated with a same specific measured respiratory
phase are stacked together to form a 3D CT image of the patient for that phase. A 4D CT
image is then reconstructed by temporally viewing the 3D phase-specific datasets in
sequence. However, due to the variability of respiratory motion, image stacks from different
respiratory periods could be misaligned, causing the resulting 4D CT data does not
accurately represent the anatomy in motion [21, 5].

In this paper, we focus on the basic step in 4D CT image reconstruction, that is, how to
stitch two image stacks Ii and Ij that partially overlap in anatomy, to obtain a spatio-
temporally coherent data set, further reducing the artifacts. The reason that we only consider
the case of anatomy overlap is that anatomy gap is fundamentally avoidable. For example,
We are able to control either the pitch (couch translation speed and/or X-ray tube rotation

Han et al. Page 2

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2011 November 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



speed) or the patient’s respiratory rate (increasing breaths per minute by training) to
guarantee the overlaps between two stacks from adjacent couch positions. Another possible
way to resolve the anatomy gapping problem is to utilize a bridge stack Ib acquired from
another respiratory phase which overlaps with both image stacks, Ii and Ij. We then perform
the following stitching operations: first stitch Ii with Ib to obtain an intermediate stack Iib,
which overlaps with Ij; and then stitch Iib with Ij, resulting in an artifact-reduced stack Iibj.
Thus, the fundamental problem is to stitch two partially overlapping stacks. However, in this
case we need to be aware of the deformation errors induced by using the bridge stack from a
different phase.

2. The Method
2.1. Overview of the Method

Given two image stacks, I and I′, with a partial overlap in anatomy, we want to stitch them
together to generate a spatially coherent image, i.e., to minimize the artifacts in the resulting
image as much as possible. Assume that Ω ⊂ I overlaps with Ω′ ⊂ I′. We call I (resp., I′) the
fixed (resp., moving) image. Our method consists of the following six steps (the main
module in Fig. 2):

Step 1 Overlap estimation. The purpose of this step is to define the overlapping
regions Ω in I and Ω′ I′. We use a “bridge” image stack that comes from the
other respiratory phase, which overlaps with both I and I′. The overlapping
regions Ω and Ω′ are computed by matching I and I′ to the bridge image using
normalized cross correlation (NCC).

Step 2 Initial alignment. Initially align I with I′ by a general registration method to
reduce the stitching errors due to the large displacements.

Step 3 Seam detection. Computing an interface seam in the fixed image for
stitching. To reduce the alignment ambiguity, the interface seam for stitching
is required to pass through the “smoothest” region in Ω with minimum
structure complexity. We model this problem as an optimal seam detection
problem by the graph searching method [14], which are widely used in many
problems in computer vision field [8, 7, 20, 19].

Step 4 Matching correspondence seam. Matching the correspondence interface
seam in the moving image. Intuitively, we hope to “move” the interface seam
in the fixed image to the moving image to find the “best” one that can be
perfectly aligned with the one in the fixed image. To be structure-aware,
ideally, the two seams should cut the same anatomical structures at the same
locations and should be well aligned at those locations. We formulate the
problem as a multiple-label problem with an additional term in the energy
function to enforce the structure consistency.

Step 5 Displacement propagation. Propagating the displacements to the rest of the
moving image. The displacement vectors of the voxels in the rest of the
moving image can be computed by solving a Laplace equation with Dirichlet
boundary condition [11].

Step 6 Warping image. Warping the images and getting an artifact-reduced image.
Two imaged are stitched and the misalignments and visual artifacts caused by
respiratory motion are reduced.

