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Abstract
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent,
synthetic materials, there is the need to develop a new generation of scaffolds with adequate
mechanical and structural support, control of cell attachment, migration, proliferation and
differentiation and with bio-resorbable features. This suite of properties would allow the body to
heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level
of control of biomaterial systems. The possibility of expressing biological components in nature
and to modify or bioengineer them further, offers a path towards multifunctional biomaterial
systems. This includes opportunities to generate new protein sequences, new self-assembling
peptides or fusions of different bioactive domains or protein motifs. New protein sequences with
tunable properties can be generated that can be used as new biomaterials. In this review we
address some of the most frequently used proteins for tissue engineering and biomedical
applications and describe the techniques most commonly used to functionalize protein-based
biomaterials by combining them with bioactive molecules to enhance biological performance. We
also highlight the use of genetic engineering, for protein heterologous expression and the synthesis
of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers
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when compared with their counterparts extracted directly from nature and modified by techniques
such as physical adsorption or chemical modification.
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1. Introduction
Treatment of injured tissues or organs focuses on the use of autologous and allogenic grafts
[1]. However, this practice has significant limitations for the patient and health systems
worldwide. Autologous grafts cause donor site morbidity and consequent loss of organ
functionality. Allografts are associated with risk of disease transmission and require the use
of immunosuppressants with associated side effects [2–4]. In the field of orthopaedic
implants, autologous and allogenic grafts account for 90% of the grafts currently used, with
synthetic materials (metals, polymers, ceramics and composite systems) used in 10% of
surgery cases [3, 5, 6]. In the three types of grafts there are numerous cases of implant
failure as a consequence of undesirable local tissue responses resulting in implant loosening,
insufficient osseointegration, osteolysis, inflammation and infection [2–4]. These
complications account for a failure rate of 13 to 30% in the case of autografts and 20 to 40%
for allografts [2].Besides autologous and allogenic grafts, synthetic materials have also been
used for controlled drug delivery systems, scaffolds design and orthopaedic fixation as
screws, pins or rods [7, 8]. Nevertheless, most synthetic polymers are too hydrophobic and
need additional bulk or surface modifications to render the material more biocompatible and
suitable for implantation [9]. Therefore, there is a need for alternatives to these practices.
Tissue engineering and regenerative medicine offer an approach to circumvent the present
therapies with new methods of health care treatment with the purpose of improving the
quality of life [2, 10]. This improvement can come in the form of new cytocompatible and
non-toxic biomaterials for the manufacture of a new generation of scaffolds comprising
adequate mechanical and structural support and able to control cell attachment, migration,
proliferation and differentiation [11, 12]. Furthermore, this future generation of scaffolds
should not behave as a permanent prosthesis but instead should perform as bio-resorbable
temporary implants, allowing for the body to heal itself at the same rate as the implant
degradation [11, 13].

In recent years a small number of synthetic biodegradable polymers, mainly polyesters
containing glycolic (PLG) or lactic (PLL) acids and caprolactone (PCL) were approved by
the Food and Drug Administration (FDA) for use in sutures [13]. Epicel™ (autologous
keratinocyte skin graft to treat severe burn victims from Genzyme Biosurgery, Cambridge,
MA), Carticel® (autologous chondrocyte transplantation to treat cartilage injury from
Genzyme Biosurgery, Cambridge, MA) [14], MACI™ for matrix-induced autologous
chondrocyte implantation (Genzyme Biosurgery, Cambridge, MA) where chondrocytes are
supplied seeded onto a type I/III collagen scaffold secured to the skin injury with fibrin glue
[15], and Apligraf (bovine collagen I matrix seeded with keratinocytes for wound care from
Organogenesis, Canton, MA) [16], are products for cell therapy also available in the market.
Other examples of products already commercially available are Atrigel® (Atrix
Laboratories, Fort Collins, Co, USA) a system of biodegradable polymers for drug delivery
[17] and the calcium phosphate based products Collagraft (Zimmer, Warsaw, IN; and
Collagen Corporation, Palo Alto, CA) and ProOsteon (Interpore international, Irvine, CA)
for bone applications [2]. However, since giving a detailed description of these and other
products available in the market is not the purpose of this review we advise the reader to
address other reports for more information [2, 13–17].
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Despite the enormous research effort during the last few decades materials scientist have not
fully developed a new generation of biocompatible biomaterials [13]. This limitation of
tissue engineering to move forward from the laboratory into the clinic is the result of many
issues, including legal, the need to develop functional blood vessel networks to nourish the
new tissues mainly inside scaffolds, inability of the biomaterials to promote the formation of
functional tissues, and many related issues [13]. For these reasons it is critical to develop the
next generation of biomaterials that will address the limitations above. New approaches in
the fields of bionanotechnology, protein engineering and bionano-fabrication will play a role
in the development of these next generation biomaterials [18–20].

In this review we address some biopolymers already being used or with potential
applications in regenerative medicine and tissue engineering, giving special focus to proteins
and protein-based biomaterials. Additionally, we will also focus on the different approaches
used for functionalization of these biomaterials in order to improve performance,
mechanical efficiency, biocompatibility and degradability, usually with a goal towards
control of these processes. This overview will be followed by a description of the novel
design approaches, namely genetic engineering, enabling the synthesis of new protein-based
biopolymers inspired in nature but without many of the drawbacks of their native
counterparts when extracted directly from natural sources. Additional information can be
found in recent reviews addressing the use of biomimetic materials in tissue engineering
[21], the application of protein templates for tissue engineering [12], the synthetic
modification of proteins and peptides [22] and the use of bioengineering for biomaterials
design [19, 20].

2. Natural proteins for biomedical applications
The similarity between natural polymers and the macromolecules forming extracellular
matrices suggests an innate ability for some of these polymers to interact with the cells and
the biomolecules present in host tissues, inducing mild immunological reactions when
compared with synthetic materials [11, 23, 24]. Natural polymers such as fibrin, fibronectin,
collagen, elastin, silk, keratin, chitosan, alginate, amylose/amylopectin and hyaluronic acid
are widely used in tissue engineering [23, 25]. Within the myriad of biopolymers present in
nature, proteins are considered to be one of the most sophisticated groups in terms of
chemistry [26]. Therefore some proteins with potential use in the biomedical field will be
addressed in the next paragraphs. Table 1 addresses some of the basic features of the animal
proteins described in this section.

