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Zinc is concentrated in the hippocampus, particularly in the mossy
fiber axons of the dentate gyrus, and has been hypothesized to be
important in neurodegeneration and epilepsy. Previous studies
have suggested that activity-dependent release of zinc from reorganized
mossy fibers leads to collapse of granule-cell inhibition. Synaptically
released zinc has been proposed to depress the function of the new

 

“epileptic” GABA

 

A

 

 receptors, which have subunits that are zinc-
sensitive. Recent experiments by Molnar and Nadler have replicated
the previous data, and further tested this hypothesis. Their work
suggests that activated mossy fibers in hippocampal slices do not
release adequate zinc to depress GABA

 

A

 

 receptor function at
nearby inhibitory synapses. These studies point to the complexity of
this hypothesis, particularly in regard to zinc release in vitro versus
in vivo and the diffusion of zinc in the extracellular space.

 

Introduction

 

he observation that zinc (Zn

 

2

 

�

 

) is present at discrete sites
in the nervous system, and that it may influence specific

physiological mechanisms, has led to interesting speculations
on its role in neural function and neurological disorders. Be-
cause zinc is highly concentrated in the hippocampus (1), par-
ticularly in the mossy fibers of the dentate gyrus, it has been
proposed to play a role in hippocampal processing.

In vitro studies suggest that zinc modulates some of the
receptors that participate in synaptic transmission (2). A series
of reports have suggested that zinc depresses specific GABA

 

A

 

receptors in dentate granule cells from epileptic tissue, but not
from normal tissue (3–5). This finding is of interest because it
represents a potential mechanism of activity-dependent de-
crease in inhibition, which could contribute to the generation
of seizures in the dentate gyrus.

T

 

Recently, Molnar and Nadler (6) replicated the zinc-in-
duced modulation of GABA

 

A

 

-receptor function using exoge-
nous zinc in solutions without polyvalent anions, and then
further assessed the impact of activity-dependent zinc release
on inhibition in the dentate gyrus. Their results suggest that
strong electrical activation of mossy fibers in hippocampal
slices bathed with normal medium does not induce a measur-
able decrease in GABA

 

A

 

-receptor-mediated inhibition. This
article reviews the background on zinc and the hippocampus,
and discusses the physiological components of the zinc-disin-
hibition hypothesis. It seems clear, however, that additional
studies will be needed to evaluate whether the hypothesis re-
mains tenable, and whether it represents an important mecha-
nism of epileptogenesis.

 

The Distribution of Zinc in the Nervous System

 

Zinc is present in many areas of the nervous system, and in
particular is concentrated in specific sites of the hippocampus
(1). The use of the Timm stain, which serves as a marker of
heavy metals including zinc, has facilitated analyses of the dis-
tribution of the zinc-rich axons in structures such as the hip-
pocampus. The zinc in the mossy fibers of the dentate gyrus,
which are the axons of the granule cells, has attracted the at-
tention of many epileptologists. Several studies have suggested
that zinc is released from the mossy fibers, particularly with in-
tense electrical activity, as occurs during repeated seizures (7–
12). Thus, the question of how synaptically released zinc
might alter neural function is an interesting issue, particularly
because zinc has been hypothesized to be neurotoxic at high
concentrations, and zinc-containing pathways undergo synap-
tic reorganization in temporal lobe epilepsy.

 

Neurodegeneration and Zinc

 

Release of zinc during intense synaptic excitation has been hy-
pothesized to induce neurodegeneration (13,14). Zinc is
present with glutamate in synaptic vesicles, but it has not been
found with GABA. Several lines of evidence suggest that co-re-
lease of zinc and glutamate during excessive activity of excita-
tory synapses leads to selective loss of neurons that have been
shown to accumulate zinc. Although somewhat peripheral to
the specific issue under consideration here, an important ques-
tion is also whether zinc contributes to neuronal death after re-
peated seizures.
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Modulation of Synaptic Receptors by Zinc

 

In vitro experiments, using either isolated neurons or brain-
slice preparations, have shown that zinc can have a myriad of
effects on both excitatory and inhibitory synapses and on sev-
eral neuromodulatory systems. The effect of zinc on different
types of glutamate and GABA receptors has attracted a great
deal of attention in the last few years. Modulation of AMPA,
NMDA, and GABA

 

A

 

 receptors by zinc has been used to char-
acterize their subunit composition (2). For example, zinc has
been proposed to augment glutamate-receptor function via a
reduction of desensitization of AMPA receptors (15). More
relevant to the present issue, however, is the idea that the sub-
unit composition of GABA

 

A

 

 receptors determines the zinc
sensitivity (2,16).