The whole process of our method is shown in Fig. 2. In the following of the paper, we
mainly focus on the main steps 3, 4 and 5.
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2.2. Computing the Optimal Interface Seam in Ω
The Interface Seam—Recall that Ω (x, y, z) denotes the overlapping region of the fixed
image I. Assume that the size of Ω is X × Y × Z, and the two image stacks, I and I′, are
stitched along the z-dimension. Thus, the interface seam S in Ω is orthogonal to the z-
dimension and can be viewed as a function S(x, y) mapping (x, y) pairs to their z-values. To
ease the stitching, we certainly hope the interface seam itself is smooth enough. We thus
specify the maximum allowed changes in the z-dimension of a feasible seam along each unit
distance change in the x- and y-dimensions. More precisely, if Ω(x, y, z′) and Ω(x, y + 1, z″)
(resp., Ω(x, y, z′) and Ω(x + 1, y, z″)) are two neighboring voxels on a feasible seam and δy
and δx are two given smoothness parameters, then |z′ − z″| ≤ δy (resp., |z′ − z″| ≤ δx).

The Energy Function enforces the interface seam passing through the region of Ω with less
structure complexity. Two factors should be considered: (1) The gradient smoothness in Ω
which prevents the seam from breaking anatomy edges; and (2) the similarity between the
neighboring voxels in the overlapping region of the fixed image (Ω) and that of the moving
image (Ω′). Let Cs(p) denote the gradient smoothness cost of the voxel at p(x, y, z) 1 and
Cd(p) be the dissimilarity penalty cost of voxel p under the neighborhood setting . Denote
S a feasible interface seam. The energy function is defined with the following equation:

(1)

where α is used to balance Cs(p) and Cd(p) and

(2)

and

(3)

Optimization—The problem of finding in Ω an optimal interface seam S while minimizing
the objective function (S) is in fact an optimal single surface detection problem, which can
be solved by computing a minimum-cost closed set in the constructed graph from Ω [14].

2.3. Matching the Correspondence Seam with Anatomy Structure Awareness
The optimal interface seam in the moving image (actually, in the overlapping region Ω′ of
the moving image) is computed by solving a multiple-label problem in Markov Random
Fields (MRFs), in which we use sparse 3D features as the guidance for the structure
awareness.

Seam Matching with Graph Labeling—Intuitively, we want to “move” the interface
seam in the fixed image to the moving image to find the corresponding one, which is the

1p(x, y, z) denotes a point at (x, y, z) and compacted as p. p = (x, y, z) denotes a vector with three elements, which is denoted as p.
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“best” match with the one in the fixed image. We model it as a multiple labeling problem. A
label assignment lp to a voxel p(x, y, z) on the seam S is associated with a vector dp = (dx, dy,
dz), called the displacement of p. That is, we map p(x, y, z) ∈ Ω in the fixed image to p′(x +
dx, y + dy, z + dz) ∈ Ω′ in the moving image. Thus, the problem is modeled as a multiple
labeling problem, where each node corresponds to exactly one voxel p of the seam S with its
label denoted by lp. The energy E( ) of a labeling  is the log-likelihood of the posterior
distribution of an MRF [2]. E( ) is composed of a data term Ed and a spatial smoothness
term Es,

(4)

(5)

where  represents the average values in a local neighborhood at the voxel p. We used a 3
× 3 × 3 neighborhood to compute the data term. Ed(lp) is in fact the block matching score
between p ∈ Ω and its corresponding voxel in Ω′. Assume that nodes p(x, y, z) and q(x′, y′, z
′) are adjacent on seam S under the neighborhood setting . The spatial smoothness of their
labels is defined as,

(6)

Preserving the Topology Structure with Feature Guide—Eq (4) presents a way to
match the seam in the moving image to one in the fixed image. However, this function only
makes sure that the seam in the moving image has the best alignment with the seam in the
fixed image. There is no guarantee that both seams cut the same anatomy structures at the
same locations. Simply removing the visual artifacts may “hide” the real anatomy structure
misalignment, resulting in a visually attractive result, but producing wrong structures of
anatomy. Thus, the essential step is to make sure both seams cut the same anatomy
structures at the same locations, preserving the structure consistency. We propose to use
sparse 3D features to form a structure topology around each node on the seams to guide the
structure alignment while mapping the seam in the fixed image to one in the moving image.
For each node p ∈ S, we generate k nearest-neighbors feature points, denoted as . These
points form a structure topology that help to find the structure-aware matching. We
introduce a new regularization term to Eq.(4) to enforce the structure consistency to form the
new energy function Eq.(7)

(7)
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For feature point q in I, its correspondence in I′ is denoted corr(q). Thus the term Er(lp) is
expressed as,

(8)

where  is the k nearest feature points of p ∈ S. k = 2 is used in our current study. In Fig. 3,
we show how to use the features to guide the seam matching.

