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Abstract
The objective of identifying transcriptional regulatory networks is to provide insights as to what
governs an organism’s long term response to external stimuli. We explore the coupling of the
living cell array (LCA), a novel microfluidics device which utilizes fluorescence levels as a
surrogate for transcription factor activity with reverse Euler deconvolution (RED) a computational
technique proposed in this work to decipher the dynamics of the interactions. It is hypothesized
that these two methods will allow us to first assess the underlying network architecture associated
with the transcription factor network as well as specific mechanistic consequences of transcription
factor activation such as receptor dimerization or tolerance.

The overall approach identifies evidence of time-lagged response which may be indicative of
mechanisms such as receptor dimerization, tolerance mechanisms which are evidence of various
receptor mediated dynamics, and feedback loops which regulate the response of an organism to
changing environmental conditions. Furthermore, through the exploration of multiple network
architectures, we were able to obtain insights as to the role each transcription factor plays in the
overall response and their overall redundancy in the organism’s response to external perturbations.
Thus, the LCA along with the proposed analysis technique is a valuable tool for identifying the
possible architectures and mechanisms underlying the transcriptional response.
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1. Introduction
Transcription factors are proteins representing an important mediator in controlling the
levels of mRNA. When activated, these transcription factors bind to the upstream regions of
DNA and cause the up/down regulation of mRNA production. The challenges which arise in
building models that describe transcription factor activity (TFA) and their interactions come
from the fact that the level of TFA need not correlate with the amount of the transcription
factor present due requirements for activation such as phosphorylation or dimerization
(Samet et al., 2002) and post-translational modifications (Tootle and Rebay, 2005).
Furthermore, the fact that functional binding sites exist on the promoter of transcription
factors suggests that these factors are involved in complex cross-regulatory interactions
(Kyrmizi et al., 2006; Nelson et al., 2004).
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To identify the interactions between transcription factors (TF) and their targets,
experimental techniques such as transcription factor prediction or Chip–chip experiments
(Lee et al., 2002) have been developed. These techniques focus primarily upon the genomic
sequences to identify which transcription factors interact with the upstream regions of
various genes. Computational methods, on the other hand, such as Boolean networks
(Shmulevich et al., 2002), Petri-nets (Goss and Peccoud, 1998) combine both transcription
factor prediction and mRNA expression levels (Segal et al., 2003) in an attempt to identify
network architectures from gene expression. The methods that combine genomic sequence
and gene expression information make the implicit assumption that the activity of a
transcription factor, i.e., its potential for impacting gene regulation, is associated with the
levels of the corresponding mRNA. However, it is well known that this need not be the case
as best exemplified by the activity models proposed for the NFkB family of transcription
factors (Hoffmann et al., 2002). The computational prediction of transcription factor
activities is an active area of research and a number of very promising methodologies have
already been proposed for the in silico prediction of TFA based on transcriptional data
(Boscolo et al., 2004; Boulesteix and Strimmer, 2005; Kao et al., 2004a; Liao et al., 2003;
Tran et al., 2005).

The living cell array (LCA) (King et al., 2007, 2008) presents a unique experimental
platform that allows for the direct estimation of the activity of a transcription factor. Rather
than focusing upon the binding of transcription factors, or mRNA expression changes, it
utilizes fluorescent reporters that respond to the levels of active transcription factors, via
specially designed plasmids utilizing known transcription factor binding motifs. Given the
novel nature of its experimental design, the LCA offers the opportunity to decipher
mechanisms driving the cross-activation of assemblies of transcription factors. Furthermore,
owing to the design of the microfludics device, one can simultaneously obtain the levels of
TFA under multiple stimuli with high temporal resolution. This greatly improves our ability
to decipher the interactions between the different transcription factors because we are no
longer constrained by limitations in the data, where the number of genes measured is much
greater than the number of conditions or time points in which they are measured as in the
case where transcriptional networks were reconstructed from microarray data (Somorjai et
al., 2003).

