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Using brain transcriptomic profiles from 853 individual honey bees
exhibiting 48 distinct behavioral phenotypes in naturalistic contexts,
we report that behavior-specific neurogenomic states can be inferred
from the coordinated action of transcription factors (TFs) and their
predicted target genes. Unsupervised hierarchical clustering of these
transcriptomic profiles showed three clusters that correspond to three
ecologically important behavioral categories: aggression, maturation,
and foraging. To explore the genetic influences potentially regulating
thesebehavior-specificneurogenomicstates,wereconstructedabrain
transcriptional regulatory network (TRN) model. This brain TRN quan-
titatively predicts with high accuracy gene expression changes of
more than 2,000 genes involved in behavior, even for behavioral phe-
notypes on which it was not trained, suggesting that there is a core
set of TFs that regulates behavior-specific gene expression in the bee
brain, and other TFsmore specific to particular categories. TFs playing
key roles in the TRN include well-known regulators of neural and
behavioral plasticity, e.g., Creb, as well as TFs better known in other
biological contexts, e.g., NF-κB (immunity). Our results reveal three
insights concerning the relationship between genes and behavior.
First, distinct behaviors are subservedby distinct neurogenomic states
in the brain. Second, the neurogenomic states underlying different
behaviors rely uponboth shared and distinct transcriptional modules.
Third, despite the complexity of the brain, simple linear relationships
between TFs and their putative target genes are a surprisingly prom-
inent feature of the networks underlying behavior.
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Behavior is influenced by both heritable and environmental
factors, sometimes via massive changes in brain tran-

scriptomes (1). An emerging insight is that these changes induce
shifts in “neurogenomic states” rather than activation of particular
genes only in local neural circuits (2). This has led to the idea that
distinct neurogenomic states underlie distinct behaviors (1), but it
is not known how these states are defined or maintained. Further,
the regulatory architecture of behaviorally relevant neurogenomic
states has not been studied, and it is not known whether behavior
is subserved by the kinds of transcriptional regulatory networks
(TRNs) known for other phenotypes (3–6).
We applied tools and perspectives from molecular systems

biology—used to study transcriptional regulation in the brain
and elsewhere (3–6)—to transcript profiles from the BeeSpace
Project, which used microarray analysis to study hereditary and
environmental influences on brain gene expression and social
behavior (Methods). This provided a unique aggregate dataset
from a single laboratory (G.E.R.), using the same analytical
platform, protocols, and analysis procedures (7). Because the
natural behavioral repertoire of the honey bee (Apis mellifera) is
perhaps the best studied of any nonhuman animal (8), we were
able to analyze a rich set of naturalistic behavioral states.
We chose 27 pairwise comparisons among the 48 distinct be-

havior states that directly surveyed transcriptome responses to a
heritable or environmental factor related to one or more of three
ecologically important behavioral categories: aggression, hive de-

fense; maturation, from working in the hive to foraging for nectar
and pollen; and different foraging predispositions or types of ex-
perience, e.g., scouting for new floral resources or forming specific
spatiotemporal memories for known resources, respectively
(Methods and SI Appendix, Table S1). Nearly all genes were dif-
ferentially expressed in at least one comparison; this broad survey
thus captured natural variation across most of the brain tran-
scriptome, without experimental genetic perturbation. SI Appen-
dix, Tables S1 and S2 summarize the number of bees, experiments,
and microarrays in this dataset and indicate which experiments
have been published or will be described in forthcoming pub-
lications. Additional details of these experiments are in the SI
Appendix, SI Methods.
We used a systems approach to create, test, and interpret a

network model that predicts the expression of a large number of
genes in the bee brain given the expression values of the TFs. Our
strategy consisted of the following steps: (i) Integrate previous
measurements of brain gene expression over a wide range of be-
havior states, which consist of behavioral responses to various
genetic and environmental perturbations. (ii) Integrate expression
from various conditions and develop a predictive behavioral TRN
model from training data that links expression of putative target
genes to the expression values of the TFs. (iii) Evaluate the TRN
model in new test conditions and also on the basis of comparison
with genomic data. (iv) Analyze the properties of the TRN with
respect to other networks inferred for other phenotypes. (v)
Identify key regulators/hubs in the TRN that predict behavior and
may drive behavioral changes. (vi) Compare various subnetworks
associated with aggression, maturation, and foraging.

