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Tetherin (Bst-2 CD317) is a cell-surface protein whose expression is
induced by IFNα. Although tetherin expression causes the reten-
tion of retrovirus particles on the surface of infected cells, it is not
known whether tetherin inhibits retroviral replication or patho-
genesis in vivo. Mutation of tetherin antagonists often has little
effect on retroviral replication in vitro, and, although tetherin can
reduce the yield of extracellular viral particles, some studies sug-
gest that tetherin actually enhances direct cell-to-cell viral trans-
mission. We generated tetherin-deficient mice to determine the
effect of this protein on murine retrovirus replication and patho-
genesis. We find that tetherin markedly inhibits the replication of
Moloney murine leukemia virus (Mo-MLV) and is required for the
antiretroviral activity of IFNα to be fully manifested in vitro. Sur-
prisingly, Mo-MLV replication and disease progression was not
significantly different in WT and tetherin-deficient mice, but this
finding was explained by the fact that Mo-MLV infection did not
induce detectable tetherin expression on candidate target cells
in vivo. Indeed, IFNα induction was required to reveal the anti–
Mo-MLV activity of tetherin in vivo. Moreover, LP-BM5, an MLV
strain that has been demonstrated to induce immune activation
and IFNα expression, achieved higher levels of viremia and in-
duced exaggerated pathology in tetherin-deficient mice. These
data indicate that tetherin is a bona fide antiviral protein and
can reduce retroviral replication and disease in vivo.

Mammals encode an array of molecules that can be constitu-
tively expressed or induced by IFNs and have been demon-

strated or suspected to have direct antiretroviral activity. One such
molecule is tetherin, an unusual type I IFN-inducedmembrane pro-
tein that has both transmembrane and glycophosphatidylinositol
membrane anchors (1, 2). Tetherin was first demonstrated to cause
the retention of HIV-1 and Moloney murine leukemia virus (Mo-
MLV) particles on the surface of infected cells (3, 4), but subse-
quent studies have shown that it can induce the retention of a
variety of enveloped virus particles, including widely divergent rep-
resentatives of the retrovirus, filovirus, rhabdovirus, arenavirus, and
herpesvirus families (5–8). Mechanistic studies have shown that
virion retention occurs after the infiltration of their lipid envelopes
by the tetherin protein itself, which leads to the tethering of virions
on the surface of infected cells (9–11).
There is as yet no evidence that tetherin influences viral repli-

cation and pathogenesis in vivo. Indeed, some studies suggest that
tetherin does not inhibit, and can even enhance, the transmission
of HIV-1 from infected cells to neighboring uninfected cells by
concentrating virions at the cell surface and enhancing the for-
mation of so-called “virological synapses” (12). Because a signifi-
cant proportion of cell-to-cell retroviral transmission in vitro and
in vivo may occur via direct cell contact (13–16) and because de-
letion of the tetherin antagonist, Vpu, from the HIV-1 genome
has little effect on replication in some cell-culture assays (17), the
role of tetherin as an antiviral factor in vivo is uncertain (18, 19).
Moreover, some studies suggest that tetherin has immunomodu-
latory rather than direct antiviral activity (20, 21).
In this study, we use tetherin-deficient cells and animals to ex-

amine the role of tetherin in inhibiting retroviral replication in vitro
and in mediating the antiretroviral activity of IFNα. We demon-
strate that tetherin has potent antiretroviral activity in vitro and is

required for the full antiretroviral activity of IFNα both in vitro and
in vivo. Moreover, although tetherin in not required for the de-
velopment of a normal murine immune system, its absence can
exacerbate the replication and pathogenesis of a murine retrovirus.

Results
Tetherin Potently Inhibits Retroviral Replication in Vitro. Tetherin is
constitutively expressed on a few cell types (e.g., plasmacytoid
dendritic cells, plasma B cells) but is absent from many others in
mice (20). However, its expression is induced by type I IFN in a
wide range of cells (20). Because tetherin is one of many IFN-
stimulated genes (ISGs) that are possible effectors of IFN’s anti-
retroviral activity, we first determined whether and how IFNα
inhibits the replication of a murine retrovirus (Mo-MLV) in cell
culture and what role, if any, tetherin plays in the in vitro anti-
retroviral activity of IFNα. Mo-MLV replication in NIH/3T3 cells
was potently inhibited by IFNα, with yields of virus reduced by 10-
to 100-fold over 5 d of replication (Fig. 1A). Notably, tetherin was
not constitutively expressed on NIH/3T3 cells but was strongly
induced by treatment with IFNα (Fig. 1B).We generated a panel of
NIH/3T3-derived cell lines, each expressing a different level of
murine tetherin, some of which closely matched those on IFNα-
treated cells (Fig. 1C). Mo-MLV replication in these cell lines, as
measured by the levels of infectious virus in culture supernatants,
correlated inversely with the level of tetherin expression (Fig. 1 D
and E). Strikingly, Mo-MLV replication in IFNα-treated NIH/3T3
cells was similar in magnitude to that in cells that were not treated
with IFNα but expressed similar levels of tetherin (Fig. 1D and E),
suggesting that tetherin could be a major contributor to the anti-
retroviral activity of IFNα in vitro.