Approximation by Graph Cuts—The function defined in Eq. (7) leads to an energy
minimization problem in MRF, which is computationally intractable (NP-hard). However, it
has been shown that an approximate solution can be found that typically produces good
results using the multiple label graph cuts method[2].

2.4. Displacements Propagation
Once the optimal seam displacement vectors d are computed on S, the displacements need to
be propagated to the rest of the moving image I′. To smoothly propagate the displacements
d, we minimize the following Laplace equation with Dirichlet boundary condition [11] to
obtain the propagation displacements d*.

(9)

where ∇ is a gradient operator. The problem can be discretized and solved by the conjugate
gradients method.

Using the propagation displacements d* in I′, we perform a warping with a bilinear
interpolation in I′, resulting an artifact-reduced image [11].

3. Implementation
3.1. Feature Detection and Matching

We use a structure-tensor-based 3D Föorstner operator which were used in Ref.[9]. The 3D
Förstner feature operator assigns a response to each voxel p, denoted by R(p). After we
compute the response R for every voxel, we extract feature points as the subset of image
voxels whose R-value is a local maximum within a local neighborhood of size 7 × 7 × 7.
The feature descriptor used in study is a revised SURF descriptor [9]. First, we take a 8 × 8
× 8 neighborhood for each detected feature point, and further divide into sixty-four 2 × 2 × 2
sub-regions. And then, for each subregion, a six-dimensional description vector f is
computed to characterize the local intensity structure:

(10)

The sub-region descriptors are then connected together to form a 384-dimensional feature
vector, which is further normalized to a unit vector to get the final descriptor for each feature
point.
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We use two steps to match the 3D features. The correspondences between two input images
are established by finding nearest-neighbors (NNs) in the 384-dimensional vector space. As
suggested in [16]. First, a distance ratio r is computed after the NN search, which is the ratio
of the smallest distance value to the second-smallest. A match is accepted if r is smaller than
a given threshold ( we use 0.5 is our study). Second, a symmetric criterion is applied, which
performs the NN search in two directions and a matched pair (p, p′) is kept only if it satisfies
the NN-optimality in both directions. After the first step, we can reject most of the wrong
correspondences. In the second step, we use RANSAC [10] to reject outliers. It was shown
that a local affine transform could handle complex articulated deformations [13]. Thus, we
formulate the deformation transform in a local neighborhood as the affine transform, which
is model used in RANSAC. To measure the affine transform, we need s = 4 points and all
the 4 points must not be co-plane. Let w be the probability that any correspondence is an
inlier, p be the probability that at least one random correspondence is free from outliers. We
set w = 0.8 and p = 0.99. Thus, the number of feature points N is computed as .
Thus, for each feature point, we select 9 neighborhood points including itself and use
RANSAC to reject wrong correspondences. In our experiments, in the first step, we got
about 230–280 correspondences. The final correspondences after the second step was about
150–200.

3.2. Parameters Setting
In this paper, we apply the graph searching method [14] to detect an optimal interface seam
in the fixed image. In our experiments the smoothness parameters were set δx = δy = 3. In
Eq.(1), α was set to 0.5. In Eq.(7), we set λ = 1, β = 0.3 and γ = 0.1. To reduce the
computation complexity in Eq.(7), we used a hierarchical approach with three levels
pyramid. The displacements resolution of each voxel on S were (−4, −2, 0, 2, 4) mm, (−2,
−1, 0, 1, 2) mm and (−1, −0.5, 0, 0.5, 1) mm along each dimension from 3th pyramid level
to 1th pyramid level. The number of labels at each level was 53 = 125 for 3D image.

