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Decision-making can be broken down into several component
processes: assigning values to stimuli under consideration, select-
ing an option by comparing those values, and initiating motor
responses to obtain the reward. Although much is known about
the neural encoding of stimulus values and motor commands, little
is known about the mechanisms through which stimulus values
are compared, and the resulting decision is transmitted to motor
systems. We investigated this process using human fMRlI in a task
where choices were indicated using the left or right hand. We
found evidence consistent with the hypothesis that value signals
are computed in the ventral medial prefrontal cortex, they are
passed to regions of dorsomedial prefrontal cortex and intra-
parietal sulcus, implementing a comparison process, and the output
of the comparator regions modulates activity in motor cortex
to implement the choice. These results describe the network
through which stimulus values are transformed into actions during
a simple choice task.

dynamic causal modeling | valuation

mplementing a choice necessarily requires taking an action.

Consider the problem faced by an individual that has to choose
between two stimuli, one placed on the left and obtained through
a left hand movement and one placed on the right and obtained
through a right hand movement. Theoretical models and a
growing body of evidence (1-3) suggest that the brain solves this
task by assigning values to the two stimuli, comparing them, and
then activating the necessary motor response to implement the
choice. It follows that, to solve the choice problem, the brain
needs to transform stimulus value signals into motor commands.

Over the last decade, we have learned a considerable amount
about the encoding of stimulus value signals at the time of
choice. Functional MRI (fMRI) studies have found stimulus value
signals in ventromedial prefrontal cortex (vmPFC) at the time
of decision-making for primary rewards (4-8), monetary gains
and losses (9-14), delayed rewards (15), consumer goods (16, 17),
and abstract social rewards (18, 19). Related studies using elec-
trophysiological recordings in nonhuman primates have shown
that stimulus values are encoded in the firing rates of individual
neurons in the orbitofrontal cortex (20-23). Importantly, these
studies have shown that these areas encode stimulus value signals
that are independent of the actual choice made, suggesting that
they are an input to the choice process, which is outlined in the
framework above.

The values assigned to each option must be compared to select
the best course of action. Exactly how this comparison occurs in
the brain is an area of active research. One important clue comes
from computational models of the choice process that have
shown that the drift diffusion model (DDM) (24, 25) and some
of its variants (26-29) fit the accuracy and reaction time data of
simple choice tasks remarkably well. Furthermore, activity re-
sembling the output of the DDM has been found in the lateral
intraparietal cortex during perceptual decision-making tasks in
nonhuman primates (30, 31) and the dorsal medial prefrontal
cortex (dmPFC) during action selection tasks in humans (32).
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Here, we seek to identify the network involved in transforming
stimulus values into motor commands using fMRI. Our strategy
relies on the fact that an area involved in the comparison process
and linking value computation to action implementation should
satisfy the following three properties. First, its blood oxygen
level-dependent (BOLD) signal should reflect the predictions for
aggregate activity derived from neural implementations of the
DDM. This property is important, because the DDM has been
shown to fit the psychometric data in this class of tasks extremely
well (24, 25). Second, the region should exhibit increased ef-
fective connectivity from areas such as vmPFC that encode
stimulus values at the time of choice. This property is important,
because the comparator needs to receive the value signals to be
able to make choices. Third, the region should exhibit choice-
dependent effective connectivity with motor cortex in a way that
promotes the observed motor responses: it should enhance ac-
tivity in the left motor cortex during right actions and activity in
the right motor cortex during left actions. Based on the evidence
described above and the well-characterized connectivity between
the dmPFC and supplemental motor areas (33-35), we hypoth-
esized that dmPFC and intraparietal sulcus (IPS) would satisfy
the three properties and thus, provide the link between vmPFC
and motor cortex during the transformation of stimulus values
into motor commands.