Results and Discussion
Neurogenomic States Related to Behavior.We first used hierarchical
clustering to determine whether brain transcriptomic profiles
tracked behavior. Each comparison was designed a priori to mea-
sure transcriptome responses to a heritable or environmental factor
related to aggression, maturation, or foraging. Hierarchical clus-
tering recapitulated this pattern; we identified three distinct clusters
of transcriptomic profiles, corresponding to aggression, maturation,
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and foraging. This result demonstrates a strong relationship be-
tween behavior and brain gene expression, as it was obtained via
unsupervised clustering (Fig. 1A and SI Appendix, Fig. S1).
Clustering analysis also revealed differences between tran-

scriptome responses to environmental or heritable factors (Fig.
1A). We found, for example, distinct subclusters of aggression-
related comparisons corresponding to environmental (colony
environment), or hereditary (individual genotype) factors. SI
Appendix, Table S2 describes each of the comparisons and the
degree of gene expression differences between the states.
The two results obtained with hierarchical clustering also were

obtained independently with multidimensional scaling (MDS)
(Fig. 1B). These findings indicate that distinct neurogenomic
states underlie distinct behaviors and hint at differential effects of
“nature” and “nurture.”

Brain Transcriptional Regulatory Network. To explore the mecha-
nisms potentially regulating behavior-specific neurogenomic
states, we reconstructed a brain TRNmodel using an approach we
call Analyzing Subsets of Transcriptional Regulators Influencing
eXpression (ASTRIX). This approach is based on a combination
of two well-known algorithms used for network inference (Fig. 2A
and Methods). We generated a network of high-confidence puta-
tive TF (“target”)–gene interactions usingAccurateReconstruction
of Cellular Networks (ARACNE) (9) and leveraged these inter-
actions to predict expression in new conditions with Least Angle
Regression (LARS) (10). In the training set, a subset of TF–gene
relationships are identified that can accurately predict the target
gene’s expression quantitatively, and then these interactions are

moved forward to the test set for validation. Interactions were
inferred from expression profiles and a list of 236 predicted bee
TFs based on orthology with Drosophila melanogaster.
The bee brain TRN quantitatively predicts gene expression

changes with remarkably high accuracy, even for behavioral states
on which it was not trained (Fig. 2B and Table 1 and SI Appendix,
Tables S2 and S11). It was able to model∼25% (2,176) of the genes
profiled (chosen on the basis of strong fit in the training set, Pearson
correlation r > 0.8) and quantitatively predicted their expression
with an average correlation of 0.87 in test sets (root mean square
deviation,RMSD=0.35, both in training and test sets). By contrast,
a control experiment with TF expression permuted across states
resulted in a 0.22 correlation, and zero genes predicted with >0.8
correlation, even in the training set (SI Appendix, Fig. S4). Stringent
leave-one-state-out cross validation, with model prediction tested
on behavior states for which it had not been trained, yielded simi-
larly accurate results (RMSDtrain = 0.33, RMSDtest = 0.32); like-
wise for the 10-fold cross-validation test (Fig. 2C and SI Appendix,
Figs. S2 and S3). The model’s success in predicting expression in
new behavioral states suggests that there is a core set of TFs that
regulate behavior-specific gene expression in the bee brain.
This TRN includes genes with known neurobiological and

behavioral significance. Many neural-related Gene Ontology
(GO) categories like synaptic transmission and neurotransmitter
uptake were overrepresented among the TRN genes (SI Ap-
pendix, Table S4), indicating that features reflecting the general
organization of the bee brain transcriptome are consistent with
those of known brain processes. Genes in modules often shared
annotated biological features: 87% (166 out of 190) of the