Collagen is synthesized by fibroblasts and other cell types such as chondrocytes [27] and
osteoblasts [28] and is the most abundant protein in the mammalian body, accounting for
20–30% of the total protein [29]. Its primary functions in tissues are to provide mechanical
support [30] and to control cell adhesion, cell migration and tissue repair [31]. Collagens
form a large family of triple helical molecules with about 28 different types described [32].
All collagens share the same triple-helical structure where three parallel polypeptides, α-
chains, coil around each other forming a right handed triple helix chain. In animals these
collagen triple helices are known as tropocollagen and its hierarchical organization into
more complex structures generates the fibers and networks in tissues such as bone, skin
tendons, basement membranes and cartilage [33, 34]. Collagen is easy to modify and
process and its abundance, nonantigenicity, biodegradability, biocompatibility and plasticity
make collagen a promising biopolymer for applications in the medical and pharmaceutical
fields and tissue engineering purposes [30]. Reconstituted gels of Type I collagen are widely
used for biomedical applications and its main sources are animal tissues such as skin and
tendons [25, 35]. Collagen scaffolds have been extensively used for soft tissue repair [36],
vascular [37] and dermal tissue engineering [38, 39], bone repair [40] and as a carrier for the
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delivery of drugs [41] and biologically active molecules [42]. Additionally, collagens can
also be used to fabricate microspheres for cell encapsulation [43] and drug loading for
controlled release [44].

However, despite the wide range of applications collagens matrices lack the mechanical
properties required for hard tissue during initial implantation. For this reason collagen is
often blended with other materials, either synthetic [45] or natural [46], to overcome
mechanical limitations [12].

Fibronectin is also a component of the extracellular matrix with important functions such as
structural support and signalling for cell survival, migration, contractility, differentiation and
growth factor signalling [47]. Fibronectin is synthesized by different cell types, such as
fibroblasts and is secreted as a dimer with disulfide bonds formed between the 230–270KDa
subunits. These subunits are formed by three types of repeating modules named type I, II
and III [48]. Fibronectin is a multi-domain glycoprotein with a remarkable number of
biological functions, many of which are mediated through interactions with integrins, such
as via the RGD sequences present in fibronectin. Besides binding to cell integrins,
fibronectin binds to other biologically important molecules such as heparin, collagen/gelatin
and fibrin [49]. Since fibronectin is biocompatible and easily recognized by cell integrins,
the use of fibronectin or domains of the protein to functionalize scaffolds for tissue
engineering is often considered [50]. Polymeric scaffolds of chitosan [51, 52], collagen [53]
and hyaluronic acid [54] have been modified with fibronectin to improve cell adhesion and
proliferation.

Additionally, fibronectin-mimetic peptide-amphiphiles were used in the fabrication of
nanofibers and gels with excellent cell adhesion properties [50]. Another strategy was to
prepare fibronectin-terminated multilayer films of poly-lysine and dextran sulphate for the
study of the spreading behaviour of human umbilical vein endothelial cells. The cells spread
to a greater extent and in a more symmetric manner on the films coated with fibronectin,
suggesting that such fibronectin coated films may represent a promising strategy to control
cell interactions with the materials in tissue engineering [55].

Together with collagen and fibronectin, elastin is also part of the core architecture
supporting cell adhesion and growth [56]. Elastin fibers are mainly present in connective
and vascular tissues, the lungs and skin. Elastin is a polymer of tropoelastin monomeric
precursor and elastin fibers are an important component of the extracellular matrix to impart
elasticity to organs and tissues. Hydrophobic domains present in the elastin sequence are
responsible for these elastic properties [57, 58]. Elastin also has chemotactic activity,
inducing cell proliferation and regulating cell differentiation, with the specific binding of
integrin αvβ3 to the C-terminus in tropoelastin [59]. Due to its characteristics elastin is of
interest for drug delivery and tissue engineering and has been used in the fabrication of
hybrid materials in combinations with collagen [60], polycaprolactone (PCL) [61] and silk
[62] for the production of vascular grafts [63], hydrogels [64], bone repair [65] and for drug
delivery [66]. However, the crosslinking that occurs between the water-soluble tropoelastin
monomers to form the insoluble and stable elastin fibers limits the use of elastin from animal
origin [56]. Therefore artificial proteins incorporating elastin-like peptides have been of
interest for the development of new protein-based biomaterials [67, 68] with properties
similar to native elastin [69].

Fibrin is another example of a specialized extracellular matrix protein with potential
application for tissue engineering. However, unlike collagen, elastin and fibronectin, fibrin
networks form mostly during blood clotting. Fibrin is the result of fibrinogen polymerization
in the presence of thrombin [70]. Fibrinogen is a 340 kDa protein present in plasma formed
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by pairs of three different polypeptides, Aα, Bβ and γ, held together by disulfide bridges
[71]. Fibrin and fibrinogen are two important components in blood clotting, fibrinolysis,
cellular and matrix interactions, inflammation, wound healing and neoplasia [72]. In the
particular case of clot formation, thrombin cleavage both Aα and Bβ chains at their N-
termini, leading to the exposure of polymerization sites in both chains [73]. Subsequently
the combination of these polymerization sites leads to the formation of double-strand twisted
fibrils. These fibrin protofibrils undergo lateral aggregation and form branches, producing a
three dimensional network [74]. Blood clots are further stabilized by covalent bonds formed
by the plasma transglutaminase, factor XIII, making the clot more mechanically stable and
less susceptible to enzymatic digestion [75]. Fibrin is a viscoelastic polymer and is used
clinically as a medical adhesive; fibrin sealants are FDA approved.