Previous studies have looked at individual aspects of the value
transformation network but have never tested for all of the
functions necessary to move from valuation to action. A recent
fMRI study of human decision-making found that IPS activity
was consistent with some of the properties that one would expect
from a comparator process, including increased connectivity with
vmPFC at the time of choice and greater activity for more dif-
ficult choices (36), and a previous study by our own group sug-
gested that activity in dmPFC might reflect, in part, the
computations of a comparator process (7). Another study (37)
found that activity in vmPFC was stronger in easier trials than
more difficult decision trials, which is consistent with the hy-
pothesis that the vmPFC might be involved in the computation
of relative stimulus values. Note that, although these papers are
important precursors on which we build and their results are
consistent with subsets of the results obtained here, none of them
address the fundamental goal of fully characterizing the network
involved in how value signals are transmitted to putative com-
parison regions and ultimately, modulate activity in motor cortex
to implement the choice. In particular, none of them has ex-
amined the connectivity of the entire network to test the pre-
dicted intratrial-, choice-, time-, and direction-specific changes in
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coupling between each region of the network. Here, we test these
predictions using dynamic causal modeling (DCM) to examine
the modulation of specific connections at a neuronal timescale
(inferred from a hemodynamic deconvolution of the BOLD sig-
nal) during the periods of stimulus valuation and action prepa-
ration. Consistent with our hypotheses, we found that signaling
from vmPFC to comparator regions increases at the time of
choice, and subsequently, signaling from comparator regions to
motor cortex increases during action preparation in a choice-
dependent manner.

Results

We tested these hypotheses using a paradigm in which, on every
trial, thirsty human subjects were shown pairs of symbols rep-
resenting various amounts of different liquid rewards on the left
and right sides of the screen, and later, they pressed either the
left or right thumbs to indicate their choice (Fig. 14). After
another brief delay, the chosen liquid was delivered to the sub-
jects inside the scanner on each trial. The task is closely related
to the tasks used in works by Padoa-Schioppa and Assad to in-
vestigate the coding of stimulus value in orbitofrontal cortex with
nonhuman primates (20, 21, 38).

Behavioral Results. We estimated the value of each amount of
every different juice from the behavioral data using the pro-
cedure described in Materials and Methods. The psychometric
curve in Fig. 1B shows that these value estimates provide an
accurate account of the choice behavior. A mixed effects logistic
regression showed that subjects were highly responsive to the
relative value of the two juices (15 = 8.05, P < 0.001).

Estimation of the Neural DDM. We estimated a simple neural
implementation of the DDM. The model is important for our
analyses, because it makes predictions about the level of aggre-
gate activity and thus, about the BOLD responses that should be
observed in an area involved in the comparison of stimulus val-
ues with action selection. As illustrated in Fig. 24, the standard
DDM assumes that (i) a relative value signal measuring the es-
timated relative value in favor of the left stimulus is computed
dynamically through a Gaussian Markovian process, with in-
dependent and identically distributed noise and a mean slope of
integration proportional to the underlying true value of the left
minus right items; (if) the relative value signal starts at zero; and
(iii) a choice is made when either the signal crosses the upper
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barrier (so that the left option is selected) or the lower barrier
(so that the right option is selected). At this level of computa-
tional abstraction, the DDM model does not make testable
predictions about the level of activity associated with the com-
parator process that can be used to identify an area involved in
these computations using fMRI. To achieve this link, we speci-
fied the simplest possible plausible neural implementation of the
DDM that matches well with its behavioral predictions (29) (Fig.
2B and Materials and Methods).

An advantage of this model, which we refer to as neural DDM
(nDDM), is that it is fully characterized by three free parameters
(integration slope, inhibition strength, and integration noise).
We estimated the values of these parameters that maximized the
match with the group psychometric choice function shown in Fig.
2C. We used the model and best-fitting parameters to compute
the expected total level of activity in the comparator region for
each trial as a function of the relative values of the left and right
items as well as whether the best item was chosen. Fig. 2D
depicts the average predicted level of activity that is used below
to identify regions associated with value comparison and action
selection. This variable measures the total level of predicted
activity generated by both pools of neurons, which is the relevant
signal for identifying the neural comparator using BOLD fMRI
as long as the two pools of neurons are spatially intermingled.
Previous studies have used difficulty or reaction times as a
marker for putative comparator regions (36, 39-41). Fig. 2D and
the analyses discussed below show that, although this assumption
is a good approximation to the predictions of the nDDM, it
leaves out useful information. This void can be seen from the fact
that the predicted activity levels have different curvature and
average levels in correct and error trials. As described below and
in SI Results, these differences can be exploited to compare the
relative fit of the nDDM with difficulty-based regressors.