Fig. 1. Global analysis of results of transcriptome profile experiments of hereditary and environmental influences on brain gene expression and social behavior in
adult honey bees. (A) Unsupervised hierarchical clustering groups brain transcriptional profiles generated by the comparisons listed in the Left column roughly into
threemajor behavioral categories (P < 0.001, based on bootstrap) (SI Appendix, SI Text). Edges of the dendrogram are colored on the basis of results of clustering: red,
aggression; blue, maturation; and green, foraging. This analysis also revealed differences due to the timescale over which a particular effect occurred; environmental
factors exert effects within the lifespan, whereas heritable factors act across generations over evolutionary time. Shaded boxes show a priori classification of com-
parisons by behavioral categories and timescales on the basis of generally accepted knowledge of bee behavior (SI Appendix, Table S1). Some comparisons influence
multiple categories or timescales; the primary effect of each comparison is denoted with a dark gray box, and the secondary focus is denoted with a light gray box. In
subsequent analyses in this paper, we use only the primary effect for each comparison on the basis of prior knowledge in the literature (SI Appendix, Table S1). (B)MDS
plot of transcriptional profiles clearly separates thedifferentbehavioral categories (samecolor codingas inA) andeffects of environmental (yellow) andheritable (blue)
factors. Comparisons involving queen mandibular pheromone and high- vs. low-pollen hoarding (Fig. 3) were not included in this analysis due to large numbers of
missing values (full description of comparisons in SI Appendix, Table S1; additional statistics in SI Appendix, Fig. S1 and SI Methods). AHB, African honey bee; EHB,
European honey bee; lig,A.mellifera ligustica; mel,A.m. mellifera; typical, typical colony; SCC, single-cohort colony (induces acceleratedmaturation); Vg, vitellogenin.
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modules were enriched for specific biological processes [based
on GO or Kyoto Encyclopedia of Genes and Genomes annota-
tions; SI Appendix, Table S5; false discovery rate (FDR) < 0.1].
Genes in modules also often shared evolutionarily conserved cis-
regulatory motifs in upstream sequences (FDR < 0.1; SI Appendix,
Table S5). Some modules also showed high similarity with pre-
viously described Drosophila networks (SI Appendix, Table S5),
consistent with the existence of conserved modules of coregulated
genes related to specific biological functions (11). As expected,
genes in the TRN were enriched (P < 1e-10) for those that were
strongly differentially expressed between behavioral states.
Having demonstrated predictive ability and biological relevance,

we analyzed the TRN to explore the hypothesis that behaviorally
related neurogenomic states arise, in part, from the coordinated
action of TFs and their predicted target genes; the predicted targets
were defined as those genes that share very highmutual information
(P < 10−6) with a TF and have high predictive ability (r > 0.8). The
top 20 most connected TFs (“hubs”) together were predicted to
regulate 75%of the genes, and the top 3, 33% (SIAppendix, Figs. S5
and S6).Most of the top 20 hubs andmany of their predicted targets
were differentially expressed (FDR < 0.05) across many of the 27
comparisons (Fig. 3B and SI Appendix, Table S6). Only four TFs
and their modules (sets of putative target genes predicted to be

regulated by a specific TF) were active across all three behavioral
categories (“global regulators”), i.e., their predicted target genes
were significantly overrepresented among differentially expressed
genes across all three behavioral categories. Other TFs and their
modules were active only for a particular behavioral state within
a category (Fig. 3C and SI Appendix, Table S7). State-specific TFs
were significantly more common than predicted by chance (P < 1e-
10), indicating that they also are a robust feature of this TRN.These
results provide support for our hypothesis.
TFs playing key roles in the bee brain TRN include well-known

regulators of neural and behavioral plasticity. Creb, an iconic regu-
lator of neural plasticity in both invertebrates and vertebrates (12), is
a top hub. Two other hubs are ftz-f1 and broad (br), which mediate
responses to juvenile hormone (JH) (13), a hormone that regulates
bee maturation, brain chemistry, and brain structure (14). The TRN
also prominently features TFs better known in other contexts. For
example, dorsal (dl), one of only four global regulators, is the insect
orthologofNF-κB (15), awell-knownmediatorof immune responses.
We were able to robustly and accurately model a large percentage

(∼25%) of the brain transcriptome from whole-brain data. This
might seem surprising, because neuron-, circuit-, and brain region-
specific patterns of gene expression are well known (16). However,
some hormones and neuromodulators can have widespread tran-

