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Purposk. Inhibitors of B-Raf and MEK kinases hold promise for
the management of cutaneous melanomas harboring BRAF
mutations. BRAF mutations are rare in uveal melanomas (UMs),
but somatic mutations in the G protein « subunits Gaq and
Gall (encoded by GNAQ and GNA1 1, respectively) occur in a
mutually exclusive pattern in ~80% of UMs. The impact of
B-Raf and MEK inhibitors on Go-mutant UMs remains un-
known.

MerHoDps. The impact of the B-Raf inhibitor PLX4720, the
MEK inhibitor AZD6244, and the Akt inhibitor MK2206 on
UM cell lines was assessed with the use of cell viability,
proliferation, and apoptosis assays and immunoblot analy-
sis.

ResuLts. BRAF-mutant UM cells were sensitive to both
PLX4720 and AZDG6244, undergoing cell cycle arrest but not
apoptosis. UM cells with a Go-protein mutation (GNAQ or
GNA11) were mildly sensitive to AZD6244 but completely
resistant to PLX4720. In fact, PLX4720 paradoxically increased
ERK phosphorylation in Ga-mutant UM cells. The combination
of AZD6244 with PLX4720 had synergistic anticancer activity
in BRAF-mutant cells but not in Ga-mutant cells. The Akt
inhibitor MK2206 sensitized BRAF-mutant cells to both
PLX4720 and AZD6244 and sensitized Go-mutant cells to
AZDG6244 but did not overcome the resistance of the Ga-
mutant cells to PLX4720.

Concrusions. The response of UM cells to inhibition of B-Raf,
MEK, and Akt depends on their genotype. Future use of such
targeted therapies in clinical trials of UM patients will require
careful design and patient selection based on genotype to
provide personalized and effective therapy. (Invest Opbthal-
mol Vis Sci. 2011;52:7248-7255) DOI:10.1167/iovs.11-7398
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Somatic activating mutations in the RAS/RAF/MEK/ERK sig-
naling pathway are frequent in cutaneous melanomas
(CMs), with 50% to 70% of them harboring BRAF mutations
(usually the V6OOE substitution).! Mutations in RAS genes oc-
cur in approximately another 20% to 30% of CMs (most fre-
quently in NRAS) and are usually mutually exclusive with
BRAFY?%E 2-6 BRAFY°°°2 the most frequent oncogenic pro-
tein kinase mutation known, activates the MEK/ERK cascade
and represents a promising therapeutic target for melanomas
and for thyroid, colon, and ovarian carcinomas and other ma-
lignancies harboring this mutation.””~'° Kinase inhibitors tar-
geting B-Raf (in particular the V600E mutant), including
PLX4720 (Plexxikon Inc., Berkeley, CA)'' and the related
PLX4032 (vemurafenib, RG7204), are in clinical develop-
ment."? Preclinical and clinical evidence suggests that these
B-Raf inhibitors suppress ERK phosphorylation and induce cell
cycle arrest and apoptosis in BRAF"°’°“bearing CM cells,
whereas in RAS-mutant/BRAF wild-type CM cells they can
paradoxically enhance ERK phosphorylation and promote cell
proliferation through a cRafmediated mechanism.'"'>7'® In
phase 1 and 2 clinical trials of PLX4032 in patients with met-
astatic CM, complete or partial tumor regression was observed
in the majority of patients with a BRAF"*°°% tumor.'*'” In a
phase 3 trial of patients with advanced-stage CM with
BRAFV®°°"  mutations who were randomly assigned to
PLX4032 or dacarbazine, the hazard ratios for overall survival
and progression-free survival were 0.37 and 0.26, respectively,
both favoring PLX4032.?° Therefore, B-Raf inhibitors are very
promising targeted therapeutics specifically for BRAFY°?%¢
CMs and careful patient selection is crucial.'**° However, it
should be emphasized that, even in BRAF"°°°* CMs, clinical
responses with BRAF inhibitors are usually short-lived because
of the emergence of compensatory oncogenic signaling path-
Ways.21’24

Furthermore, preclinical evidence suggests that BRA
CMs are highly sensitive to MEK inhibition, whereas CMs with
a wild-type BRAF/mutant NRAS status exhibit variable and
usually lower sensitivity and those that are wild-type for both
BRAF and NRAS are uniformly resistant to MEK inhibition.?®
These data again confirm the “oncogenic addiction” of BRAF-
mutant CM cells to this activated pathway and provide another
therapeutic method for targeting it in patients with metastatic
CMs. Clinical trials of MEK inhibitors such as AZD6244 (Astra-
Zeneca, Wilmington, DE) in BRAF"°?°% tumors are ongoing.