Stimulus Value Representation. We estimated a parametric general
linear model (GLM) of BOLD activity that allowed us to identify
areas in which activity was correlated with various signals of
interest. Using this model, we found that activity in vmPFC
correlated with the sum of the values during the initial screen
depicting the two options (P < 0.05, small-volume corrected)
(Fig. 34 and Table S1). Post hoc analyses of this area showed
that activity did not differ by stimulus identity [one-way ANOVA
for liquid type: F(372) = 0.90, not significant (n.s.)], location
(paired ¢ test between left and right values: £(15) = —1.40, n.s.), or
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Fig. 1.

Value Left - Value Right

Experimental design and behavior. (A) Subjects were presented with a choice screen offering two different amounts of two different liquids. Colored

shapes represented the liquid identity. The number of shapes indicated the amount of liquid being offered. Subjects were instructed to make their choice
while the shapes were on the screen, but they could only indicate their choice with a button press (left or right thumb) when the response prompt appeared
after a variable delay period. The chosen stimulus was delivered after another variable delay period. (B) Percentage of left choices as a function of value of
left minus value of right stimulus. Error bars represent the SEM across subjects.
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choice status (paired ¢ test between chosen and nonchosen value:
t(lg) = 056, n.s.).

Motor Responses. Next, we used the same GLM to identify activity
associated with implementing specific motor responses. Left
motor cortex (IMC) and right cerebellum were more active for
responses with the right than the left thumb (P < 0.05, corrected)
(Fig. S14 and Table S2). Conversely, right motor cortex (rMC)
and left cerebellum were more active for responses with the left
than right thumb (P < 0.05, corrected) (Fig. S1B and Table S2).
Post hoc tests showed that IMC and rMC did not meet the cri-
teria for encoding of action values (details in SI Results).

Comparator Regions Linking Valuation to Action: First Property. As
described in the Introduction, any comparator region linking
valuation to action in our experiment should satisfy three key
properties. Here, we implement the test for the first property,
which requires that BOLD responses at the time of stimulus
presentation, when the choice is being made, correlate with the
predicted total activity levels estimated from the nDDM, con-
ditional on the relative value (V°°* — 1*°°) and the quality of
choice (best chosen = 0, 1) in each trial (Fig. 2D). We found that
activity in the dmPFC, left dorsolateral prefrontal cortex
(dIPFC), and bilateral IPS correlated with this regressor during
the period from stimulus onset through execution of the motor
response (P < 0.05, corrected) (Fig. 3 B and C, Fig. S2, and
Table S3).

Given the high correlation between the output of our nDDM
and a measure of choice difficulty given by |value left — value
right| (r = —0.930) and previous reports of correlations between
dmPFC, dIPFC, and IPS with choice difficulty (42, 43), we per-
formed post hoc Bayesian model selection on each region of
interest to test whether the predictions from the nDDM or dif-
ficulty best explained activity in these regions. Note that, al-
though there is a high correlation between the two measures, the
nDDM predicts differences in the signal between correct and
error trials that the difficulty measure does not predict. These

18122 | www.pnas.org/cgi/doi/10.1073/pnas.1109322108
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items and the correctness of the choice.
Green, correct; red, incorrect. Error bars
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differences can be exploited to test for the relative ability of each
model to fit aggregate neural activity in areas of interest (addi-
tional details in ST Results). We used the exceedance probability
(EP; the probability that a given model is more likely than any
other model in the comparison set given the group data) as our
metric for model comparison (44). The EP of the nDDM model
was greater than the difficulty model in all four regions (dmPFC
EP = 0.99, dIPFC EP = 0.58, 1IPS EP = 0.98, and rIPS EP =
0.94), indicating that the nDDM provided a better fit to activity
in these areas than the difficulty measure, especially in dmPFC
and IPS.

Comparator Regions Linking Valuation to Action: Second and Third
Properties. We next used DCM to investigate if the dmPFC,
dIPFC, and IPS also exhibited the two key connectivity proper-
ties that an area involved in transforming stimulus values into
motor commands should satisfy: (i) increased input at the time
of choice from the region of vmPFC involved in computing
stimulus values, and (ii) choice-dependent effective connectivity
with motor cortex in a way that promotes the observed motor-
responses.