Fig. 2. Reconstruction of a genome-scale model of a behaviorally related transcriptional regulatory network (TRN) from honey bee brain transcriptome
profiles. (A) Flowchart outlining the ASTRIX approach: (1) input transcriptomic dataset; (2) “Skeletal” network inferred with ARACNE; high mutual in-
formation threshold (P < 10–6) retains only strong (putatively direct) interactions; (3) Data processing inequality (DPI) eliminates indirect interactions; (4) LARS
fits a regression model for the regulation of each gene by transcription factors (TFs); (5) model accuracy for each gene assessed in training and test sets; and
(6) accurately modeled genes retained in a parsimonious, quantitative model that predicts gene expression from TF expression. (B) A total of 190 TFs (triangles
outside the sphere) are predicted to regulate 2,176 genes via 6,757 interactions (mean indegree = 3; mean outdegree = 35, Table 1, SI Appendix, Tables S2 and
S11). Black triangles at the top represent the predicted global regulators: br, lilli, dl, and GB13780. The genes unique to each behavioral category (sub-
network; same color coding as in Fig. 1A) are highlighted along with their corresponding subnetwork specific TFs (within each box). TFs predicted to be
involved in the regulation of two subnetworks are labeled between the boxes. (C) Plots show the accurate fit of the model (red) to actual expression data
(blue) in training and test samples (Left and Right of the blue dotted line, respectively), for nine randomly selected genes with training correlation >0.8.
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scriptional effects on the brain (17). We used the results of two
BeeSpace experiments that profiled gene expression in specific brain
regions to explore whether performance of the TRN might be en-
hanced for a more homogenous population of cells. By contrast, the
TRN was a better predictor of gene expression for whole-brain
transcriptome profiles than for brain-region–specific profiles (Meth-
ods, SI Appendix, Fig. S10 and Table S10). These results suggest that
additional factors that functionally link multiple cell types and brain
regions may drive gene expression across the brain, including hor-
mones, immune/inflammatory responses, and synaptic connections
between neurons. Such factors are represented in the TRN by
prominent hub genes (ftz-f1 and br; dl and Deaf1; and Creb, re-
spectively. Other modules may reflect more general cellular func-
tions, e.g., those involving general “housekeeping” (16); the largest
module in the bee brain TRN is regulated by Lag1, a TF linked to
metabolism (18). These and likely other reasons made it possible for
the TRN to capture coherent patterns of transcriptional regulation,
even for averaged values of gene expression across the brain.
Two intriguing dynamic properties of this TRN were detected,

but their biological significance is unclear. First, whereas modules
generally showed consistent gene expression across individuals
within behavioral states (SI Appendix, Fig. S7), some modules
exhibited significant changes in relative gene expression ordering
between states (Fig. 3D). This “shuffling” was greatest for modules
associated with hub genes (SI Appendix, Fig. S8) such as ftz-f1,
Creb, and Lag1. Gene shuffling is associated with transcriptional
“dysregulation” in diseased states (19), but such differences have
not yet been detected in network analysis for normal states. Sec-
ond, the shuffling varied depending on behavioral timescale. In-
creased shuffling was more often associated with longer-lasting
behavioral states, e.g., those related to behavioral maturation,
rather than more dynamic states, e.g., spatiotemporal floral
memories (P= 0.008; Fig. 3D and SI Appendix, Table S8 and Fig.
S9). Longer-lasting states also showed a significant increase in the
number of TFs predicted to regulate each gene (P = 0.002; SI
Appendix, Fig. S8). These results are reminiscent of the above-
mentioned cluster analysis timescale differences and again hint at
differences in transcriptional regulation over different timescales.

Validation of Transcriptional Regulatory Network. Comprehensive
validation of the predictions of this TRNwould requiremanipulation
of brain expression of multiple TFs with RNAi across multiple be-
havioral states under natural conditions. This is not yet feasible, al-
though RNAi treatment has been used to test the effects of single
genes in individual behavioral contexts in the field (20). Instead,

partial validation for some of our results was obtained by four
comparative bioinformatics analyses. (i) Genes in the modules of 14
TFs in the bee brain TRN had significant overlap with the direct,

Table 1. General features of the genome-scale model of
a behaviorally related transcriptional regulatory network from
honey bee brain transcriptome profiles

Features Values

Total genes in the network 2,176
TFs in the data set 236
TFs in the network 190
Interactions in the network 6,757
Mean indegree 3 ± 1
Mean outdegree 35 ± 50
Total modules 190
Modules enriched for GO/KEGG categories 166
Modules enriched for an upstream motif 109
Modules with enrichment for differentially expressed
genes (DEG)

108

Global regulators 4
Correlation threshold 0.8
Correlation 10-fold CV (train and test) 0.87
Correlation background 0