However, in uveal melanomas (UMs), BRAFV°°°F mutations
are rare.’®~® Instead, somatic mutations in the G protein «
subunits Gaq and Gall (encoded by GNAQ and GNAII,
respectively)®” are present in a mutually exclusive pattern in
~80% of UMs. Gaq and Gall are 90% homologous and trans-
mit signals between G-protein- coupled receptors and down-
stream effectors. Their mutations occur most commonly in
exon 5, affecting codon Q209 (for both proteins)®*®>! in their
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Ras-like domain, abolishing their GTPase activity in a manner
similar to that for the NRAS?®® mutation, and resulting in a
constitutively active Ga protein that functions as a bona fide
oncogene.”*?' A second hot spot for mutations has been
discovered in exon 4, affecting codon R183 (for both pro-
teins).>' The presence of these mutations in tumors at all stages
of malignant progression suggests that they are early events in
UM.>? However, the sensitivity of Ga-mutant UM cells to the
B-Raf and MEK inhibitors currently undergoing clinical devel-
opment for the management of CM remains unknown.

We investigated the impact of B-Raf and MEK inhibition on
UM cell lines using the small molecule inhibitors PLX4720 and
AZDG6244, respectively, either as monotherapy or in combina-
tion with each other and the Akt inhibitor MK2206 (Merck,
North Wales, PA).>*"3> We found that the BRAF-mutant UM
cells behave similarly to their cutaneous counterparts, with
high sensitivity to inhibition of either B-Raf or MEK that can be
further enhanced by concurrent Akt inhibition. However, Ga-
mutant UM cells are less sensitive to MEK inhibition (but can
be further sensitized by concurrent Akt inhibition) and com-
pletely resistant to B-Raf inhibition (even in the presence of the
Akt inhibitor). In fact, the B-Raf inhibitor PLX4720 paradoxi-
cally increased ERK phosphorylation in Ga-mutant UM cells.
Our data demonstrate that the response of UM cells to the
inhibition of B-Raf and MEK is genotype dependent. Future use
of targeted therapies in clinical trials of UM patients will re-
quire careful design and patient selection based on genotype to
provide personalized and effective therapy.

MATERIALS AND METHODS

Cell Lines and Tissue Culture

The genotype of OMM1.3 and Mel202 UM cells (both GNAQ-mutant at
0209 and BRAF-wt) has been previously reported.*® The OMM1 UM
cells carry a GNAI1 Q209 mutation and are wild-type for BRAF and
GNAQ. The OCM3 (BRAF"°°°!/GNAQ-wt/GNA11-wt) UM cell line and
the A375 and M14 (both BRAF"°°%2/GNAQ-wt/GNA11-wt) CM cell
lines were also used. All cell lines examined in this study were carefully
genotyped by Sanger sequencing using a cycle sequencing kit (BigDye
Terminator v1.1; Applied Biosystems, Foster City, CA) and a genetic
analyzer (3130; Applied Biosystems) for GNAQ exons 4 and 5, GNA11
exons 4 and 5, and BRAF exon 15, and their mutation status was
confirmed (Supplementary Fig. S1, http://www.iovs.org/lookup/
suppl/doi:10.1167/iovs.11-7398/-/DCSupplemental). Overall, BRAF,
GNAQ, and GNAII mutations are mutually exclusive. All cells were
grown in DMEM/F12 (Invitrogen, Carlsbad, CA) with 100 U/mL peni-
cillin, 100 pug/mL streptomycin, and 10% FBS (Invitrogen).