Furthermore, fibrin is also used for skin repair, replacing sutures and staples in fixation of
skin grafts promoting a better wound healing [76], and in the transplantation of
keratinocytes in burned patients [35]. Fibrin is also a promising biopolymer for applications
in tissue engineering, in the repair of damaged tissues [77, 78], and drug delivery, as a
carrier for growth factors [79]. Additionally, two proteinaceous components of the
extracellular matrix, laminins and vitronectin, are mainly used to coat synthetic and natural
polymer-based materials to improve cellular response. Laminins are cell adhesion
glycoproteins localized in the extracellular matrix of the basement membrane and are able to
bind to other matrix proteins [80]. Recently, lamimin-derived peptides have been used as
coatings to induce the adhesion of different cell types such as hepatocytes [81] and human
dermal fibroblasts [82]. Also, these peptides are being studied for drug delivery in the
development of targeting drug-loaded systems for cancer treatments [83]. Vitronectin is a
multifunctional glycoprotein present in the extracellular matrix where it binds to
glycosaminoglycans, collagen, plasminogen and urokinase-receptor and its RGD allows it to
mediate the adhesion and spreading of cells [84]. This multipartner binding makes
vitronectin an attractive biopolymer for tissue engineering and to induce cell attachment
when used as a surface coating [85, 86].

The proteins described above are extracellular matrix proteins and have been more
commonly used for tissue engineering and regenerative medicine applications. However, in
the past few years other proteins have also emerged as potential biopolymers for the
fabrication of new biomaterials, such as Keratin [87]. Moreover, since it is a protein shared
by all mammals with a highly conserved amino acid sequence it is expected to offer good
cell and tissue responses [88]. keratin fibers are hierarchically structured proteins present in
hard and filamentous structures, such as hairs, horns and nails [87]. The presence of a LDV
cell binding domain in keratin amino acid sequence [87] suggests utility for the fabrication
of scaffolds for tissue engineering. Keratin based biomaterials have been used to support
adhesion, spread and growth of L929 fibroblast cells [89], and the growth and differentiation
of osteoblasts (MC3T3-E1) [90]. Keratin films have an inhibitory effect on the IgE receptor-
stimulated histamine release from mast cells, making it suitable for use in antiallergenic
materials [91].

As collagen and keratin, silk is another example of a hierarchically structured fibrous
protein. Silk is characterized by its outstanding mechanical properties out-competing high
performance man made fibers such as Kevlar, nylon and high-tensile steel, and by its self-
assembly leading to fibers with a complex hierarchical arrangement [26]. Silk-protein-based
fibers are produced by insects [92] and spiders [93] which use it for different ends such as
cocoon and nest construction. However, despite the multitude of functions and different
protein structures, many silk-based fibers have similar amino acid compositions and high
levels of crystallinity. Silkworm silk produced by the silkworm species Bombyx mori is the
most well studied silk protein [92]. The silk fiber is formed by two microfilaments
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embedded in glue-like glycoproteins named sericin which works as a coating. Each
microfilament results from the assembly of a hydrophobic ~370 kDa heavy-chain fibroin
protein, a relatively hydrophilic ~25 kDa light-chain fibroin and a 30 kDa P25 protein [94].
Spider dragline silk has a slightly different structure with a core filament formed by two
spidroin molecules, major ampullate spidroin protein 1 (MaSp1) and 2 (MaSp2), coated by
glycoproteins and lipids [95]. The remarkable mechanical features of the different types of
silk are in part due to the presence of α-helix and β-turns, responsible for its elastic
properties. These elastic domains alternate with β-sheet motifs which confer toughness to
silk fibers. The strong molecular cohesion occurring with amide-amide interactions in the β-
sheet crystalline regions is thought to be responsible for the remarkable stiffness of silk
fibers [96]. In B. mori silk, the hexapeptide repeat GAGAGS is involved in the formation of
the β-sheets. In spider silk besides GA sequences there are also poly-Ala blocks and both
motifs contribute for the formation of anti-parallel β-sheets [96]. These poly-A and GA
motifs are embedded in amorphous regions formed by either GGX (X can be Tyr, Leu or
Gln) or GPGXX motifs believed to be responsible for the elastic features [97]. The
outstanding mechanic features and biocompatibility are reasons why silk has been used
through the millennia in such diverse applications as hunting, fabrication of paper, wound
dressing, textiles and sutures [98]. With new technologies in the fields of polymer synthesis
and processing, silk continues to be an important topic of research for biomaterial and
biomedical research. In the case of B. mori silk, sericulture provides the product used by the
textile industry and in medical sutures [93]. Additionally, this silk is being studied for tissue
engineering in the form of scaffolds for a range of tissue needs, such as corneal regeneration
[99, 100], cartilage repair [101, 102], vascular grafts [103, 104], bone regeneration [105,
106] and drug delivery [107, 108]. As mentioned above B. mori silk is available in large
supplies from sericulture, and is therefore most commonly used for the above studies. In the
case of spiders, it is difficult to breed spider species due to their cannibalistic behaviour.
With the advance of biotechnology tools it is now possible to bioengineer spider silk genes
to produce spider silk-like proteins [109], such as for tissue engineering [110], cell culture
[111], nerve regeneration [112, 113] and wound dressings [114].

Mussel adhesive proteins (MAPs) are produced by marine mussels and used in the
formation of the byssal threads which allow the animal to anchor to substrates. A common
feature to all the adhesives produced by mussels is the presence of the amino acid 3,4-
dihydroxyphenyl-L-alanine (DOPA). DOPA residues are key elements for the
chemisorption to substrates underwater and the crosslinking process within the adhesive
molecules [115]. These natural adhesives display outstanding properties in terms of function
under harsh marine environments with wide temperature, salinity and humidity fluctuations
and the mechanical effects of tides, waves and currents [116]. These remarkable properties
make MAPs attractive biomaterials as bioadhesives. MAPs have been used as bioadhesives
for cells [117] and as self-adhesive micro-encapsulated drug carriers for biotechnological,
tissue engineering and biomedical applications [118]. MAP derivatives were also used in the
fabrication of adhesive-coated meshes as wound sealants, replacing tradition sutures, staples
and tacks [119].