Fig. 3. Global and behavior-specific regulators in the bee brain transcriptional
regulatory network. (A) Extent of transcriptomic change (number of differen-
tially expressed genes, DEGs) in each of the 27 pairwise comparisons between
states that relate to aggression, maturation, or foraging. (B) Patterns of differ-
ential expression (FDR< 0.05) for the top 20hubs in theTRN. TFs (rows) sorted by
size of predicted gene modules. Blue, up-regulation; red, down-regulation. (C)
TFs whose predicted target genes were “active” (significantly overrepresented
among differentially expressed genes) across all three behavioral categories
(“global regulators”) and TFs active only for aggression,maturation, or foraging
(full description in SI Appendix, Table S7). Shadedboxes indicate the significance
level for each enriched module (hypergeometric distribution). (D) TF-gene
modules with the most significant between-state changes in the relative ex-
pression of module members (P values in legend at Right).
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physical targets of the orthologous TF in Drosophila (11), (SI Ap-
pendix, Table S5, P < 10−15), compared with randomized bee TRN
data, which had approximately two overlapping modules (SI Ap-
pendix, Fig. S12). (ii) The modules for 6 TFs in the bee brain TRN
were enriched for the cis-regulatory motif recognized by their Dro-
sophila ortholog (SIAppendix, Table S5). (iii) The prediction of state-
specific TF activity was supported by results from an independent
chromatin immunoprecipitation (ChIP-on-chip) study, which iden-
tified 16 of the TFs in the bee brain TRN linked to foraging and
maturation as direct targets of Ultraspiracle. Ultraspiracle has been
shown to mediate maturationally related transcriptional responses
to JH in the honey bee (13) (SI Appendix, Table S9). This result
further supports our hypothesis that additional factors like hormones
may drive global gene expression across the brain. (iv) This TRN
linked the TFDeaf1 to bee aggression, as has been shown previously
(7), and the predicted targets of Deaf1 overlapped significantly with
the targets of Deaf1 in Drosophila. These findings suggest that many
modules of the bee brain TRN involve direct physical interactions
between TF and target genes and highlight strong evolutionary
conservation across bees and flies, despite a ca. 300-Myr divergence.

Conclusions
This bee brain TRN does not encompass all of the layers of
complexity inherent in brain function, which includes indirect
and combinatorial regulation of gene expression by TFs and
regulation via noncoding RNAs, epigenetic mechanisms, and
posttranscriptional processes. However, its ability to accurately
model a surprisingly high percentage of the transcriptome—
absent information on nonlinear interactions between genes,
physical interactions, time course, or brain subregion localiza-
tion, and using only a partial (∼30%) list of TFs (21)—suggests
that the relationship between brain gene expression and behavior
is both stronger and more predictable than previously imagined.

Methods
Experimental Designs of BeeSpace Experiments. The integrated nature of the
BeeSpace Project enabled us to control and standardize aspects of field, labo-
ratory, and informatics work across a large number of studies. All experiments
were performed with bees from a single species, the Western honey bee A.
mellifera. Field experiments were performed during the summers of 2007 and
2008, primarily at the Bee Research Facility at the University of Illinois (Urbana,
IL). Additional fieldwork was performed at Ixtapan de la Sal, Mexico (African-
ized vs. European honey bees) (7), Avignon, France (Northern vs. Southern Eu-
ropean subspecies (22), Arizona State University (high vs. low pollen hoarding),
and East Tennessee State University (time training).

Hereditary influences were studied by comparing bees from known differ-
ent genotypic backgrounds, either different subspecies or selected lines. Bees
were sampled from colonies derived from populationsmaintained as described
previously (7, 22, 23). Environmental influences were studied by minimizing
genetic variation among bees; we used colonies each derived from a queen
instrumentally inseminated by semen from a single male. To generate large
numbers of bees with similar genotypes, most experiments used sets of colo-
nies, eachheadedby sister queens instrumentally inseminatedwith semen from
brother drones.Wegenerated three sets of source colonies by this approach, all
derived from typical mixed stock of North European honey bee subspecies.

Source colonies were maintained uniformly, according to standard bee-
keeping practices. Behavioral collections were made directly from these col-
onies, or bees were introduced into different host colonies according to the
various experimental paradigms used in individual experiments. Each study
was replicated in at least two independent field trials using bees from differ-
ent source colonies. Bees were collected directly into liquid nitrogen or dry ice
and stored at −80 °C before brain dissection and gene expression analysis.