MTT, Proliferation, and Apoptosis Assays

The B-Raf inhibitor PLX4720, the MEK inhibitor AZD6244, and the Akt
inhibitor MK2206 were reconstituted in dimethyl sulfoxide (DMSO)
and were stored at —20°C until use. Cells were plated in 24-well plates
in medium containing 10% FBS. Drugs were added 24 hours later, and
the cells were incubated for 96 more hours. Cell numbers were
quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT; Sigma-Aldrich, St. Louis, MO) as described previously,® and
were expressed as a percentage of the value of control wells. In
parallel experiments, the proliferation rate in cells treated with
AZDG6244 or PLX4720 was quantified by measurement of the amount of
BrdU incorporated into DNA (BrdU Cell Proliferation Assay; Calbio-
chem, San Diego, CA) according to the instructions of the manufac-
turer and as previously performed.>®

Apoptosis was detected in UM cells treated with AZDG6244 or
PLX4720 for 72 hours using the terminal dUTP nick-end labeling
(TUNEL) method with a cell death detection kit (In Situ Cell Death Kit,
Fluorescein; Roche Applied Science, Indianapolis, IN), in accordance
with the instructions of the manufacturer, and were run on a flow
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cytometer (BD FACSCanto II; BD Biosciences, San Jose, CA). Flow
cytometry software (BD FACSDiva; BD Biosciences) was used to ana-
lyze the data.

As a positive control for the induction of apoptosis, treatment with
bortezomib (100 nM for 72 hours) was used. The pan-caspase inhibitor
ZVAD-FMK was purchased from Calbiochem and used at 20 uM.

Immunoblot Analysis

Immunoblot analysis was performed as previously described.® The
following antibodies were purchased from Cell Signaling (Danvers,
MA): phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) rabbit mono-
clonal antibody; p27 Kipl (§X53G8.5) mouse monoclonal antibody;
cyclin D1 (92G2) rabbit monoclonal antibody; phospho-Rb (Ser780)
rabbit monoclonal antibody; phospho-Akt (Ser473) (D9E) rabbit mono-
clonal antibody; phospho-Akt (Thr308) (C31E5E) rabbit monoclonal
antibody; and Akt (pan) (C67E7) rabbit monoclonal antibody. The
anti-B-actin clone AC-15 mouse monoclonal antibody was from Sigma-
Aldrich.

Statistical Analysis

To evaluate the differences across various experimental conditions in
the viability experiments, one-way analysis of variance was performed,
and post hoc tests (Duncan and Dunnett’s T3 tests) served to evaluate
differences between pairs of experimental conditions (e.g., vehicle-
treated cells vs. cells treated with each concentration of each agent).
The additive or synergistic nature of the interaction between agents
used in combination was evaluated by isobologram analysis using
dose-effect analyzer software (Calcusyn; Biosoft, Ferguson, MO). In all
analyses, P < 0.05 was considered statistically significant.

RESULTS

Impact of MEK Inhibition on UM Cell Lines
Depends on Their Genotype

We tested the impact of the MEK inhibitor AZD6244 on UM
cell lines using MTT assay and immunoblotting with the BRAF-
mutant CM cell lines A375 and M14 serving as controls. We
found that the BRAF-mutant OCM3 cells were very sensitive to
AZDG6244, similar to their CM counterparts (Fig. 1A). The
Go-mutant UM cell lines were less sensitive (higher IC,,,) than
the BRAF-mutant cells but still responded with growth arrest
(Fig. 1A).

Immunoblot analysis revealed that AZD6244 decreased lev-
els of phosphorylated ERK, decreased levels of cyclin D1,
increased levels of the cyclin-dependent kinase inhibitor p27,
and decreased levels of phosphorylated Rb in both BRAF-
mutant (OCM3) and Ga-mutant (OMM1.3) UM cell lines (Fig.
1B). All these changes are consistent with and probably medi-
ate the growth-suppressive effect of AZD6244, as has been
previously reported for BRAF-mutant CM cell lines.*®

Impact of B-Raf Inhibition on UM Cell Lines
Depends on Their Genotype

We tested the impact of the B-Raf inhibitor PLX4720 on UM
cell lines using cell survival assays and immunoblot analysis
with the BRAF-mutant CM cell lines A375 and M14 serving as
controls. We found that the BRAF-mutant OCM3 cells were
sensitive to PLX4720, similar to their CM counterparts (Fig. 2A).
However, the Ga-mutant UM cell lines were resistant to the
anticancer effect of PLX4720, and, in fact, OMM1.3 cells even
exhibited a paradoxical mild increase in proliferation (Fig. 2A).
This stimulatory effect of PLX4720 occurred both in the pres-
ence of 10% FBS and in serum-free conditions.