The proteins addressed above are widely used for tissue engineering and biomedical
applications and can be obtained from animal sources. Moreover, the majority of proteins
used in the development of new scaffolds for tissue engineering are extracted from natural
sources. In this way, in most cases these polymers need further modifications to make them
more suitable for different biomedical applications. The next section refers to physical and
chemical approaches used for the functionalization of these biomaterials.
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3. Techniques for the functionalization of protein-based biomaterials
The properties of protein-based biomaterials can be improved by combining them with
bioactive molecules to enhance in vitro and/or in vivo functions. The surface of protein-
derived scaffolds can be modified by physical adsorption, physical entrapment
(encapsulation) or by chemical modification. These techniques are commonly used to
functionalize protein-based biomaterials with different biologically active molecules, such
as growth factors and antibiotics, improving cell and tissue responses.

Physical adsorption is a simple immobilization procedure and is frequently used to attach
bioactive molecules such as extracellular matrix proteins or growth factors to the surface of
scaffolds by dip coating [120]. Adsorption efficiency is dependent on the physical and
chemical properties of the material, including wettability, surface topography, functional
groups, pH and electrical charge, among other factors [121]. Many biomaterials are
hydrophobic, therefore, methods are needed to enhance wettability to make them more
hydrophilic. Physical methods such as bombardment with ions, UV light and plasma
modification are used to disrupt chemical bonds between carbon and non-carbon atoms
generating unsaturated bonds and radicals which react with oxygen, increasing
hydrophilicity and enhancing reactivity towards biological molecules [121]. Natural
polymers have the advantage of being rich in reactive chemical groups (hydroxyl, carboxyl,
amide) which make them more hydrophilic and capable of interacting with bioactive
molecules. Collagen and silk are examples of protein-based materials that have been
functionalized through adsorption of bioactive molecules, including bone morphogenetic
proteins (BMPs) [122, 123], basic fibroblast growth factor (bFGF) [124], vascular
endothelial growth factor (VEGF) [125] and therapeutic compounds such as antibiotics
[126] and heparin [127] as it is summarized in Table 2. In most of these studies the protein-
based scaffolds were soaked in a solution containing the bioactive component. In other cases
the proteins were blended with the bioactive molecule in solution and then cast to form
scaffolds [128].

Since adsorption is based on relatively weak or moderate electrostatic, van der Waals,
hydrogen and hydrophobic interactions the binding stability of the adsorbed molecules can
vary depending on environmental conditions. In this way, changes in pH, ionic strength and
adsorbed species concentration of the surrounding medium can result in an uncontrolled
release of the immobilized species [120]. For example, bone morphogenetic proteins
(BMPs) tend to diffuse away from the fracture area and high doses are required to induce the
desired osteogenic response. The release profile of BMP-2 from collagen sponges shows an
initial burst during the first 10 minutes, where the carrier loses around 30% of the BMP-2,
followed by slow release during the next 3 to 5 days. This initial burst release can cause
clinical complications, such as ectopic bone formation, soft tissue hematomas and bone
resorption [129, 130].

To overcome these issues, covalent immobilization has been widely used since it has the
advantage of providing stable attachment of bioactive agents to polymeric scaffolds. With
proper design, covalent conjugation has proven to be a very effective strategy to control the
release profile of the immobilized agent since these molecules are retained for longer time
periods at the delivery site, when compared with adsorption [11]. Carbodiimide coupling is
broadly used in protein chemistry to react activated surface carboxylic acid groups from
protein-based scaffolds with the amines present on the peptide or protein to be immobilized
[131, 132]. Carboxylic groups are activated by using 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide (EDC) mixed with either N-hydroxysuccinimide (NHS), dicyclohexyl-
carboiimide (DCC) or carbonyl diimidazole (CDI) [131, 132]. This basic protein chemistry
has been extensively used to immobilize molecules as it is shown in Table 2, including
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BMPs and RGD peptides onto silk and collagen scaffolds. A drawback of this coupling
method is the difficulty in characterizing the new peptide-protein scaffolds, due to the
background noise from the protein scaffold itself, making it difficult to measure the signal
coming from the small amount of peptide immobilized on the scaffold surface in order to
quantify how much peptide was immobilized [132]. Another drawback can be the presence
of reactive amine groups aside from the N-terminal amine. These reactive side groups need
to be protected, followed by deprotection after the coupling chemistry is carried out,
although the use of harsh conditions can affect the biological activity of the immobilized
molecules [131].

Glutaraldehyde, polyethylene glycol diacrylate and hexamethylene diisocyanate can be used
to bridge the amine groups present in the peptide or protein to be immobilized and in the
protein based scaffolds [132, 133]. Glutaraldehyde has been used to couple insulin [134] and
lipase [135] onto silk scaffolds and to crosslink blends of collagen and silk [136]. However,
the potential release of toxic residual molecules formed during the crosslinking process is a
concern if these biomaterials are to be used for biomedical applications [133].

Encapsulation of bioactive molecules within protein matrices has also been explored as a
method to control the release of bioactive agents. In many cases chemical modifications are
required in order to have better control over the release profile of the encapsulated
molecules. Crosslinked gelatin microspheres later impregnated with basic fibroblast growth
fact (bFGF) and loaded into collagen sponges were used in order to have controlled release
of bFGF at a defect site [137] (Table 2). Furthermore, crosslinked collagen microspheres
loaded with bovine serum albumin (BSA) and nerve growth factor were prepared and
release profiles assessed [44]. In both studies collagen microspheres had to be crosslinked in
order to reduce the initial burst and attain better control of protein release. EDC and NHS
were also used as coupling reagents to covalently bind 2,3-dihydroxybenzoic to gelatin
microspheres, which were incorporated into a reconstituted collagen scaffold for a wound
dressing [138]. Silk microspheres were used for the encapsulation of bioactive proteins and
other molecules, exploiting the self-assembly properties of silk to control the release profile
[139].

Many formulations and delivery strategies have been explored in order to achieve
functionalization and sustained release of different molecules. However, in the particular
case of bioactive proteins loaded into protein-based scaffolds, protein structure and topology
must be considered in order to prevent protein denaturation, as a consequence of the
adsorption or immobilization processes, and protein aggregation during the release period
which can result in the loss of bioactivity [11, 140]. Proteins in denatured forms are often
antigenic and can induce immunogenic reactions with negative clinical consequences [140].