In this paper, we propose reverse Euler decomposition (RED) as a computational framework
enabling us to take advantage of the benefits offered by the LCA. Combining this
computational framework along with the experimental system of the LCA, it is possible to
not only isolate TF interactions but also to quantify numerically, the evidence of nonlinear
phenomena that are present in biological systems (Hemberg and Barahona, 2007).
Identifying these non-linear interactions is important because they provide evidence of
specific mechanistic effects that govern transcriptional activation. We focus primarily upon
a set of transcription factors known to play a role in inflammation, and we hypothesize that
it is possible to de-convolve the aggregate TFA responses and we will demonstrate the
consistency between what is currently known about these transcription factors and our
predictions.

2. Methods
2.1. The LCA

The LCA is a microfluidics device which utilizes cells transfected with reporter plasmids.
These reporter plasmids comprise of an unstable green fluorescent protein (GFP), a minimal
promoter, and four repeats of a transcription factor’s consensus sequence (Wieder et al.,
2005). Therefore, when a transcription factor is in its active state, it binds to the plasmid
thereby causing the synthesis of an unstable GFP (Thompson et al., 2004b). In this system,

Yang et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2011 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the fluorescence levels act as a surrogate for the amount of activated transcription factor
present within the system. Due to the artificial construction of these plasmids, the
fluorescence level of a given reporter should be determined only through the activated level
of its associated transcription factor. However, it was found that under multiple stimulation
profiles, there was a significant level of cross talk. We hypothesize that such cross-talk is
due to interactions between the different transcription factors i.e., the activation of
transcription factor A can cause the up/down regulation in the activity of transcription factor
B. Guided by the interest in hepatic inflammation, the reporter cell lines were designed to
probe the dynamics of transcription factors associated with inflammation (Thompson et al.,
2004a). Appropriate soluble stimuli were designed that stimulate the dynamic cellular
microenvironment and would enable the systematic characterization of the cellular
responses. Specifically, the NFκβ transcription factor was induced by TNF-α, AP-1 induced
by IL-1, STAT3 induced by IL-6, ISRE induced by INF-γ, GRE induced by
Dexamethasone, Table 1.

2.2. Deconvolution of network interactions
The construction of the LCA experiment allows us to monitor the temporal dynamics of a
system of TFs as they respond to a continuous infusion of soluble signals designed to
activate specific TFs. In a hypothetical scenario only one factor should be activated for a
given infusion of its corresponding activation signal. However, due to the cross-talk between
TFs indirect interactions emerge which manifest themselves through the coordinated
activation of an ensemble of factors. To decipher the emerging dynamic of the network of
interacting TFs we need to first define an appropriate model for the dynamics of the system.

In its most general form, the dynamics of any dynamical system can be described as:

(1)

where NTF denotes the total number of TFs in the network and TFA(i,t) represents the
activity of transcription factor i, F represents an arbitrary function which incorporates and
convolutes the underlying dynamics of the interacting TFs. The component s(i) expresses
the effect of the activation event of a transcription factor. In the context of the LCA design it
corresponds to a constant infusion of a soluble factor activating the TF and it is considered
to be the known external stimulus that activates the transcriptional machinery. Essentially, in
this model, we suggest that the dynamics of TFA can be described through an appropriate,
yet to be determined, function (F) which is dependent upon the TF activity itself, and a
forcing function s, which may or may not be a function of time indicating a specific and
direct activation of a transcription factor. In the context of LCA, the forcing function is
assumed to be independent of time since it is presumed that the soluble factors continuously
activate the TFs through infusion. The activity of the TFs is quantified through the
monitoring of the expression of the corresponding reporter genes.