Immunoblot analysis revealed that PLX4720 decreased lev-
els of phosphorylated ERK, decreased levels of cyclin D1,
increased levels of p27, and decreased levels of phosphory-
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lated Rb only in BRAF-mutant (OCM3) cells. On the contrary,
in Ga-mutant (OMM1.3) UM cells, PLX4720 induced a para-
doxical increase in phosphorylated ERK and an early increase
in cyclin D1 and pRb levels and did not stimulate p27 levels
(Fig. 2B).

Collectively, our findings suggest that the B-Raf inhibitor
PLX4720 does not exert anticancer activity against Ga-mutant
melanoma cell lines (in fact, it can stimulate ERK signaling).

BrdU Incorporation

Using the BrdU cell proliferation assay, we studied the impact
of AZD6244 and PLX4720 on UM DNA synthesis (S phase).
Overall, we obtained parallel results to our MTT data. We
found that the BRAF-mutant OCM3 cells were very sensitive to
AZDG6244, whereas OMM1.3 cells still responded with de-
creased DNA synthesis (but to a lesser degree; Fig. 3A). We also
found that OCM3 cells were sensitive to PLX4720. However,
the Ga-mutant OMM1.3 cells were resistant to the anticancer
effect of PLX4720 (Fig. 3A).

TUNEL Assay

UM cells treated with AZD6244 or PLX4720 for 72 hours were
tested for apoptosis using the terminal dUTP nick-end labeling

p27, and decreased levels of phos-
phorylated Rb in both BRAF-mutant
OMM 1.3 (OCM3) and Go-mutant (OMM1.3)
UM cell lines.

(TUNEL) assay. We did not detect any increase in TUNEL
labeling in OCM3 or OMM1.3 cells treated with AZD6244 and
PLX4720, suggesting lack of apoptosis (Fig. 3B). The protea-
some inhibitor bortezomib (100 nM for 72 hours) served as a
positive control for the induction of apoptosis.

Collectively, these data suggest that the mechanism of the
observed activity is by growth arrest, not apoptosis. In support,
we did not detect any cleavage of caspase-3 or PARP in our
immunoblotting analysis of UM cells treated with AZD6244 or
PLX4720 for 72 hours (not shown), and the anticancer activity
of AZD6244 and PLX4720 was not attenuated by pretreatment
with the pan-caspase inhibitor ZVAD-FMK, indicating that ap-
optosis is not substantially involved in their effects (Supple-
mentary Fig. S2, http://www.iovs.org/lookup/suppl/doi:10.
1167/iovs.11-7398/-/DCSupplemental).

Impact of Combined B-Raf and MEK Inhibition
on BRAF-Mutant and Ga-Mutant UM Cells

We next assessed whether combined B-Raf and MEK inhibition
would achieve an enhanced anticancer activity. We found that,
in BRAF-mutant OCM3 cells, the combination of sublethal
concentrations of PLX4720 and AZD6244 resulted in synergis-
tic anticancer activity (Fig. 4A). However, in Go-mutant
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OMM1.3 cells, the addition of AZD6244 could not overcome
their resistance to PLX4720 (Fig. 4B). Therefore, the combina-
tion of B-Raf and MEK inhibition appears to be a promising
approach only for BRAF-mutant cells.

Impact of B-Raf and MEK Inhibition on the Akt
Pathway in BRAF-Mutant and Ga-Mutant UM Cells

We next investigated the impact of B-Raf and MEK inhibition
on the Akt pathway in BRAF"°?? and Ga-mutant UM cells. We
found that both AZDG6244 and PLX4720 induced an early
(within 2-6 hours of exposure) increase in the levels of phos-
phorylated Akt (both Ser473 and Thr308) in both BRAF-mutant
(OCM3) and Ga-mutant (OMM1.3) cells (Fig. 5A). Eventually,
and with prolonged drug exposure, the phosphorylation of
Akt returned to baseline in Go-mutant OMMI1.3 cells and
decreased even below baseline levels in BRAF-mutant OCM3
cells (Fig. 5A).