4. Experimentation and Results
4.1. Experimentation on Simulated Data

Evaluation Method—To generate synthesized test datasets, clinical CT images with no
artifacts were each divided into two sub-images partially overlaps each other. Then, known
motion deformation vectors were applied to one sub-image to produce the corresponding
moving image. In order to make the deformation fields more realistic, we selected an image
has the same locations from another phase and the deformation fields were computed
between two images. Some 3D feature points were identified as the landmarks. The
landmarks distance errors (LDE) between the resulting artifact-reduced images and the
original images were computed as the metric. Our experiments studied the following aspects
of the method: (1) the average and standard deviation of LDE; and (2) the sensitivity of the
displacement propagation.

Seven lung 3D CT images without artifacts were used. Each CT image consisted of 40 slices
with a resolution of 0.98mm×0.98mm×2mm. While dividing the 3D CT image into two sub-
images, we set the overlap between the two sub-images to be 20 slices, which indicated that
there was 40 mm displacement along z-dimension between the fixed and the moving
images. We further upsampled the image along the z-dimension with a resolution of
0.98mm×0.98mm×1mm. The size of the image was then 512 × 512 × 80. The number of
landmarks identified for the measure of LDE was ten in each 3D CT image, which
uniformly spread over the moving images.
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Results—The results were summarized in Table 1 showing the average (avg) and standard
deviation (std) of LDE’s. We showed the LDE’s for each of the seven synthesized datasets
(1) while no registration operation was applied, i.e., simply stacking the two sub-images; (2)
after initial registration; (3) using the method without feature guidance [6](i.e., with no
feature-based regularization term); and (4) using the proposed method with the feature
guidance (i.e., with the feature-based regularization term). In our method, the combined
affine and B-Spline registration were used as the initial registration method. We used the
elastix tools [12] in our experiments. From Table 1, we can see that the LDE’s were
significantly reduced after initial registration. While after applying our method, the LDE’s
were further decreased by 55% from 2.9 mm to 1.3 mm on average. The standard deviation
was also further decreased from 1.7 mm to 1.0 mm. Compared with the method without
feature guidance, we can see the LDE’s decreased by 32% from 1.9 mm to 1.3 mm.
Especially for Dataset 5, the method without feature guidance failed and the LDE’s
increased from 3.6 mm to 4.0 mm. While applying our method, the feature correspondences
successfully guide the interface seam matching to well align the anatomical structures, and
the average LDE was decreased from 3.6 mm to 1.7 mm. This example demonstrated the
usefulness of the feature guidance.

The displacement estimation in the non-overlapping region of the moving image is
challenging due to the nature of non-rigid deformation. To analyze the propagation
behaviors of the seam displacements to the rest of the moving image, we plotted the LDE’s
of all the landmarks based on their z-coordinates (note that a large z-coordinate indicates that
the landmark is far away from the interface seam for stitching). For each data set, we
compared three results: (1) the results after initial registration; (2) the results by the method
without the feature guidance [6]; and (3) the results by the proposed method with the feature
guidance term. Figure 4 showed that the average LDE’s were not large in the overlapping
regions (i.e., the z-coordinates of the landmarks were smaller than 40 mm). The largest LDE
observed in the non-overlapping regions in our experiment was about 4.4 mm (Fig. 4(e)).
We observed that the LDE increased as the distance of the landmark from the interface seam
increased For the clinical 4D CT images, no method can guarantee the computed
deformation field is correct for the non-overlapping region of the moving image, especially,
when the non-overlapping region is large. Fortunately, one image stack at a certain phase of
a breathing period commonly consists of about 20 slices in our clinical helical 4D CT
images. Thus, our results indicate that the method is robust in the clinical setting.

4.2. Experimentation on Clinical Data
Evaluation Method—For the clinical test datasets, we used the images acquired by a 40-
slice multi-detector CT scanner (Siemens Biograph) operating in the helical mode. The
amplitude of the respiratory motion was monitored using a strain belt with a pressure sensor
(Anzai, Tokyo, Japan). The respiratory phase at each time point was computed by the
scanner console software via renormalization of each respiratory period by the period-
specific maxima and minima of the amplitudes. The Siemens Biograph 40 software was
used to sort the raw 4D CT images retrospectively into respiratory phase-based bins to form
a sequence of phase-specific 3D CT images. We tested on six 4D CT data set with each
having 10 phases and each phase consisting of about 120 to 190 slices. The number of image
stacks depends on the breathing periods. In general, there were about 10 to 20 periods for
each phase and in each phase there were about three pairs of image stacks presenting
obvious artifacts. Thus, the total number of cases we studied was about 6 × 10 × 3 = 180.