A widely used simplification (Mjolsness et al., 1991) approximates (1) as:

(2)

This transformation effectively makes use of the assumption that the effect of the network of
interacting TFs is additive and therefore the driving dynamics, as defined by the function
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F(TFA), can be decomposed into . Underlying the transformation is
the understanding that the transcription factors do not form significant interacting
complexes, and that transcription factors interact with each other independently
(D’Haeseleer et al., 1999). While in some cases, transcription factors do form large
interacting complexes; our careful selection of transcription factors used in the experiment
do not involve these interactions and thus the additive assumption may be used.
Furthermore, the model assumes a connection weight that maps the influence of one
transcription factor to another (Boulesteix and Strimmer, 2005; Kao et al., 2004b). Thus, the,
yet to be determined, functions f(i,j,t) describes the influence of TF i to the activity of TF j at
time t.

Several methods have been proposed that solve for the functions f(i,j,t). A commonly
invoked assumption is that the interaction strength, quantified through f(i,j,t), is not a
function of time (Dasika et al., 2004; Gardner et al., 2003; Guthke et al., 2005). This treats
the interactions as scalars representing effectively the network connectivity strength. For
instance the network identification by multiple regression, NIR, (Gardner et al., 2003)
assumes that the transcriptional dynamics are measured at steady state, and therefore
eliminate the contribution of time upon f(i,j,t) whereas other methods, such as Dasika et al.
(2004) and Schmitt et al. (2004), use time delays as a method of identifying when in time
there exists a significant interaction, thus removing the explicit temporal modeling as well.

Given the lack of sufficient conditions in the experimental data, most algorithms must also
account for the fact that using the available experimental data, the problem is ill defined i.e.,
there are more variables than equations in the formulation. As a result, numerous ingenuous
approaches have been proposed that make use of innovative ideas to overcome such
limitations. In that respect NIR constrains the number of allowed connections for to the
number of conditions measured (Gardner et al., 2003), whereas (Guthke et al., 2005) use
singular value decomposition (SVD) to reduce the number of genes whose profiles need to
be reconstructed. Network component analysis (NCA) (Liao et al., 2003) rigorously defines
the number of active interactions which can be present. By gauging the effect of unmeasured
transcription factors have upon gene expression profiles, NCA establishes a set of related
connectivity structures such that the solutions differ by a diagonal scaling matrix. It should
be noted that NCA does account for the temporal evolution of the interaction strengths.

However, when TFA(i,t) is known at a relatively high temporal resolution one could in
principle argue that a numerical estimate of the interaction dynamics, as expressed by f(i,j,t)
can be obtained. In the case of a single variable—single equation, the system is fully
determined at each time point. Therefore, if the dynamics of ẋ = f (x) and represented via the
decomposition dx/dt = α(t) x(t), it is possible to determine α(t) in a numerical sense provided
that both dx/dt and x are known. This is done simply by assuming that the dynamics
expressed as can be resolved at each time point by simply evaluating α(t) as:

(3)

This process is essentially the reverse of Euler integration in which α(t) and x(t = 0) are
known and we wish to reconstruct the dynamics of x(t) in a numerical sense. The
aforementioned calculation assumes an accurate estimate of the rate of change of x(t) based
on the measured values of x(t). Because we assume that at each time point a single
parameter needs to be determined, α(t), then the system is fully determined and assuming
that the operation in (3) is possible the instantaneous dynamics can be resolved. However,
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with NTF transcription factors measured under a single stimulus, at each time point there are

effectively  unknowns, f(i,j,t), ∀t, since each transcription factor may be interacting with
every other transcription factor. To fully account for these unknowns, it is necessary to
evaluate the set of differential equations under at least NTF different starting points or
different conditions for the problem to be fully defined. The LCA framework allows for the
concurrent definition of such multiple experimental perturbations by the introduction of
either independent soluble signals, or combinations of such signals in an effort to activate
groups of TFs simultaneously. The key advantage of utilizing the LCA is that for each
transcription factor measured, it is reasonably straightforward to add one or more conditions
such that the system is fully defined. This is because each condition represents the
stimulation of the system with a stimulatory soluble factor, denoted earlier by s(i). It is
important to note that in both our formulation as well as the experimental system, multiple
combinations of soluble factors can be utilized as separate conditions. Therefore, no
simplifying assumptions need to be made regarding the complexity of the network.