We hypothesized that the early upregulation of pAkt caused
by B-Raf or MEK inhibition might attenuate the anticancer
activity of AZD6244, PLX4720, or both, and, therefore, con-
current inhibition of the Akt pathway might enhance the anti-
cancer activity of B-Raf and MEK inhibition. To address this
hypothesis, we evaluated the effect of the Akt inhibitor
MK2206 in combination with AZD6244 or PLX4720. We found
that the Akt inhibitor MK2206 potently enhanced the antican-
cer activity of the MEK inhibitor (Fig. 5B) and the B-Raf inhib-

ocm3

itor (not shown) against the BRAF-mutant OCM3 cells.
MK2206 also enhanced the anticancer activity of the MEK
inhibitor against the Ga-mutant UM cells but did not overcome
the resistance of the Ga-mutant UM cells to the B-Raf inhibitor
(Figs. 6A, 6B).

DISCUSSION

Recent advances in our understanding of the molecular patho-
physiology of cancer have allowed for rational development of
targeted therapies designed to interrupt molecular pathways
critical for cell growth and survival.>” Kinases represent such
“druggable” targets and an area of very active clinical research
in oncology. Various malignancies that exhibit “oncogenic ad-
diction” to select kinase pathways respond clinically to treat-
ment with respective kinase inhibitors (e.g., imatinib in
chronic myelogenous leukemia and gastrointestinal stromal
tumors, erlotinib in EGFR-mutant non-small cell lung carci-
noma, and others).>®~#! Because of the biological heterogene-
ity and interindividual variation in human cancers, molecular
profiling of each patient’s tumor is necessary to guide selection
of the appropriate targeted therapy for the patient most likely
to benefit from it.>” The goal of this personalized approach is
to avoid exposing patients to drugs from which they are un-
likely to benefit, thus sparing them unnecessary toxicity and
cost. For example, responses of non-small cell lung carcino-
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the levels of phosphorylated Akt (at

residues Ser473 and Thr308) in both 140 -
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prolonged drug exposure, the phos-
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in BRAF-mutant OCM3 cells. (B) The 9 80 =i=VoRich

Akt inhibitor MK2206 potently en- %5 60 - —A—MK2206 1 microM

hanced the anticancer activity of the <o

MEK inhibitor AZD6244 against the 740 1

BRAF-mutant OCM3 cells. The cells

were treated with drugs at the indi- 20 4

cated concentrations for 96 hours in

medium containing 10% FBS. Cell T T J

number was quantified with the MTT 0 10 20 30

assay and expressed as a percentage
of control wells (average *= SD). B

the MEK/ERK pathway and cell proliferation. CMs harboring
BRAF"°?°F mutations exhibit increased sensitivity to inhibitors
of MEK*> and B-Raf.'*"*° We found similar sensitivity to the
MEK and B-Raf inhibitors in BRAF"°°° UM cells, suggesting
that such targeted therapies may represent a promising option
for this subset of UM patients as well. In agreement with their
CM counterparts,'>?> BRAF"°°?® UM cells treated with
AZDG6244 or PLX4720 exhibited decreased levels of phosphor-
ylated ERK, decreased levels of cyclin D1, increased levels of
the cyclin-dependent kinase inhibitor p27, and decreased lev-
els of phosphorylated Rb. All these changes are consistent with
and probably mediate the growth-suppressive effect (inhibition
of cell proliferation) of MEK or B-Raf inhibition.
However, BRAFV°?°F mutations are rare in UMs.
stead, an equivalent oncogenic event is frequently present in
the form of mutually exclusive somatic mutations in the het-

26-28 1

AZD6244 (nM)

erotrimeric G protein a-subunit GNAQ (~40%-50% of primary
UMs)?03243:44 o1 jts related GNA11 (~30% of primary UMs).>!
These mutations apparently occur early in UM carcinogene-
sis,>? contrary to other genetic events associated with in-
creased metastatic potential such as the recently described
BRCAl-associated protein 1 (BAP1) mutations.*> The
GNAQ??? and GNA119°°° mutations affect the Raslike do-
main of these G proteins, specifically corresponding to
NRAS?®'® abolishing GTPase activity, and resulting in consti-
tutive activation. In this study, we examined the sensitivity of
GNAQ-mutant and GNAII-mutant UM cell lines to MEK and
B-Raf inhibition. We found that Ga-mutant UM cells are sensi-
tive to MEK inhibition (exhibiting decreased levels of pERK,
cyclin D1, and pRb, increased levels of p27, and decreased
proliferation) but to a lower degree (higher IC,) than BRAF-
mutant UM and CM cells. In direct contrast to BRAF-mutant