Generation and Characterization of Tetherin-Deficient Mice. To de-
termine whether tetherin is indeed a key effector of the anti-
retroviral action of type I IFN, we generated tetherin-deficient
mice (Fig. S1). To accommodate the possibility that tetherinmight
have some essential function in mice, a conditional knockout
(CKO) strategy was adopted, whereby sequences comprising the
majority of exon 1 (which encodes the transmembrane and the
bulk of the extracellular domain) were flanked by loxP sites (Fig.
S1A). However, tetherin-null mice, resulting from breeding teth-
erin CKO mice to mice expressing Cre under the control of
a promoter expressed in the germ line (Fig. 1 A and B), were
fertile, had no apparent physical or behavioral deficits, and were
born at the expected frequency (Fig. S1 D and E). Tetherin-
deficient mice had numbers of total splenocytes, thymocytes, and
bone marrow cells that were similar to those of WT animals
and had normal proportions of splenic CD3+, B220+, CD11b+,
and CD11c+ cells (Fig. S2A) as well as normal thymocyte subsets
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(Fig. S2B). Tetherin-deficient mice also had normal percentages
of bone marrow erythromyeloid progenitor and hematopoietic
progenitor cell populations (MP and LSK, respectively, in Fig.
S2C). Plasmacytoid dendritic (Siglec-H+) cells, which normally
express high levels of tetherin, were also found at normal fre-
quencies (Fig. S2A) but, importantly, were devoid of cell-surface
tetherin when they were harvested from tetherin-deficient donors
(Fig. S2D). Thus, the absence of tetherin appeared to be fully
compatible with the development of the major organ systems of
mice, and, in particular, no apparent perturbations of the immune
system occurred as a consequence of tetherin deletion. Impor-
tantly, tetherin-deficient cells responded similarly to WT cells
when stimulated with Toll-like receptor (TLR) 3, 7, and 9 agonists
in vitro (Fig. S3), suggesting that there was no functional im-
pairment in the activation of these cells in the absence of tetherin.

Tetherin Is Required for the Full Antiretroviral Activity of IFNα in
Vitro. Tetherin was not expressed at detectable levels on mu-
rine embryonic fibroblasts (MEFs) derived from WT or tetherin-
deficient mice (Fig. 2A), which each supported similar levels of
Mo-MLV replication in vitro (Fig. 2 B and C). Conversely,
tetherin was strongly induced in WT (but not tetherin-deficient)
MEFs when they were treated with IFNα (Fig. 2A). Notably,
IFNα potently inhibited the replication of Mo-MLV in WT

MEFs, but its antiviral efficacy was greatly reduced in tetherin-
deficient MEFs, although there was some residual antiviral ac-
tivity of IFNα in the absence of tetherin (Fig. 2 B and C). Thus,
tetherin expression was sufficient to recapitulate the effect of
IFNα on Mo-MLV replication and necessary for the full effect of
IFNα on Mo-MLV replication to be manifested in cultured cells.

Tetherin Is Constitutively Expressed on Few Cells in Vivo and Is Not
Induced by Mo-MLV Infection. Mo-MLV infection of neonatal
C57BL/6 mice gives rise to large numbers of infected cells in bone
marrow, spleen, and thymus at 8 d after infection (Fig. 3A), with
tumors (mostly of T-cell origin) becoming obvious and eventually
fatal at 100–300 d after challenge (Fig. 3B). Surprisingly, upon
Mo-MLV infection of neonates, the numbers of Mo-MLV–

infected cells did not differ inWT or tetherin-deficient littermates
at 8 d after infection (Fig. 3A). Moreover, mice succumbed toMo-
MLV–induced disease at approximately the same rate, irrespec-
tive of tetherin genotype (Fig. 3B). This finding at first suggested
that tetherin had little effect on Mo-MLV replication in vivo,
despite being an effective inhibitor in vitro (Fig. 1).
Because tetherin exhibited a clear antiretroviral activity in vitro

but not, apparently, in vivo, we next asked whether tetherin was
expressed on cells that are infected withMo-MLV inmice. In fact,
the majority of cells harvested from bone marrow of mice did not
express tetherin (Fig. S4), and 12 d of Mo-MLV infection did not
induce up-regulation of tetherin expression (Fig. 3C), despite the
fact that infectious center assays suggested that a large fraction
(∼10–100%) of splenocytes, thymocytes, and bone marrow cells
were infected with Mo-MLV at this time point (Fig. S5). Alto-
gether, these data suggested the possibility that Mo-MLV repli-
cation and pathogenesis in vivo is not affected by tetherin, at least
in part because Mo-MLV replication does not induce a robust
type I IFN response and, perhaps as a consequence, the bulk of
Mo-MLV replication occurs in cells that do not express tetherin.
This hypothesis was supported by the fact that IFNα receptor-
deficient mice developed lethal Mo-MLV–induced disease with
similar kinetics to WT mice (Fig. 3D).