First, we identified the most likely model using a Bayesian
model selection process (Materials and Methods, SI Materials and
Methods, and Tables S4-S10). The best model, depicted in Fig. 4,
has reciprocal connections between vmPFC, dmPFC, dIPFC,
and bilateral IPS and unidirectional connections from dmPFC,
dIPFC, and bilateral IPS to IMC and rMC.

Second, after determining the most likely model, we used
Bayesian parameter averaging to estimate the group posterior
probabilities of each parameter of the best-fitting model. There
are two types of parameters of interest in the model: fixed con-
nection and coupling modulation parameters.

The fixed connection parameters measure the coupling be-
tween two areas during the rest periods of the task. There was
a high posterior probability (P > 90%) of fixed positive con-
nections between most regions with the exception of vimPFC to
dIPFC, dmPFC to I1IPS, 1IPS and rIPS to rMC, rIPS to IIPS, and
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rMC to IMC (Table S5). There was also significant negative
coupling from IMC to rMC.

The coupling modulation parameters measure how the inter-
actions between regions change during specific phases of each
decision trial. These modulation parameters represent our pri-
mary measure of interest in the DCM analysis, because they
provide a direct test of the two properties of interest of com-
parator regions that might link valuation to action.

The first set of modulation parameters measures coupling
changes during stimulus presentation, which coincides with the
initial valuation and comparison of the two stimuli. We found
that the coupling from vmPFC to dmPFC [P(|coupling A| > 0)
= 0.93] and left IPS [P(|coupling A| > 0) = 0.97] and right IPS
[P(|coupling A| > 0) = 0.95] increased during this phase, which
provides evidence in favor of the second criterion for these

B

Fig. 3. Valuation and potential comparator regions. (A)
Activity in vmPFC correlated with the sum of the stimulus
values shown on each trial (P < 0.05, small-volume cor-
rected). (B and C) Activity in bilateral dmPFC (B) and bi-
lateral IPS (C) correlated with the predicted levels of
activity generated by the nDDM model at P < 0.05, whole-
brain corrected.

three areas (Fig. 4B and Table S6). Note that this increase in
signaling from vmPFC to dmPFC and IPS was independent of
the values of the options on each trial. This finding is to be
expected, because the comparison process is necessary at all
levels of value.

The second set of modulation parameters measures coupling
changes during the period from stimulus onset to response for
left and right choices separately. These parameters allowed us to
estimate the posterior probabilities that the functional coupling
strength depended on the identity of the chosen action, and thus,
they help to test if IPS and dmPFC satisfy the third desired
property. As described in Fig. 4 C and D and Tables S7 and S8,
the functional coupling from dmPFC, dIPFC, and IPS to IMC
and rMC was dependent on the choice. When the left action was
chosen, there was positive modulation of the connections to rMC
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Fig. 4. Tests of functional coupling using DCM. (A) Diagram
of the pattern of fixed connections between the seven
regions in the most likely DCM model. Note that connections
between dIPFC and IPS have been omitted for clarity but can
be seen in Tables S1-S3. (B) Changes in connectivity during
the stimulus valuation period. (C) Changes in connectivity
/‘ during the period between stimulus onset and response in

trials where subjects chose the left option. (D) Changes in
connectivity during the period between stimulus onset and
response in trials where subjects chose the right option.
Connections in red indicate significant positive coupling
coefficients, whereas blue indicates significant negative
coefficients. Lines in gray indicate connections with posterior
probability less than 90%.
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from dmPFC [P(|coupling A| > 0) = 0.99], dIPFC [P(|coupling
A| > 0) = 0.96], IPS [P(|coupling A| > 0) = 0.92], and rIPS
[P(|coupling A| > 0) = 0.97]. However, there was negative mod-
ulation of the connection to IMC from dmPFC [P(|coupling
A| > 0) = 0.97], lIPS [P(|coupling A| > 0) = 0.97], and rIPS
[P(|coupling A| > 0) = 0.93]. In contrast, during the period be-
tween stimulus presentation and right option selection, there was
positive modulation of the coupling to IMC from dmPFC [P(|cou-
pling A| > 0) = 0.99], dIPFC [P(|coupling A| > 0) = 98%], IIPS,
and rIPS [P(|coupling A| > 0) = 0.99, whereas there was neg-
ative modulation of the connection to rtMC from IIPS [P(|cou-
pling A| > 0) = 0.96] and rIPS [P(|coupling A| > 0) = 0.94].
There was no significant modulation in coupling between IMC
and rMC at the time of button press (Table S9). Together, these
last findings provide evidence that dmPFC and IPS satisfy the
third hypothesized property of a comparator region that links
valuation to action.