Most of the methods being used for functionalization of polymeric structures and drug
release have some disadvantages and new strategies are clearly needed. Advances in the
fields of self-assembly and biotechnology, mainly via recombinant DNA approaches, can
offer some important options to address the deficiencies noted above, to help in the
development of the next generation of biomaterials. The importance of recombinant DNA
technology for the development of new protein based biomaterials will be the focus of the
next section.

4. Recombinant proteins for tissue engineering
Since mammalian tissues are the main source of materials such as collagen, gelatin, fibrin
and elastin there are concerns with disease transmission and immunogenic responses in in
vivo studies, as well as batch-to-batch variability [19, 141]. To overcome these limitations,
peptide synthesis and recombinant DNA protein methodologies have been explored.
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Chemical synthesis can be a quick and efficient method to fabricate short peptides in
relatively small quantities [142]. However, the synthesis of peptide sequences with more
than 35–40 amino acids is not feasible due to a drop in yield and efficiency paralleled by an
exponential increase in cost [143]. Recombinant DNA technology provides well established
protocols for cloning, mutation and gene fusion in different host cells for the expression of
peptides and proteins with a broad range of sizes [144]. Furthermore, the increased
efficiency in making synthetic oligonucleotides and the use of standardized kits and
protocols for cloning and protein expression make the transgenic production approach more
cost-effective for large scale protein production [144]. Besides engineering biological
components already present in nature as shown in Table 3, the field of synthetic biology is
also focused on the design of new peptides and protein sequences. This can be achieved by
establishing new artificial self-assembling peptides or by fusing together different bioactive
domains or protein motifs that are not otherwise found together in nature. Table 4 gives an
overview of the studies published during the past few years using this approach [144]. Since
genetic engineering offers the possibility of altering the amino acid sequence of the
expressed protein by adding or substituting codons, it is possible to generate alternative
sequences with tunable properties that can be used as promising biomaterials for medical
applications.

Below we will address some of the proteins that have been effectively cloned and expressed
in different recombinant systems. The potential of genetic engineering to be used as a tool
for the functionalization of biopolymers with different bioactive peptides through the
synthesis of new fusion proteins will also be discussed.

Collagen has been cloned and expressed in recombinant systems (Table 3). The use of
recombinant collagen has benefits since it can be a safe product with useful self-assembly
features [144] and the possibility of being functionalized with bio-instructive domains [19]
such as cell adhesion ligands [141]. Over the past 20 years recombinant systems for the
large scale-production of recombinant collagen have been developed and optimized.
Recombinant collagen has been expressed in mammalian cells, insect cells, Escherichia coli
(E. coli), transgenic tobacco, mice and silkworm [145]. From these recombinant hosts only
the mammalian cells expressed collagen with 4-hydroxyproline content identical to native
collagen. However, since the level of protein production was low (0.6–20 mg/L) this system
was not commercially viable [146]. Since the production cost in yeast and E. coli is much
lower than in mammalian cell culture, a multigene expression technology was adopted in
order to overcome the absence of the enzyme prolyl 4-hydroxylase, an essential element in
the synthesis of fully hydroxylated collagens [146]. The absence of this enzyme leads to
non-triple-helical and non-functional collagen molecules, which are unstable below
physiological temperatures and thus unsuitable for medical applications. Hence, the
multigene expression approach based on the co-expression of procollagen polypeptide
chains and α- and β-subunits of proyl 4-hydroxylase using the yeast, Pichia pastoris, was
developed [147]. Collagen types I, II and III were expressed with a 4-hydroxyproline
content identical to the native human proteins and expression levels of 0.2 to 0.6 g/L in 2 L
bioreactors were achieved [147]. The use of recombinant collagen as a gel has been reported
for chondrocytes [148], as a microcarrier [149], as corneal substitutes [150] and for bone
regeneration applications [151]. Furthermore, customized collagen-like peptides formed
with tandem repeats of the D4 domain of human collagen type II, a critical sequence for
supporting the migration of chondrocytes, were also reported [140]. Chondrocytes seeded on
polyglycolic acid scaffolds coated with this collagen-like protein formed cartilaginous
constructs with superior properties to the scaffolds coated with native type II collagen [152].
These advances highlight the importance of recombinant DNA technology in the synthesis
of proteins with applications that until now have only been available from animal sources.
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Recombinant DNA technology was particularly advantageous in the expression of large and
repetitive proteins such as silk. As in the case of collagen, different expression hosts have
been explored for the biosynthesis of spider silk (Table 3). Major ampullate silk was
successfully expressed by bovine mammary epithelial cells, hamster kidney cells, insect
cells and in the milk of transgenic goats, generally with low yields [153]. However, bacteria
can be grown at large scales and have the advantage of being easier to handle and more cost-
effective. Therefore, E. coli has been actively pursued as an expression host for spider silks.
Since bacterial hosts have distinct codon usages, silk sequences from different spider species
were reverse transcribed into cDNA, using the E. coli codon preferences, and double
stranded oligonucleotides coding for different domains of silk proteins were prepared [154].
These double strand oligonucleotides were then assembled into synthetic genes coding for
silk proteins [153]. This cloning strategy was employed with successes for the expression of
Nephila clavipes consensus sequence for major ampullate silk protein 1 (MaSp1) and
MaSp2 [155] and the flagelliform silk protein [156] from the same species. Cloning and
expression in E. coli, of both major ampullate silks ADF-3 and ADF-4 from the species
Araneus diadematus was also reported (Table 3) with yields between 140 and 360 mg/L
[157]. Besides E. coli, other hosts for the cloning and expression of spider silks have also
been explored. The yeast Pichia pastoris is considered an attractive host for the expression
of recombinant proteins since this expression system is well developed for industrial
fermentation, reaching high cell densities using low-cost media. For these reasons it was
successfully used for the expression of spider silk dragline using genes of up to 3,000
codons with no evidence of truncated synthesis, a common occurrence in E. coli host [158].
Plants such as tobacco and Arabidopsis thaliana are also being explored as transgenic host
systems for silk proteins, with yields of 2% in tobacco leaves, 8.5% in A. thaliana leaf
apoplasts and 18% in the endoplasmic reticulum of seeds [153]. Similar approaches as
above for collagens and silks have been applied to the fabrication of recombinant elastin-like
proteins that mimic native elastin (Table 3) [56]. These new protein polymers have a
modular structure formed with repeats of the pentapeptide (VP-Xaa-Yaa-G)n where Xaa is
either G or A and Yaa can be any residue but P. These recombinant elastin-like proteins are
capable of reversible temperature-dependant self assembly in aqueous medium [67]. This
feature allows for the purification of protein based upon temperature-induced aggregation.
Elastomeric pentapeptides with up to 251 GVGVP repeats were soluble in low ionic solution
at temperatures below 25ºC [159]. Above this temperature the polymer hydrophobically
folds into β-spiral structures that further aggregate due to hydrophobic associations. These
aggregates can then be collected by selective centrifugation. This methodology allows for
facile purification [160, 161]. Moreover, elastin-like polypeptides (ELPs) can be used as a
purification tag. The fusion of ELPs with other proteins exploits the inverse temperature
transition of ELPs and provides a simple method for the isolation of a recombinant ELP
fusion proteins by cycling the protein solution through the soluble and insoluble phases
using inverse transition cycling [162–164]. ELP tags can be cleaved by a pH shift and
removed by a final thermal precipitation [164].