Global Analysis of Brain Gene Expression and Social Behavior. Unsupervised
hierarchical clustering and MDS were performed using MATLAB. Pearson’s
correlation was used as a metric to compute the distances between tran-
scriptomic responses (log-transformedP values) in thedataset andunweighted
average distance (UPGMA) (24) was used to construct the dendrogram. To test
the accuracy of the clustering, we used the cophenetic correlation metric (25),
which measures how faithfully the tree represents the dissimilarities among
observations. We found it to be at a very high value of 0.89, suggesting an

accurate fit to the data. We also performed additional statistics to verify the
significance of the result (SI Appendix, Table S3 and Fig. S1). Both random
sampling of various subsets of the transcriptome (SI Appendix, Table S3) and
clustering after removingoneof the phenotypes (SIAppendix, Fig. S1) revealed
that the behavior-specific clusterswe obtainedwere robust. In both the above-
mentioned control experiments, the aggression subcluster of transcriptional
profiles for environmental factors sometimes grouped into a separate cluster
of its own; nevertheless, all its members were retained in the same cluster. We
also estimated the global P value of the tree, on the basis of a method sug-
gested in ref. 26. Bootstrapping estimates (based on 1,000 runs) were used to
calculate P values using the pvclust (27) package in R. These P values were then
used to calculate theglobal P value, defined as theminimumof the P values for
the nodes. We estimated the global P value to be less than 0.001.

Identification of Honey Bee Transcription Factors. Few TFs have been experi-
mentally identified and characterized in the honey bee.We therefore focused
on genes that are robust orthologs of TFs that have been experimentally
characterized inDrosophila. We used a list of 256 TFs for which therewas little
or no change in critical residues between the bee gene and its Drosophila
ortholog (28). Of these putative honey bee TFs, 236 were present in the brain
gene expression profiles, and 190 had predicted targets in the TRN.

Network Reconstruction. Our ASTRIX method is built on two well-known
algorithms used for network inference and regression—ARACNE (4) and LARS
(10)—to infer interactions and predict expression in new conditions. ARACNE is
an information–theoretic method for identifying transcriptional interactions
from microarrays or other gene expression data. It is specifically designed to
scale up to the complexity of regulatory networks in mammalian cells (4).
ARACNEhasbeen shown to correctly predict the regulatory networkof c-Myc in
human B cells (4) and to accurately reconstruct the TRN responsible for epi-
thelial-to-mesenchymal transformation in human brain tumors (3). In ARACNE,
a TF and putative target gene are predicted to interact if the mutual in-
formation between their expression levels is above some set threshold. An
additional feature of the ARACNE algorithm is that it uses the data processing
inequality (DPI) technique to eliminate the majority of indirect interactions
inferred by coexpression methods. In this way, ARACNE both predicts inter-
actions between TFs and putative target genes and performs variable re-
duction, retaining only the strongest, direct interactions.

LARS is a regression algorithm used for inferring relationships between
a dependent variable (in this case putative target gene expression) and one or
more independent variables (predictors; in this case TFs inferred by ARACNE).
LARS outputs a quantitativemodel, which can be used to predict the response
variable on the basis of the states of the dependent variables. LARS is a model
selection algorithm, which is a less greedy version of the traditional forward
selection method. It selects a parsimonious set of predictors from a large
collection of possible covariates for the prediction of a response variable (10).
Given that there is almost no physical TF–target interaction data available
for honey bees, it seemed prudent to emphasize parsimony at every step.

There are several advantages of our approach for network inference over
using ARACNE or LARS alone. First, whereas ARACNE gives only the topology
of the network, this combinationoutputs both the topology and alsowhether
each interaction is activating or inhibitory. Second, we can estimate the
percentage of the variance in a target gene’s expression, which is explained
by each TF, and predict the expression of a target gene in new conditions.
Third, by performing variable reduction and removing indirect interactions
in ARACNE, we avoid problems faced by LARS with large numbers of inter-
actions and highly correlated variables (10). Most importantly, ASTRIX only
selects the subset of TF–gene relationships that can accurately predict the
target gene’s expression quantitatively in the training set, and only these
interactions are moved forward to the test set for validation.