Discussion

We have used a strategy to characterize the network involved in
the transformation of stimulus values into a motor response
during simple choice using fMRI. We found that activity in
dmPFC and bilateral IPS exhibited three key properties that
areas engaged in value comparison and linking choices to actions
should satisfy. First, activity in these areas correlated with the
predictions of a neural model of choice that approximates the
computations of the DDM. This property is an important marker
of comparator areas, because the DDM has been shown to fit the
psychometric data from binary choice tasks (including ours) ex-
tremely well (24, 25). Second, our DCM analysis showed that
activity in both areas exhibited increased functional coupling at
the time of decision with the region of vmPFC that encoded both
stimulus values, regardless of the choice that was eventually
made. This increased coupling at the time of decision is expected
in areas that use these value signals as inputs to the actual
comparison process. Third, dmPFC and IPS exhibited choice-
dependent coupling with motor cortex in a way that promoted
the observed motor responses: they increased the connectivity
with left motor cortex during right actions and with right motor
cortex during left actions.

Our results provide a link between the value-based and per-
ceptual decision literatures. Single-unit studies in nonhuman
primates have found activity in IPS during saccadic dot motion
tasks that resembles the output of a DDM comparator process
(30, 31, 45, 46). Similar results have been obtained in human
fMRI studies of perceptual decision-making (40, 41). Connec-
tions between vmPFC and parietal regions are likely to be
polysynaptic. Therefore, future studies should seek to identify
the intermediate nodes connecting vmPFC and parietal cortex in
decision-making. One intriguing possibility is that the dmPFC
and IPS might participate in the decision-making process by
computing decision variables in the action and spatial domains,
respectively. Unfortunately, in many paradigms, including our
paradigm, the two types of decision variables are highly corre-
lated and thus, are difficult to disentangle.

The dmPFC is a natural area to implement a comparison pro-
cess in simple economic choice, because it is heavily inter-
connected with both supplementary motor areas and areas of
vmPFC thought to be involved in valuation (33-35). Furthermore,
neurons in dmPFC have been shown to reflect several different
decision variables, making this region ideally qualified to compare
different options and promote the best course of action (22).

Previous fMRI studies have shown that the dmPFC, dIPFC,
and parietal cortex are more active in more difficult value-based
decisions (42, 43). Given the high correlation between difficulty
and the levels of activity predicted by the nDDM model, our
results are consistent with these findings. However, we found
that the nDDM model provides a better fit to activity in dmPFC
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and IPS, which is consistent with previous studies that have di-
rectly compared measures of difficulty and value differences in
dmPFC (7).

In summary, our results provide evidence that a neural network,
including regions of vmPFC that reflect stimulus value, compar-
ator processes in dmPFC and IPS, and action effectors in motor
cortex, mediates the transformation of stimulus values into motor
commands at the time of choice. This transformation process is of
central importance to decision neuroscience. A critical question
for future investigations is to what extent the network identified
here is at work in a wide class of decisions (encompassing many
different stimulus types and effectors) or if, in contrast, the net-
work linking stimulus valuation, value comparison, and motor
action is dependent on the parameters of the task.

Materials and Methods

Participants. Twenty subjects (four females) participated in the experiment
(mean age = 23y, range = 19-35 y). All subjects were right-handed, were
healthy, had normal or corrected to normal vision, had no history of psy-
chiatric diagnoses or neurological or metabolic illnesses, and were not tak-
ing medications that interfered with the performance of fMRI. One male
subject was excluded from analysis because of irregularities in his pattern of
choices. The review board of the California Institute of Technology approved
the study.