Additionally there is the possibility of amino acid substitutions in the pentapeptide repeats
[165] and previous studies have shown that the replacement of G in (VPGVG)n by A in
(VPAVG)n leads to mechanical changes in the protein from elastic to plastic [67, 166]. The
physical crosslinking resulting from this amino acid replacement leads to a more plastic
matrix with a Young’s modulus two orders of magnitude higher than in the case of
(VPGVG)n [166]. Also, physical crosslinking has advantages over chemical crosslinking
since it allows for easy processing, avoids the use of chemical reagents and excludes the
need of removing unreacted intermediates [167]. Synthetic amphiphilic block copolymers
with distinct block polarity composed of hydrophilic and hydrophobic segments can also be
generated [67]. These block copolymers exhibit tunable mechanical and amphiphilic
properties dependent on the amino acid substitution. The flexibility of these block
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copolymer designs extends the range of applications from micelles formed by self-assembly
of amphiphilic sequences for drug delivery, to temperature responsive hydrogels for cell
encapsulation and coatings of medical devices to improve host responses [168–170].
Genetic engineering also offers the possibility of enriching the sequences of proteins to
improve their biological activity by fusing them with other protein motifs with specific
bioactivities (Table 4). Initial elastin matrices for cell adhesion showed that cells did not
adhere to these biomaterials [171]. RGD and REDV cell adhesion peptide sequences were
inserted into the elastins leading to a dramatic increase in cell attachment [169, 170]. Silk-
based block copolymers were also engineered to carry an RGD cell binding domain for
intracellular gene delivery. The presence of labelled DNA inside cells was detected by
confocal laser scanning microscopy and demonstrates the potential of these silk
bioengineered block copolymers as highly tailored gene delivery systems [172]. The
addition of a recognition site for an enzyme with proteolytic activity can also be
incorporated into the sequences, favouring biomaterials degradation [173]. The fusion of the
N. clavipes consensus sequence for MaSp1 with proteins such as dentin matrix protein and
bone sialoprotein, involved in calcium phosphate deposition in teeth and bone [174, 175],
respectively, also had positive results from a biomaterials perspective [176, 177]. In both
fusion proteins the silk domain retained its self assembly properties and the dentin matrix
protein and bone sialoprotein domains maintained their ability to induce the deposition of
calcium phosphates. These results demonstrated the potential of chimeric proteins for
applications in tissue engineering and regenerative medicine for the design of new protein-
based scaffolds for bone regeneration [176, 177].

Furthermore, promising results were also obtained when the N. clavipes consensus sequence
for MaSp1 was fused with antimicrobial peptides, namely neutrophil defensins 2 and 4 and
hepcidin, using a step-by-step cloning methodology [178]. The cloning and expression of
these new fusion proteins expanded these chimera or fusion approaches to include
antimicrobial-functionalized protein-based biomaterials [178] offering a path forward in
reducing the use of antibiotics to prevent infection in implants and in the design of a new
generation of protein-based materials bioengineered to prevent the onset of infections.

Other proteins have also been expressed as fusion proteins with biological activity such as
FGF2-FNIII9-10 formed by a fibronectin fragment FNIII9-10 connected to the carboxy
terminus of fibroblast growth factor 2 (FGF-2) [179]. Previous studies reported the
synergistic effect of fibronectin and FGF-2 on osteoblast adhesion. The FGF2-FNIII9-10
fusion protein showed a significant increase in cell adhesion and proliferation when
compared with FNIII9-10 alone [179]. The cell-binding domain of human fibronectin was
also fused with epidermal growth factor (EGF), important in tissue regeneration to
accelerate wound healing and enhance cell proliferation. The new construct, designated as
C-EGF, had both cell-adhesive and EGF activity and the recombinant construct may be an
effective drug delivery system for EGF in therapeutic situations [180]. EGF polypeptide was
fused with collagen type III and the new construct retained the triple helix of collagen and
the mitogenic activity of EGF, suggesting that this protein could be used as a biocompatible,
biodegradable and adhesive fibrous mitogen for tissue regeneration [181].

The examples outlined above highlight the potential of synthetic biology in the synthesis of
biopolymers for tissue engineering and regenerative medicine (Figure 1).

5. Conclusions
Genetic engineering makes it possible to develop new biopolymers with a complexity and
functionality resembling natural polymers formed in nature. By using synthetic DNA it is
possible to combine different functional domains for a fusion protein, merging cell adhesion
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and migration, mechanical properties and antimicrobial factors, towards multifunctional
biomaterial systems. This approach eliminates the need to use chemical methodologies for
covalent binding of bioactive motifs or crosslinking, which can have drawbacks of protein
denaturation and residuals with toxicity. Although there has been a significant progress in
exploiting genetic engineering for tissue engineering and regenerative medicine purposes
during recent years, there remains a lot to be explored in order to take full advantage of the
outstanding potential of genetic engineering to be used as a tool in the development of the
next generation of custom-design biomaterials.
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Fig. 1.
Scheme highlighting some of the features and applications of chimeric protein-based
biomaterials synthesized through recombinant DNA technology.
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Table 1

Basic features of some proteins with potential applications in the biomedical field.