We refer to the process of generating an approximation to f(i,j,t) as RED. In a similar
fashion to Euler Integration, we seek a numerical solution to the problem. However instead
of defining the problem as finding a numerical representation of the response, TFA(i,t), as in
the case of Euler Integration, we shall be looking for a numerical representation for f(i,j,t),
which is normally known analytically in Euler integration but unknown in our case, and
hence the moniker RED.

Thus the purpose of RED is to evaluate numerically the interactions dynamics, f(i,j,t) at each
time point. Given the available experimental data, we are effectively performing a least
squares estimation at each time point through the minimization of an appropriate norm:

(4)

Furthermore, given the time resolution, the derivative of each transcription factor’s activity
level can be accurately estimated via smoothing splines (Rice and Rosenblatt, 1983). Thus,
the rate of change of TFA(i,t) is numerically estimated given the measurements of TFA(i,t).
The minimization of the norm essentially minimizes the error between the rate of change of
TFA as measured from the data and the rate of change in TFA as predicted by the model. In
this formulation, f(i,j,t), represents the contribution of one transcription factor upon the
activity of another TF at any given time point.

However, from an analysis point of view a critical question which emerges is whether the
network of interacting TFs possesses any special structural characteristics. In other words,
we are concerned as to whether the network is composed of fully interacting elements, or
whether direct links between specific TFs do not exist. These would effectively be translated
to

(5)

In order to address this question, we will couple the deconvolution of the dynamics, based
on the minimization of (4), with mathematical programming formulations that allow for the
optimal identification of the network architecture, i.e., direct links between TFs, as well as
the deconvolution of the network dynamics. In fact we present two modeling approaches,
one which optimally determines interactions, and a second formulation which utilizes an a
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priori network architecture. This a priori network architecture may be the result of other
analysis such as prediction algorithms for transcription factor binding (Haverty et al., 2004),
chip–chip experiments (Lee et al., 2002), or other algorithms such as Boolean networks
which link the activity of a given gene with its particular activator (Kauffman et al., 2003).

2.3. Global network reconstruction via reverse Euler deconvolution
The LCA provides the opportunity to generate multiple realizations of the TFA dynamics
based on the multiple systemic perturbations through the infusion of soluble factors
activating the target TFs. In order to explore the wealth of the data and to extract what
would appear to be the underlying interaction dynamics representative of the systemic
response across a number of conditions, we deconvolute simultaneously, at each time point,
all the experimentally generated profiles. Therefore, at each time point a number of
conditions, equal to the number of TFs in the system, are used for the estimation of the
dynamics. In order to render the problem computationally tractable and maintain a linear
nature, we opt to utilize the L-1 norm as opposed to the more widely used L-2 norm:

(6)

The global network reconstruction formulation simultaneously attempts to identify the most
probable network architecture, i.e., a network architecture which yields the lowest error as
well as the numerical solution for f(i,j,t). Therefore, the network reconstruction optimization
problem reconciling the dynamics over a number of external disturbances, k is defined as
follows:

(7)

The variables β(i,j) indicate the level of activation of TF i in the presence of soluble signal j,
Nc denotes the total number of simultaneous stimulation experiments. The introduction of
this term was necessary because in the experimental design, there is no guarantee that each
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reporter plasmid will respond in the same way to an identical level of its stimulatory factor.
For a single time point, there is a total of n+n^2 variables which need to be addressed. The
LCA allows us to compensate for this through the use of composite inputs in which multiple
stimulatory factors are used at once thus allowing for the relatively easy introduction of
another condition thus eliminating this problem. However, since β remains a constant, over
the experimental time course, we actually have t*n2+n variables with t*n*(n+1) equations
thus making the system over-defined after the introduction of an additional condition.
Formulation (6) concurrently reconciles the measurements based on k perturbation
experiments. The L-1 norm is simulated through the use of appropriate positive slack
variables. The prior information is hard-coded in the parameters N(i,j). The only provision at
this point is that we assume that each TF has at least one regulator and that each factor
regulates at least one member of the network.