For the 4D CT images acquired in the helical mode, to the best of our knowledge, there are
few methods designated to reduce the reconstruction artifacts. We thus compared the
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artifact-reduced results by our method with those obtained by the commercial Inspace
software [1] and by the method in [6]. The Inspace software directly stacks two adjacent
image stacks. The method in [6] shared our general framework, but it did not enforce the
structure consistency. The quality of the results was judged by three medical experts.

Results—All observers identified much fewer artifacts in the images produced by the
proposed method than those output by the Inspace. As to the comparison to the method in
[6], if the interface seams in the overlapping regions were correctly matched, our method
produced slightly better results. However, without the feature guidance, the method in [6]
frequently failed to obtain structure-consistent alignment of the two interface seams.
Example results were shown in Fig. 5.

4.3. Running time
All experiments were conducted on an Intel (2.4GHz) Dual CPU PC with 4 GB of memory
running Microsoft Windows. We show the average execution times over all experiments for
the main steps.

5. Discussion
The experiments demonstrated the promise of the method to improve the quality of 4D CT.
Several limitations need further efforts to improve the method. The proposed method may
not well handle the images with small overlapping regions (along the z-dimension). In that
case, the interface seams are difficult to be detected. The second limitation is that the
propagation of the displacements to the non-overlapping region of the moving image is
unsupervised due to the lack of a priori knowledge. A common approach to resolve that
problem is to use interpolation, which needs some known control points scattering over the
image. Unfortunately, such control points are not available in our problem. Thirdly, if the
overlapping regions are quite homogeneous, the method may fail to discover meaningful
features to guide the alignment of the interface seams, which makes the alignment being
structure-aware very challenge. Finally, if the patient has an abruptly changed breathing
pattern, resulting in large magnitude of artifacts in 4D CT, the initial registration may not be
able to capture those artifacts, leading to the failure of our method. Arguably, in that
situation, it is better to re-acquire the 4D CT images or re-sorting the images rather than to
“fix” it by a post-processing method.

6. Conclusion
Reducing artifacts in 4D CT is a very challenge problem. It is especially important to
preserve the structure consistency while reducing the artifacts. In this paper, we developed a
novel structure-aware method to achieve that goal for the helical 4D CT imaging. The main
contribution is to model the structure-awareness as an additional regularization to enforce
the structure consistency using the guidance of 3D features. The presented method was
evaluated on simulated data with promising performance. The results on clinical 4D CT
images were compared to other methods, and all three medical experts identified much
fewer artifacts in the resulting images obtained by the proposed method. In conclusion, the
reported method effectively reduces the artifacts directly from the reconstructed images and
is promising to improve the quality of 4D CT.
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Figure 1.
The fundamental problem in this paper.
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Figure 2.
Method overview.
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Figure 3.
Feature-guided seam matching in the moving image. The correspondences in I and I′ are
shown with the colored crosses. From (a) we can see the seams SI″ and SI′ may have same
cost values due to the similar structure they passed. Obviously, SI″ is not correct. We can
use the matched features to guide the seam matching. For the point p ∈SI, the features in a
local region form a structure topology of p that help to reject incorrect matching. An
example matched seam in the moving image is showed in (b). where  denotes the
neighboring system and β is the parameter to balance the two terms. Suppose label lp is
defined by the displacement dp. let ΔII′ be (I(p − I′(p + dp))2. The data term for each node
on the interface seam S is defined, as follows.

Han et al. Page 13

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2011 November 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
LDE with respect to the z coordinate for seven data.
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Figure 5.
The comparisons of the proposed method with Inspace [1] and the method in [6]. Please
enlarge the images for details.
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