Cross-Validation and Accuracy of Fit. Thequantitativeoutput of the TRNmodel
enabled us to test the accuracy of the predictions in new conditions. All data
used in this procedurewere normalizedbefore network inference to have row
variancesof1; thisnormalizationmeansthat for the influenceofaTFonagiven
target gene,we can uniformly interpret themagnitude of the coefficients α, β,
and σ, and use their magnitudes to rank the individual interactions (29). We
quantified the accuracy of the inferredmodel by measuring the RMSD. RMSD
has the same units as variance, thus providing an estimate for the amount of
variance of the gene explained by the model. We also quantified the Pearson
correlation between the model’s predictions and the actual expression data.

We performed two tests to determine the TRN’s ability to predict the
expression of each gene in new states. In 10-fold cross-validation using
random subsets of samples as test sets, using the expression levels of the TFs
alone, our model made highly accurate gene expression predictions with
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a mean RMSDtest = 0.35. We selected only the genes that we could predict well
in the training set with a RMSD threshold = 0.5, and the resulting mean
RMSDtrain was 0.35. We repeated the analysis using correlation as a metric.
Correlation also yielded the same result: the test correlationwas as good as the
correlation in the training set (0.87), suggesting a good fit to the data without
overfitting. Second, we performed “leave-one-state-out” cross-validation, in
which all of the bees from 1 of the 48 states were removed from the training
set; this is a more stringent test in that the model is tested on a “new” be-
havioral state, i.e., forwhich it has not been trained.Weagain found anequally
good accuracy in training and test set using a RMSD threshold of 0.5 in training
for selecting genes. (RMSDtrain = 0.33, RMSDtest = 0.32; SI Appendix, Fig. S4).

After estimating the accuracy offit in cross-validation, we then used the entire
dataset and inferred thefinalnetworkusingARACNEandLARS.We then selected
genes that could be predicted with correlation >0.8 to be in the final model—
exactly as we had done on each training set in the error estimation stage. The
mean correlation of fit in the whole set was 0.87. We built the final network on
the basis of the LARS model for each gene. We chose the TF–target gene inter-
actions that hada regression coefficient greater than 0.1. The β-values (regression
coefficients) giveanestimateof theamountof varianceexplainedbyeachTF. The
putative regulators with regression coefficients of less than 0.1 were pruned out
and thefinal networkwas determined,which consists of 2,176 genes and190 TFs.

Estimation of Background Accuracy and Controls for Expression Prediction. We
performed three experiments to estimate the model’s accuracy on control con-
ditions. (i) We inputted a random dataset, the same size as our dataset, nor-
malized and preprocessed in the same way, and then tried to infer from it
a networkmodel. This controlmodel did not predict any interactions significantly
below the requiredmutual information threshold (P< 1E-6), suggesting that very
few, if any, interactions obtained in the experimental bee brain TRN could have
occurredby randomchance. (ii)Weused thehoneybee expressiondata and then
randomly shuffled the expression of TFs (but not putative targets) across
experiments. Once again, no significant interactions were predicted. Although
some interactions had high mutual information, none of the predicted inter-
actions had a training correlation greater than 0.8. The average test set corre-
lation of this control model across all 9,544 genes was only 0.22 in 10-fold cross-

validation. These results suggest that the accurate predictions of the bee brain
TRN (r > 0.8; mean test set correlation, r = 0.87) were specifically due to inter-
actions between TFs and their predicted target genes rather than to cryptic
structure in the dataset or themodeling approach used. (iii)We tested the ability
of the bee brain TRN tomodel gene expression data in a prominent subregion of
the brain, the mushroom bodies (SI Appendix, Fig. S9). We again trained the
model on all whole-brain data, then used the mushroom body-specific foraging
experiencedataset (SIAppendix, Table S1) as a test set (r=0.36). Todetermine the
significance of the model’s performance, we measured the test prediction using
themean expression of the TFs alone instead of using the linearmodel predicted
by our approach; the average test set prediction correlation was only 0.01.

Measuring Relative Gene Shuffling. We used differential rank conservation
(DIRAC) (19) to identify changes in relative gene expression ordering in net-
works. DIRAC quantifies and assesses expression consistency by ranking the
target genes within a selected module on the basis of expression.
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