2.4. Network reconstruction via bi-clustering
Prior information can be readily incorporated into the mathematical programming
framework for conducting RED, whether based on Chip–chip experiments (Harbison et al.,
2004) or computational transcription factor prediction (Cartharius et al., 2005). Aside from
sequence-based prior information, in the form of known or putative binding interactions,
gene expression experiments have also been suggested for elucidating network interactions
(Hartemink, 2005) and thus postulating putative interactions. In the context of the LCA we
have previously shown how a novel bi-clustering methodology can identify possible
networks of interacting transcription factors based on the measured TFA (Yang et al., 2007).
The use of a bi-clustering technique to determine the network architecture was predicated
upon the hypothesis that local interactions could be isolated as groups of reporter genes with
highly correlated activity under multiple stimulation profile, and from these local
interactions, it would be possible to construct a network that can be used to rationalize the
response obtained from the LCA. The bi-clustering itself is performed via a mixed integer
linear programming (MILP) method. The key innovation with this method over those of
previous bi-clustering methods (Cheng and Church, 2000; Kluger et al., 2003; Yoon et al.,
2005), lies in its ability to find bi-clusters with arbitrary overlaps which allows it to
represent networks which are more complete than those which find independent bi-clusters.
A bi-partite graph can then be generalized into a directed graph with corresponding feedback
loops so long as there is a method to transform the nodes that lie in the output layer (sink)
into a node in the input layer (source). In the LCA, the input layer consists of the individual
soluble factors used for stimuli such as those given in Table 1. Since these soluble factors
have a one to one correspondence with the transcription factors, the nodes in the input layer
in Fig. 1, can be replaced with their corresponding transcription factors. To convert the bi-
partite network into a form usable by RED, we assume that the direct stimulation of a
reporter can only occur via its associated soluble factor, Table 1. All of the other interactions
must therefore be secondary. Therefore, if a bi-cluster contains a stimulatory factor of TNF-
α and was found to stimulate both NFkB and STAT3, we would hypothesize that there is a
direct link between TNF-α and NFkB, while the stimulation of STAT3 must occur
downstream of NFkB. Because STAT3 must occur downstream of NFkB, we hypothesize
that there is some process linking NFkB to STAT3 of which there is a mechanism and
dynamic which we seek to obtain evidence for. The details of the methodology are discussed
in (Yang et al., 2007).

Processing the bi-clustering result in this fashion yields the network given in Fig. 2. Most of
the nodes and their stimulatory factors are associated with each other with the exception of
lipopolysaccharide (LPS) and heat shock element (HSE). LPS represents a non-specific
inducer of inflammation and therefore does not have a direct reporter associated with itself,
and HSE did not have a specific inducer associated with it. Given that the focus is on the
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interactions between the transcription factors, HSE was included in the network while LPS
was not. One of the notable features about this network is that AP1 appears to be
disconnected from the rest of the network. This is due to the fact that while it is measured
and directly stimulated in the experiment, it was not found in any of the bi-clusters given in
Fig. 1. To convert the network from Figs. 1 to 2, we make the primary assumption that the
reporter genes in the LCA can only be stimulated via their individual transcription factor.
Therefore, if TNF-α stimulates any other reporters aside from NFkB, it must first stimulate
NFkB, and this stimulation of NFkB results in signaling cascade, which will eventually lead
to the stimulation of that transcription factor. Such an activation may occur because the
transcription factor which is directly activated by the soluble signal binds to the upstream
region of another soluble signal, such as NFkB binding to the upstream region of IL-6
(Gealy et al., 2007), or via a more indirect route utilizing intermediate signaling molecules.
Therefore, if a link is present between a soluble factor and a transcription factor reporter
which it was not designed to directly activate such as TNF-α and any reporter which is not
NFkB, then a link is drawn between NFkB and that reporter. The direct links are introduce
in the deconvolution optimization framework by activating appropriate entries of the N
matrix in (6) based on the structure of directed graph from the bi-clustering results, though
the incorporation of the constraint (7):