 

The Hypothesis of Zinc-induced Collapse of 
Inhibition and Epilepsy

 

Zinc and GABA Receptors

 

Recent interest has been directed at the hypothesis that zinc,
co-released with glutamate from mossy fiber terminals after
synaptic reorganization, leads to a zinc-induced collapse of
GABA-mediated inhibition of dentate granule cells during
chronic epilepsy (3). This hypothesis provides a mechanism of
activity-dependent disinhibition, which is a means by which
seizure activity may be initiated or spread. If intense mossy fi-
ber activation results in the release of large amounts of
glutamate and zinc in a short period of time, then the zinc
may diffuse from the mossy fiber synapse to block nearby
GABAergic synapses (Fig. 1). This mechanism might be par-
ticularly effective at disinhibiting the dentate gyrus in chroni-

 

cally epileptic tissue, because zinc-containing mossy fibers of
the dentate granule cells have been observed to sprout dense
axon collaterals that return to the inner molecular layer of the
dentate gyrus in both epileptic humans (17–20) and animals
(21–24). If the sprouted mossy fibers synapse on the dendrites
of either granule cells or interneurons, robust granule cell acti-
vation would cause the sprouted mossy fibers to release zinc
that could block local GABA synapses that mediate feedfor-
ward inhibition, thus disinhibiting the dentate network.

Experiments by Buhl et al. (3) in hippocampal slices from
kindled rats and by Gibbs et al. (4) in isolated dentate granule
cells from pilocarpine-treated rats with spontaneous seizures
have supported this hypothesis. These studies demonstrated
that bath application of zinc depresses inhibitory postsynaptic
currents (IPSCs) and responses to exogenous GABA, respec-
tively. Further, the subunit composition of GABA

 

A

 

 receptors
on granule cells in the dentate gyrus was demonstrated to be
primarily insensitive to zinc in normal tissue, but to be pre-
dominantly zinc-sensitive in epileptic tissue (4,5,25,26). Thus,
the zinc-mediated disinhibition of the dentate gyrus would be
amplified in epileptic tissue both by the presence of a local
source of zinc (the sprouted mossy fibers) and by the presence
of zinc-sensitive GABA

 

A

 

 receptors.

 

Zinc-Induced Collapse of Inhibition and
Recurrent Excitation

 

Coulter et al. (25,26) elaborated on the hypothesis of a zinc-
induced collapse of inhibition by postulating that the activity-
dependent reduction of inhibition might also increase the ef-
fectiveness of new recurrent excitatory circuits arising from
mossy fiber sprouting (27). Several studies have provided con-
verging evidence that depression of GABA

 

A

 

-receptor-medi-

FIGURE 1 Hypothesis of zinc-induced
collapse of inhibition after mossy fiber reor-
ganization. In control dentate granule cells
(DGCs), the GABA receptors (GABARs)
are insensitive to zinc (left). In DGCs
from tissue of animals or humans with
temporal lobe epilepsy, the subsynaptic
GABARs are hypothetically altered and
inhibition is enhanced (right). One hy-
pothetical mechanism for the altered in-
hibition is an epilepsy-associated change
in the subunit composition of the
GABARs, which results in new receptors
that are sensitive to zinc. The reorganized
mossy fiber (MF) terminals release zinc
that can hypothetically block the new
GABARs, particularly during intense ac-
tivity (i.e., seizures). Modified with per-
mission from Coulter (26).



 

68 Basic Science

 

ated inhibition “unmasks” the recurrent excitatory circuits as-
sociated with mossy fiber sprouting (28–32). This concept
derives from the observation that GABA

 

A

 

-receptor blockers
reveal excitatory synaptic events and can induce epileptiform
activity in preparations with mossy fiber sprouting, yet have
comparatively little effect on normal tissue. This in turn is
based on research on the local synaptic circuits of CA3 pyra-
midal cells from normal animals (33–36), which suggest that
GABA-mediated inhibition essentially shunts the effects of re-
current excitation. Elevation of extracellular potassium, which
secondarily also depresses GABA

 

A

 

-mediated inhibition, is pos-
sibly even more effective at augmenting the effects of the new
recurrent excitatory circuits (31,32,37,38). Therefore, the hy-
pothetical zinc-induced depression of inhibition would possi-
bly augment the functional expression of these new excitatory
circuits.

 

Recent Experiments Testing the Hypothesis

 

Molnar and Nadler (6) have tested the effect of zinc released
from sprouted mossy fibers on granule-cell GABA

 

A

 

 receptors
in the pilocarpine model of temporal lobe epilepsy. In agree-
ment with prior studies, exogenously applied zinc depressed
GABA

 

A

 

-receptor-mediated currents in granule cells. The au-
thors found that 200 

 

�

 

M zinc reduced the amplitude of mus-
cimol-induced currents applied to the proximal portion of the
granule cell dendrite, and also reduced the mean amplitude
and frequency of miniature inhibitory postsynaptic currents
(mIPSCs). Thus, the authors independently corroborated ear-
lier findings concerning the effects of zinc on GABA

 

A

 