7254 Mitsiades et al.

120 9 120 4
100 4 100 4
[3) o
S 801 5 50+
c c
S o S 6o
Y Y=
2 40 4 °° 40 1
>N >
20 4 20 4
04 04
> N N > N
A Py O&»P*p@&&o&wd_& B g o"* *9‘9@»6"0@“’\_)_&
C P E T F VR
& 5 & >
&¥ e

FIGURE 6. Akt inhibition enhances the anticancer activity of MEK, but
not B-Raf, inhibition in Ga-mutant UM cells. A sublethal concentration
of the Akt inhibitor MK2206 (1 uM) potently enhanced the anticancer
activity of the MEK inhibitor AZD6244 (1 uM) against the Ga-mutant
Mel202 cells (A) and OMM1.3 cells (B). However, MK2206 (1 uM) did
not sensitize them to PLX4720 (1 uM). The cells were treated with
drugs for 96 hours in medium containing 10% FBS. Cell number was
quantified with the MTT assay and expressed as a percentage of
control wells (average * SD).

UM and CM cells, Ga-mutant UM cells were resistant to the
anticancer effect of the B-Raf inhibitor PLX4720 and, in fact,
exhibited a paradoxical increase in pERK signaling.

These findings emphasize the need for a personalized ap-
proach to the use of targeted therapies in patients with UM
because the Ga-mutant activates the ERK pathway in a manner
that cannot be targeted, thus far, by PLX4720, at least when
used as a monotherapy. Therefore, new therapeutic ap-
proaches are needed for Ga-mutant tumors. The paradoxical
activation of the ERK pathway in Ga-mutant UM cells by
PLX4720 parallels the similar behavior of NRAS-mutant and
other BRAF wild-type CM cell lines.'>'®'® Collectively, these
data highlight the importance of choosing the appropriate,
personalized targeted therapy for each patient, not only to
avoid unnecessary toxicity to normal tissues but also because
an inappropriate targeted therapy can enhance the prolifera-
tion rate and growth of the cancer cells harboring the wrong
genotype, with detrimental effects. Tumor genotyping should
be a prerequisite for enrollment of UM patients (and probably
all patients) in clinical trials of targeted therapies.'®

In view of the resistance of Ga-mutant UM cells to PLX4720,
we investigated whether combination of the B-Raf inhibitor
with MEK or Akt inhibition would restore sensitivity. Unfortu-
nately, in Ga-mutant UM cells, the addition of the MEK inhib-
itor AZD6244 or the Akt inhibitor MK2206 did not restore
sensitivity to PLX4720. On the contrary, in BRAF-mutant cells,
combined B-Raf and MEK inhibition resulted in synergistic
anticancer activity. Furthermore, the Akt inhibitor MK2206
enhanced the anticancer activity of both the B-Raf inhibitor and
the MEK inhibitor against the BRAF-mutant UM cells and the
anticancer activity of the MEK inhibitor against the Ga-mutant
UM cells. This finding is in agreement with the early upregu-
lation of phosphorylated Akt that we observed on MEK or B-Raf
inhibition in our models and with reports of the synergistic
activity of AZD6244 in combination with the inhibition of Akt
in BRAF"°°°% cutaneous melanoma®® and lung carcinoma®’
cell lines. Moreover, in UM cells, cotreatment with the PI3K
inhibitor LY294003, in combination with the MEK inhibitor
U0126 or with the B-Raf inhibitor BAY43-9006, has been
reported to result in more potent inhibition of cell prolifera-
tion.*® These data highlight the combined inhibition of MEK
and Akt pathways as a rationally designed targeted therapeutic
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approach for Ga-mutant UMs, that deserves investigation in a
clinical trial.

In conclusion, we report that the Ga mutations, present in
the majority of UMs, are functionally similar to the NRAS
mutations seen in CMs in that they are associated with lower
sensitivity to MEK inhibition and complete resistance to the
anticancer activity of the B-Raf inhibitor PLX4720. Combined
inhibition of MEK and Akt results in synergistic anticancer
activity and represents a promising targeted therapeutic ap-
proach for Go-mutant UMs. Our findings emphasize the impor-
tance of a personalized, genotype-based approach to the use of
targeted therapies in clinical trials of patients with UM.
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