Induction of Tetherin Expression Reveals Its Antiretroviral Activity in
Vivo. To determine whether tetherin could exert an antiretroviral
effect in vivo if its expression was induced by stimulating a type I
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IFN response, we treated Mo-MLV–infected mice with poly-
inosinic:polycytidylic acid [poly(I:C)], a type I IFN inducer, and
measured release of virus into plasma a short time (24 h) later.
Poly(I:C) caused up-regulation of tetherin on various cell types
(Fig. 4 A and B), including T cells, which are thought to be the
preferred target for Mo-MLV replication. Importantly, both WT
and tetherin-deficient mice responded similarly to poly(I:C)
treatment (Fig. 4 D–G) by up-regulating several activation mark-
ers, with the obvious exception of tetherin (Fig. 4C). Addition-
ally, the poly(I:C)-induced activation, including tetherin up-
regulation, depended on type I IFN signaling, as demonstrated
by the absence of cell activation in IFN (α, β, and ω) receptor 1
(IFNAR1)-deficient animals (Fig. 4 C–G). These data suggested
that, with the exception of tetherin up-regulation, the response
to poly(I:C) was unaffected in tetherin-deficient mice.
Although plasma viremia was highly variable in cohorts of Mo-

MLV–infected animals, there was no significant difference in
plasma viremia in tetherin-deficient mice compared with WT or
heterozygous littermates at 12 d after infection (Fig. 5A). How-
ever, when animals were treated with a single dose of poly(I:C)
at 12 d after infection and then measured for plasma viremia the
following day, the level of plasma viremia was significantly higher
(∼fivefold, P < 0.05) in tetherin-deficient mice compared with
WT littermates (Fig. 5B).

Tetherin-Deficient Mice Exhibit Exacerbated Murine AIDS Virus-
Induced Disease. These accumulated data indicated that tetherin
is not required for the development and function of the immune
system, but it can indeed inhibit the release and replication of
Mo-MLV in vitro and in vivo, provided that its expression is

induced in cells in which the virus is replicating. We next de-
termined whether tetherin could influence replication and the
course of disease during retroviral infection without the need for
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an intervention [e.g., poly(I:C) treatment] to stimulate its ex-
pression. To do so, we used a different MLV, termed LP-BM5,
that induces immune activation, polyclonal B-cell proliferation,
and impaired immune responses and is sometimes referred to as
the murine AIDS virus because of superficial similarities in the
aforementioned pathogenesis to that of HIV infection in humans
(22, 23). Moreover, previous studies have shown that LP-BM5
induces the expression of type I IFN in infected mouse tissues at
later time points (∼8 wk after infection) (24) Consistent with this
finding, tetherin expression was found to be up-regulated in the
splenocytes of LP-BM5–infected WT mice at 14 wk after in-
fection compared with uninfected WT controls (Fig. S6). In vitro
experiments revealed that LP-BM5 replication was inhibited by
tetherin to a similar extent as Mo-MLV replication, as expected
(Fig. 6A). Although infection of WT and tetherin-deficient mice
with LP-BM5 resulted in similar levels of plasma viremia at early
time points, measurements at later times (>8 wk) after infection,
when type I IFN is induced (24) and tetherin up-regulation is
evident (Fig. S6), showed a clear effect of tetherin on LP-BM5
replication. Specifically, viremia peaked at 9 to10 wk after in-
fection and was ∼10- to 100-fold higher in tetherin-deficient mice
compared with WT controls (Fig. 6B). Shortly thereafter, teth-
erin-deficient mice became moribund and they, along with WT
controls, were killed at 14 wk after infection. Inspection of
lymphoid tissues from age-matched uninfected WT and tetherin-
deficient mice revealed no changes in uninfected mice as a result
of the presence or absence of tetherin (Fig. 6 C–F). However, the
splenomegaly and lymphadenopathy that accompanies LP-BM5
infection was significantly exaggerated in the tetherin-deficient
mice, with up to twofold greater mean spleen and lymph node
weights compared with infected WT controls (Fig. 6 C–F).
Overall, assessment of both virological and pathologic parame-
ters revealed clearly greater viral replication and more aggressive
LP-BM5–induced disease progression in the absence of tetherin.