Stimuli and Task. Subjects completed a juice decision task in the MRI scanner
(SI Materials and Methods). At the beginning of each trial, subjects saw two
different flavor amount combinations—one on the left side and one on the
right side of the screen (Fig. 1A). Subjects were instructed to make their
choice while the left and right options were on the screen. After a variable
delay (3-6 s), a response prompt was shown on the screen, and the subject
pressed the right thumb to select the right option or the left thumb to select
the left option. The chosen liquid was delivered to the subject after another
variable delay (3-6 s). There were a total of 120 trials across the four func-
tional runs. S/ Materials and Methods has details of liquid reward value
calculations.

Neural DDM. The model assumes that choices are made as follows every trial.
There are two pools of neurons, which are spatially intermingled and of equal
size, with total instantaneous levels of activity given by a,(t) and ag(t), where
t indicated elapsed time from the appearance of the stimuli. At the begin-
ning of the choice process, a,(0) = ag(0) = 0. A choice is made to the res-
pective action when the level of activity in either of the two populations
surpasses a prespecified threshold. The evolution equations for each pop-
ulation are given by (Eq. 1)

a(t) =max{0,a,(t—1)—6* ag(t—1)+d*(v. —vg) +n.(t)} [1]
and (Eq. 2)
ar(t) = max{0,ap(t—1)—60* a (t—1) + d*(vg —vi) + nz(t)} [2]

where 9 measures the strength of the inhibitory activity between the two
pools, d measures the sensitivity of the integration process to the underlying
true values of the stimuli (denoted by v, and vg), and the last term, n,
measures the measures the amplitude (SD) of Gaussian noise. We assume
that the height of the barriers was fixed at +1. Note that this normalization
is without loss of generality, because the DDM is identified only up to rel-
ative values of the parameters. The psychometric curve for the best-fitting
set of parameters (d = 0.009 + 0.005, n = 0 + 0.035, 6 = 0.2) is shown in Fig.
2C. Total activity in each trial predicted by the model is referred to as M. S/
Materials and Methods has model estimation details.

The total activity shown in Fig. 2D was used as a modulator in some of the
GLMs of BOLD activity described below to identify areas that might be as-
sociated with the comparison process. The logic for using this variable as
a marker is described. BOLD activity in any instant in the comparator area
should be proportional to the sum of local neural activity. It follows that
average bold activity in this area from the time of stimulus onset to the time
of decision should be proportional to the average of instantaneous activi-
ties. In the analyses below, we cannot modulate activity with duration equal
to the reaction time, because our paradigm does not allow us to measure it.
Instead, we model the activity of the comparator with an equal duration in
all trials. By the previous arguments, average activity during this time should
be proportional to the total level of activity.

Hare et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST9
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1109322108

fMRI Data Acquisition and Analysis. Data were acquired with a 3T scanner
(Trio; Siemens) using an eight-channel phased array head coil (details in S/
Materials and Methods). We estimated two GLMs with first-order autore-
gression for each individual subject (details in S/ Materials and Methods). We
then computed contrasts of interest at the individual level using linear
combinations of the regressors. These contrast coefficients were used in one-
sample t tests for second-level group analyses.

We carried out whole-brain corrections for multiple comparisons at the
cluster level. Details of the correction for each contrast can be found in Tables
S$1-511. Small-volume correction for the vmPFC was conducted within a 10-
mm sphere centered on the vmPFC coordinates (x, y, z = -3, 42, —6) from the
work by Chib et al. (16).

DCM. We examined the connectivity between stimulus value and motor re-
sponse regions on left and right choice trials using DCM (47). The analysis was
carried out in several steps.

First, seven activation time courses were extracted from the functional
masks in vmPFC, dmPFC, dIPFC, IIPS, rIPS, IMC, and rMC in each subject from
a 4-mm sphere centered on the individual subject peak within the group
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regions of interest identified by the main GLMs and shown in Fig. 3 and Figs.
S1 and Figs. S2.

Second, we specified 20 different models of potential connectivity be-
tween the seven areas of interest. A full description of the set of models is
provided in SI Materials and Methods and Tables S5-S10.