-recep-
tor-mediated currents. However, this effect depended heavily
on removal of polyvalent anions from the superfusion me-
dium, and repetitive stimulation of the mossy fibers did not al-
ter the currents evoked by photolysis of caged GABA on the
proximal dendrites of the granule cells. In the Discussion,
Molnar and Nadler (6) reported that they had replicated the
results of Vogt et al. (39) in which electrical stimulation de-
pressed the NMDA-receptor-mediated component of the
mossy fiber synaptic response recorded in the CA3 area, which
is considered to be a consequence of zinc blockade of the
NMDA receptor. In a subsequent paper, Molnar and Nadler
(40) found that calcium disodium EDTA, a high affinity
membrane impermeant zinc chelator, significantly increased
the size of the NMDA component of the recurrent mossy fiber
EPSC. This treatment, however, did not significantly alter the
non-NMDA receptor-mediated component of the recurrent
mossy fiber EPSC, nor did it alter the NMDA-receptor-medi-
ated component of the perforant path EPSC. Molnar and Na-
dler (6, 40) concluded that the inability of mossy fiber stimu-
lation to diminish the response to photolysis of caged GABA
did not result from a failure of the stimulation to release zinc.

 

Their recent study (40) suggests that release of zinc from
sprouted mossy fibers depresses the NMDA-mediated compo-
nent of the recurrent excitation from mossy fibers. Thus, Mol-
nar and Nadler (40) propose that zinc from sprouted mossy fi-
bers may depress seizures in the dentate gyrus.

As outlined by Molnar and Nadler (6), the hypothesis
that zinc release from mossy fiber terminals depresses GABA

 

A

 

receptors requires that zinc diffuse from the mossy fiber syn-
apse at an adequate concentration to depress the activation of
GABA

 

A

 

 receptors at adjacent but different synapses. These au-
thors emphasize that at least two mechanisms serve as impedi-
ments to the diffusion of zinc from the synaptic cleft of the
mossy fibers to the GABA

 

A

 

 receptors: (1) zinc transporters on
the surface of the mossy fiber terminal, and (2) the presence of
polyvalent anions in the medium that bind zinc. Thus, Mol-
nar and Nadler (6) suggest that zinc is bound to molecules
that essentially make it unavailable for regulating GABA

 

A

 

 re-
ceptors distant from the synaptic site.

Molnar and Nadler (6) provide at least two limitations to
their experiments. First, they did not activate the entire recur-
rent excitatory pathway from the mossy fibers back to the
granule cells, as might be expected to occur during an electro-
graphic seizure in an intact animal. However, electrical stimu-
lation of the mossy fibers has been shown in several studies
(29,31,41) to evoke excitatory synaptic postsynaptic potentials
and currents in granule cells. The second possible limitation is
that the laser-evoked photolysis of caged GABA would activate
both synaptic and extrasynaptic GABA

 

A

 

 receptors. Although
this latter methodological problem is an issue, some of the pre-
vious studies that led to the hypothesis used bath application
of GABA, which has the same limitation.

A final limitation relates to the amount of zinc that can be
released in brain slice preparations. The preparation of brain
slices causes loss of zinc, and low temperature depresses the
synaptic release of the remainder of the zinc (42). Most of the
experiments of Molnar and Nadler (6) were performed at
room temperature, although some were conducted at 33

 

�

 

C.
Molnar and Nadler (6) also attempted to replenish any zinc
that may have been lost during slice preparation; nonetheless,
it is possible that the amount of zinc released in their stimula-
tion experiments was below what occurs in the intact brain.

 

Conclusions

 

The experiments of Molnar and Nadler (6) emphasize the po-
tential complexity surrounding the hypothesis that zinc mod-
ulates GABAergic synapses under physiological or pathophys-
iological conditions. The critical question addressed in the
work of Molnar and Nadler (6) is whether zinc is actually free
in solution to alter the properties of the GABA

 

A

 

 receptors that
are present at different synapses. Several studies have sug-
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gested that the sprouted mossy fibers synapse on GABAergic
interneurons (3,29,43,44). Therefore, another important issue
is whether zinc induces a collapse of inhibition onto inhibi-
tory interneurons that may be zinc sensitive (45), which
might counteract the proposed effect on granule cells. Al-
though zinc is present in many neurons, the highest concen-
tration is in the hippocampus, and particularly the mossy fi-
bers. Thus, the present hypothesis is directed primarily at the
dentate gyrus, which may not be uniquely critical for epilep-
togenesis and seizures. The hypothesis implies that release of
zinc depends on powerful high-frequency activation of the
mossy fibers, so if this mechanism is viable, it may be impor-
tant at augmenting the seizure rather than actually generating
it. The recent work of Molnar and Nadler (40), however, sug-
gests that zinc depresses the NMDA-receptor component of
recurrent excitation, and may thus reduce seizure activity in
the dentate gyrus.

The hypothesis of zinc-induced collapse of inhibition in
the dentate gyrus remains an interesting and potentially im-
portant issue for epilepsy researchers. Future work will be re-
quired to determine whether the hypothesis should be rejected
on the basis of the results presented by Molnar and Nadler (6),
or whether these recent data represent a “false negative” re-
garding an important mechanism for temporal lobe epilepsy.
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