Discussion
These data demonstrate that tetherin inhibits the replication of
murine retroviruses both in vitro and in vivo. However, it appears
that some retroviruses (e.g., Mo-MLV) encounter tetherin rather
infrequently in vivo because its presence or absence did not affect
Mo-MLV replication or pathogenesis in vivo. Because previous
work has indicated that the in vivo replication of murine retro-
viruses is limited by adaptive immune responses (25), this finding,
along with extensive immunophenotyping, strongly suggests that
tetherin is not required for the development of a functional
adaptive immune system. Furthermore, our findings suggest that
Mo-MLV replicates in vivo without inducing a robust IFN re-
sponse and evades a molecule that would otherwise profoundly
limit its replication simply by not inducing its expression.

Many other enveloped viruses, including HIV-1 and simian
immunodeficiency virus, induce a robust type I IFN response (26,
27). As such, these viruses are likely to frequently encounter
tetherin (28, 29), and their replication is consequently inhibited.
Indeed, this appears to be the situation for LP-BM5, whose
replication and pathogenesis are attenuated by tetherin (Fig. 6).
The elevated replication of LP-BM5 in tetherin-deficient mice
could be attributable to both induction of type I IFN and in-
fection of plasma B cells (22, 30), one of the few cell types that
constitutively expresses tetherin in mice. Several viruses have
evolved to antagonize tetherin function (in the case of HIV-1
and simian immunodeficiency virus with their Vpu, Nef, and
envelope proteins) (3, 31–34), underscoring its potential role in
limiting viral replication in vivo. Overall, it appears that tetherin
has arisen in mammals primarily, and likely exclusively, as a di-
rectly acting innate protection against viral disease.

Materials and Methods
Generation of Tetherin-Deficient Mice. A targeting construct was generated
containing a Neo cassette flanked by 2 FRT sites and loxP sites flanking the
first exon of the tetherin gene (Fig. S1A). Founder mice were crossed to FLP1
transgenic mice, creating the tetherin CKO allele (Bst2tm1Bsz), then crossed to
Zp3-cre mice to delete the floxed sequence in the germ line. Mice hetero-
zygous for the deleted allele were intercrossed to generate WT (+/+), het-
erozygous (+/−), and homozygous (−/−) knockout littermates that were used
for experiments. See SI Materials and Methods for further details.

Viruses. Mo-MLV was produced by transfecting NIH/3T3 cells with the in-
fectious clone pNCS. LP-BM5 virus was harvested from infected SC-1 cells
(AIDS Research and Reference Reagent Program, National Institutes of
Health, Bethesda, MD). Viral stocks were titered by focal immunoassay. See SI
Materials and Methods for further details.
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Fig. 6. Tetherin restricts LP-BM5 MLV replication and pathogenesis in vivo.
(A) LP-BM5 replication in NIH/3T3 cells stably expressing tetherin or vector
alone, assayed as in Fig. 1A. (B) Plasma viremia, measured by focal immuno-
assay, in LP-BM5–infected mice over the course of 12 wk of infection. (C–F)
Weights of lymphoid tissues from LP-BM5–infected animals (white bars; +/+,
n = 8; −/−, n = 8) harvested at 14 wk after infection or age-matched, un-
infected animals (black bars; +/+, n = 3; −/−, n = 2). Error bars indicate 1 SE.
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Cells and In Vitro Virus Replication Assays. NIH/3T3 cell clones stably expressing
various levels of murine tetherin were generated by retroviral transduction.
MEFs were generated by using standard procedures. For in vitro replication
assays, NIH/3T3 cells or MEFs were infected with virus in the presence or
absence of IFNα, and replication was monitored by focal immunoassay. See SI
Materials and Methods for further details.

Mouse Infections.Mice were infected by i.p. injection withMo-MLV at 24–36 h
after birth or with LP-BM5 at 6–10 wk old. Infected cells in mouse tissues and
plasma viremia were measured by focal immunoassay on NIH/3T3 (Mo-MLV)
or SC-1 (LP-BM5) cells. See SI Materials and Methods for further details.

Focal Immunoassay for Quantitation of Mo-MLV and LP-BM5. NIH/3T3 or SC-1
monolayers were inoculated with serially diluted cell-culture supernatants,

plasma, or mouse cell suspensions. After 48 h, cells were fixed, and foci of
infection were detected and counted after staining with an antibody to MLV
Gag and an HRP-conjugated secondary antibody. See SI Materials and
Methods for further details.

Flow Cytometry. Adherent cells or single-cell suspensions were made from
tissues, harvested and stained with various antibodies, and analyzed with an
LSR II flow cytometer (Becton Dickinson) and FlowJo software (Tree Star). See
SI Materials and Methods for further details.
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