Third, we identified the best model using the Bayesian model selection
method developed in the work by Stephan et al. (44) (Fig. S3). Briefly, this
technique treats the models as random variables and computes a distribu-
tion of the probabilities for all models under consideration (additional
details in SI Materials and Methods).

Fourth, we used Bayesian parameter averaging (details in S/ Materials and
Methods) (48, 49) to estimate the magnitudes and probabilities of each fixed
connection (often called intrinsic connections) as well as the magnitudes and
effects with which the connections are modulated by different events.

ACKNOWLEDGMENTS. We thank the Betty and Gordon Moore Foundation
(C.F.C,, J.P.O., and A.R.) for financial support as well as the National Science
Foundation (A.R.).

25. Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends
Neurosci 27:161-168.

26. Usher M, McClelland JL (2001) The time course of perceptual choice: The leaky,
competing accumulator model. Psychol Rev 108:550-592.

27. Krajbich 1, Rangel A (2011) Multialternative drift-diffusion model predicts the re-
lationship between visual fixations and choice in value-based decisions. Proc Nat/
Acad Sci USA 108:13852-13857.

28. Ditterich J (2006) Stochastic models of decisions about motion direction: Behavior and
physiology. Neural Netw 19:981-1012.

29. Bogacz R (2007) Optimal decision-making theories: Linking neurobiology with be-
haviour. Trends Cogn Sci 11:118-125.

30. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci

30:535-574.

. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal
cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916-1936.

32. Rowe JB, Hughes L, Nimmo-Smith | (2010) Action selection: A race model for selected
and non-selected actions distinguishes the contribution of premotor and prefrontal
areas. Neuroimage 51:888-896.

33. Beckmann M, Johansen-Berg H, Rushworth MF (2009) Connectivity-based parcellation
of human cingulate cortex and its relation to functional specialization. J Neurosci 29:
1175-1190.

34. Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:
663-672.

35. Strick PL, Dum RP, Picard N (1998) Motor areas on the medial wall of the hemisphere.
Novartis Found Symp 218:64-75.

36. Basten U, Biele G, Heekeren HR, Fiebach CJ (2010) How the brain integrates costs and
benefits during decision making. Proc Natl Acad Sci USA 107:21767-21772.

37. Rolls ET, Grabenhorst F, Deco G (2010) Choice, difficulty, and confidence in the brain.
Neuroimage 53:694-706.

38. Padoa-Schioppa C (2009) Range-adapting representation of economic value in the
orbitofrontal cortex. J Neurosci 29:14004-14014.

39. Heekeren HR, Marrett S, Ungerleider LG (2008) The neural systems that mediate
human perceptual decision making. Nat Rev Neurosci 9:467-479.

40. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general mechanism

for perceptual decision-making in the human brain. Nature 431:859-862.

. Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG (2006) Involvement
of human left dorsolateral prefrontal cortex in perceptual decision making is in-
dependent of response modality. Proc Nat/ Acad Sci USA 103:10023-10028.

42. Venkatraman V, Rosati AG, Taren AA, Huettel SA (2009) Resolving response, decision,
and strategic control: Evidence for a functional topography in dorsomedial prefrontal
cortex. J Neurosci 29:13158-13164.

43. Pochon JB, Riis J, Sanfey AG, Nystrom LE, Cohen JD (2008) Functional imaging of
decision conflict. J Neurosci 28:3468-3473.

44. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model
selection for group studies. Neuroimage 46:1004-1017.

45. Huk AC, Shadlen MN (2005) Neural activity in macaque parietal cortex reflects tem-
poral integration of visual motion signals during perceptual decision making. J
Neurosci 25:10420-10436.

46. Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area
during a combined visual discrimination reaction time task. J Neurosci 22:9475-9489.

47. Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: A two-
state model. Neuroimage 39:269-278.

48. Lee PM (1989) Bayesian Statistics (Oxford University Press, New York).

49. Kasess CH, et al. (2010) Multi-subject analyses with dynamic causal modeling. Neu-
roimage 49:3065-3074.

3

4

PNAS | November 1,2011 | vol. 108 | no.44 | 18125

NEUROSCIENCE


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST11
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=ST10
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109322108/-/DCSupplemental/pnas.201109322SI.pdf?targetid=nameddest=STXT