Protein Main functions Basic structure Relevant properties

Collagen [31, 34] Structural protein in tissues such
as connective tissue, tendon, skin,
bone and cartilage

Three parallel polypeptide chains
formed by GXY (G - glycine, X -
usually proline, Y - usually 4-
hydroxyproline) repeats and arranged in
triple helix

Biodegradability, low antigenecity
and biocompatibility

Fibronectin [47, 49] Structural support and cell
signalling

Dimer of two non-identical polypetide
chains bonded at the carboxyl end by
disulfide bonds

Multi-domain protein with cell
(RGD motif), collagen and fibrin
binding motifs

Elastin [56, 182, 183] Structural protein found
predominantly in connective
tissue of arteries, ligaments, skin
and lung

Cross-linked units of tropoelastin
formed by hydrophobic (often 3 to 6
repeats of GVGVP, GGVP and
GVGVAP) and hydrophilic lysine
domains

Temperature dependent self-
assembly and phase separation
behaviour

Fibrin [72, 184] Blood clotting, fibrinolysis,
cellular and matrix interactions,
inflammation and wound healing

Resultant from the polymerization and
crosslinking of fibrinogen units after
thrombin cleavage

Growth factor binding and
interaction with cells such as
platelets, leucocytes, fibroblasts and
endothelial cells

Laminins [80] Major components of basement
membranes underlying epithelial
and endothelial cells and
embedding Schwann, muscle and
fat cells

Heterotrimers of one β, one α and one γ
chain, which represent different gene
products

Self-assembly and binding to
several matrix proteins and integrins

Vitronectin [84] Regulates clot formation and
immune response, provides
biological cues for cell adhesion,
migration and proliferation and
extracellular anchoring

In human blood is found as a single
chain or as a dimer while in the
extracellular matrix exists as a
disulfide-linked vitronectin multimer

Multi-domain protein with an RGD
motif to mediate the attachment and
spreading of cells and binding
motifs for collagen, heparin,
plasminogen, glycosaminoglycan
and fibrin binding motifs

Keratin [88, 185] Structural protein in the
cytoskeletons of vertebrate
epithelial cells and epidermis
appendages such as hair, nails
and wool

Formed by α-helical coiled-coil dimers
assembled into 10 nm wide filaments

Biocompatibility, good cell
attachment and growth

Silk [93, 98] Building element of many
arthropod nests, cocoons and
prey traps

Highly repetitive core domain of
alternating poly-A hydrophobic and G
rich hydrophilic motifs

Self-assembly and remarkable
mechanical properties

Mussel adhesive
proteins (MAPs)
[119]

Substrate adhesion Repetitive sequence, with molecular
weights ranging between 5 and 120 kDa
and high presence of 3,4-
dihydroxyphenyl-L-alanine (DOPA)

Function over a wide range of
temperatures, humidity and salinity
and form permanent bonds to a
wide variety of surfaces

Prog Polym Sci. Author manuscript; available in PMC 2013 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gomes et al. Page 29

Table 2

Summary of protein based scaffolds functionalized with different bioactive molecules.

Protein matrices Modification process Modifying molecule Application References

Collagen

EDC/NHS covalent immobilization

VEGF Vascularisation/angiogenesis [186, 187]

FGF/VEGF Vascularisation/angiogenesis [188]

Heparin BMP/FGF/PDGF delivery system [189–191]

Traut’s Reagent and Sulfo-SMCC
covalent immobilization

poly-Histidine antibody BMP delivery system [192]

VEGF Vascularisation/angiogenesis [193]

Adsorption
BMP-2 BMP delivery system [194]

FGF Cartilage regeneration/Growth factor
delivery

[195, 196]

Microsphere encapsulation
BMP-7 BMP delivery system [197]

VEGF Vascularisation/angiogenesis [198]

Gelatin

EDC covalent immobilization TGF-beta Cartilage regeneration [199]

Adsorption

TGF-beta/IGF Cartilage regeneration [200]

FGF Growth factor delivery [195]

Fibronectin Cartilage regeneration [201]

Microsphere encapsulation

TGF-beta Chondrogenesis/cartilage regeneration [202, 203]

BMP-2/VEGF Angiogenesis and osteogenesis [204]

BMP-2 Growth factor delivery [205]

Fibrin
Microsphere encapsulation

FGF Angiogenesis [206]

BMP-2 Bone regeneration [207, 208]

Patterning immobilization FGF-2 Tissue engineering [209]

Heparin Michael type addition
BMP-2 Bone/ligament regeneration [210]

HGF Hepatocyte differentiation [211]

Silk

Cyanuric chloride immobilization Lactose Hepatocyte attachment [212]

Crosslinking Gelatin Tendon tissue engineering [213]

Adsorption

FGF Growth factor delivery [124]

Gelatin Drug/Growth factor delivery [214]

Collagen/chodroitin-6-sulfate/hyaluronan Tendon tissue engineering [215]

Collagen tendon tissue engineering [216, 217]

BMP-2 Bone regeneration [218]

Microsphere encapsulation IGF Drug/Growth factor delivery [219]

Blend Gelatin Tissue engineering [220]

Silk/collagen Adsorption SDF-1 tendon tissue engineering [221]
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Table 3

Biopolymers expressed in recombinant systems and their potential uses.

Protein Expression system Advantages/Applications References

Collagen I

Transgenic corn Food and pharmaceutical industries [222]

Yeast Pichia pastoris Identical 4-hydroxyproline content to human collagen;
medical applications such as corneal replacement

[147, 150, 223]

Yeast Saccharomyces cerevisiae Study of collagen expression and maturation [224, 225]

Mammalian HT1080 cells Optimization of recombinant collagen expression and
isolation methodology

[226, 227]

Insect cells Optimization of recombinant collagen expression and
isolation methodology; Structural studies

[228, 229]

Mammalian, mouse milk Optimization of recombinant collagen expression [230, 231]

E. coli JM109 strain Large quantities production/Therapeutic, biomaterial, or
bioengineering applications,

[232]

E. col Bone tissue engineering [151]

Collagen II
Yeast Pichia pastoris Identical 4-hydroxyproline content to human collagen [147]

Insect cells Optimizing recombinant collagen expression systems [233]

Collagen III

Yeast Pichia pastoris Higher production level; Identical 4-hydroxyproline
content to human collagen; Scientific and medical
applications such as corneal replacement

[147, 150, 234]

Yeast Saccharomyces cerevisiae Optimizing recombinant collagen expression systems [235]

Insect cells 4-hydroxyproline content similar to human collagen;
Study of collagen chain association and folding

[236, 237]

Silkworm Viable expression system for bulk protein expression [238]

Collagen V Mammalian cells Structural studies [239]

Collagen VI Mammalian cells Collagen and heparin binding studies [240]

Collagen VII Mammalian cells Study of dystrophic epidermolysis genetic disorder [241]

Collagen X Mammalian HEK293 cells Optimizing recombinant collagen expression systems [242]

Collagen XI E. coli BL21 Study the regulation of collagen fibrillogenesis [243]

Collagen-like protein Mammalian HT1080 cells Biomedical applications [152, 244]

Gelatin-like proteins Yeast Pichia pastoris Biomedical applications [245]

Elastin-like peptides

Yeast Pichia pastoris Optimizing cloning and expression process [246]

E. coli strain BL21-Gold Vascular replacement; Tissue engineering, controlled
drug release and cell encapsulation; Biomedical
applications

[167, 247–253]

E. coli BLR strain Biomedical applications [254]

Spider silk major ampullate
from Nephila clavipes

E. coli RY-3041 Structural studies/Biomedical applications [255, 256]

E. coli SG 13009pREP4 Structural studies/Biomedical applications [155]

E. coli BL21 Structural studies/Biomedical applications [257–259]

E. coli M109 strain Structural studies/Biomedical applications [260]

Yeast Pichia pastoris Structural studies/Biomedical applications [158]

Spider silk major dragline
proteins ADF-3 and ADF-4
from Araneus diadematus

E. coli BLR strain Structural studies/Biomedical applications [157]
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Protein Expression system Advantages/Applications References

Spider silk flagelliform from
Nephila clavipes

E. coli BL21 strain Structural studies/Biomedical applications [156]

Spider silk like proteins -
NcDS, (SpI)7 and [(SpI)4/
(SpII)1]4

E. coli BL21 strain Structural studies/Biomedical applications [261]

Fibrinogen
Mammalian cells Fibrin sealant [262]

Yeast Pichia pastoris Fibrin sealant [263]

Fibronectin E. coli Cell adhesion [264, 265]
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Table 4

New chimeric proteins with potential application in the biomedical field.

Fusion protein Expression system Applications References

R136K (FGF-1 mutant) + collagen biding domain E. coli BL21
(pLysS) strain

Selective binding to collagen and potent
angiogenic, mitogenic and chemotactic
activity for endothelial cells

[266, 267]

VEGF + collagen biding domain E. coli BL21 strain Improve diabetic wound healing [268]

FGF + fibronectin cell binding domain E. coli JM109
strain

Stimulates angiogenesis, biomedical
applications/tissue engineering

[269]

FGF + collagen binding domain E. coli BL21 strain Delivery systems/Biomedical applications/
Tissue engineering

[270]

FGF + glutathione S-transferase (GST-bFGF) E. coli Stimulate the growth of human umbilical
vein endothelial cells

[271]

FGF2 + Fibronectin (FGF2-FNIII9-10) E. coli TOP10
strain

Delivery of bioactive molecules [179]

EGF + collagen binding domain E. coli BL21(DE3)
strain

Delivery systems/Biomedical applications/
Tissue engineering

[270]

EGF-collagen Insect cells Tissue engineering applications [181]

EGF + immunoglobulin G (IgG) Fc region (EGF-Fc) E. coli BL21 strain Cell adhesion [272]

Silk + elastin (SELP-47 K) E. coli Promote cell attachment and growth/Tissue
Engineering

[273]

Spider silk + dentin matrix protein E. coli RY-3041
strain

Biomedical applications/Tissue engineering [177]

Spider silk + bone sialoprotein E. coli RY-3041
strain

Biomedical applications/Tissue engineering [176]

Spider silk + antimicrobial domain (HNP-2, HNP-4 and
hepcidin)

E. coli RY-3041
strain

Biomedical applications/Tissue engineering [178]

Bombyx mori silk + RGD + elastin (FES8) E. coli BL21 strain Biomedical applications [274]

RGDS + silk fibroin (RGDSx2 fibroin) Silkworm Facilitate chondrogenesis [275]

Collagen + GYIPEAPRDGQAYVRKDGEWVLLSTFL E. coli BL21 strain Stabilize the triple helix formed in the
proteins/Biomedical applications

[276]

BMP-2 + collagen-biding domain E. coli BL21 strain Bone repair [277–279]

TGF-B1-F1 and TGF-B1-F2 + collagen binding domain E. coli Biomedical applications/Tissue engineering [280]

hbFGF-F1 and hbFGF-F2 + collagen binding domain E. coli Biomedical applications/Tissue engineering [281]

PDGF + collagen binding domain E. coli BL21 strain Tissue regeneration and wound repair [282]

Fibronectin III7–10 + cadherin 11 EC 1–2 E. coli Rosetta-
gami strain

Orthopaedic regeneration [283]

Fibronectin cell binding domain-EGF (C-EGF) E. coli HBIOI
strain

Drug delivery [180]

Fibronectin cell binding domain-EGF (FNCBD-EGF) E. coli Skin wounds, catheter-injured arteries, and
hind limb muscles

[284]

RGD/EGF/hydrophobic sequence E12 (ERE–EGF) E. coli Controlling cell functions [285]

NGF-β + collagen binding domain E. coli BL21 strain Delivery system for neuronal development
and regeneration

[286]
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