(7a)

If certain connections are known not to be present, the corresponding interaction dynamics
elements f(i,j,t) can be readily eliminated from the deconvolution.

2.5. Generalized reconstruction
A tantalizing question related to the in silico reconstruction of interaction networks is
whether a core of dominant, or otherwise significant interactions can be identified. Various
computational methodologies have been proposed that attempt to qualify network
interactions in an effort to further prune connectivity and, hopefully, reveal and underlying
critical core of significant interactions (Gao et al., 2004; Van Someren et al., 2001). In the
context of the optimization framework, we model this selection through the introduction of
appropriate binary variables λ(i,j) which denote the existence of a direct interaction between
two factors, i and j. In order to evaluate the overall complexity of the deconvolution, the
problem is solved parametrically with respect to the total number of possible connections
(NTF×NTF). The introduction of the parameter  controls the complexity of the
deconvolution. The detailed formulation of the mixed-integer optimization problem is
provided in (8).
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(8)

The binary variable λ(i,j) serves a dual role: they can be treated as the “N” variables of (7)
which model the known absence of specific interactions, or force the existence of certain
interactions, but can also serve as the variable to be used for the optimal selection of
required interaction elements in the overall regulatory network. We have already
demonstrated the possibility of developing such mixed-integer optimization methodologies
in the context of modeling transcription regulatory networks (Foteinou et al., 2008).

2.6. Evaluation of dynamics
The overall hypothesis behind utilizing the RED is that the numerical response f(i,j,t) may
provide insight as to the under-lying processes which drive the observed changes in the
activity of transcription factors. The functions f(i,j,t) essentially represent how the various
mechanisms transform the amount of active transcription factors into a signal which is then
used to activate a secondary transcription factor. Treating the transcriptional network as a
circuit analog, we can exploit the fact that many of the simple network architectures which
we have obtained have well characterized step responses. Because the LCA utilizes a step
input as the stimulatory profile for its soluble factors, we ought to be able to draw direct
comparisons between the responses we see and the characteristic inputs. Previous work in
electrical engineering has gone so far as to design automatic classifiers which categorize the
step response based upon their circuit architecture (Leva and Piroddi, 1996; Piroddi and
Leva, 2007), we have elected to determine significant network architectures through visual
inspection due to the significantly different responses of the network architectures.

We have elected to look for evidence of four types of dynamic interactions. The two which
correspond to different network architectures (Rao and Arkin, 2001) are feed forward
(Mangan and Alon, 2003) and feedback (Milo et al., 2002), whereas time lag, and tolerance
mechanisms correspond to dynamic responses of the individual transcription factors.
Identifying interaction motifs that eventually constitute the overall structure of a regulatory
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network is a very active research area and numerous methodologies have been developed to
assess the emergence of local structures (Zhu et al., 2007). While there are other methods for
evaluating the statistical significance of each of the fits (Dudbridge and Koeleman, 2004) we
will be evaluating the possibility of developing specific network sub-structures by
evaluating the dynamics of the interactions, f(i,j,t). The feed forward response represents the
simplest response. In the feed forward interaction between transcription factors A→B,
strength of the up/down-regulation of B is dependent upon the activation of A and hence the
activity of A’s reporter, within a multiplicative factor. Time lagged dynamics can represent
either intermediate transcription factors such as A→X→B in which X is an unknown factor,
or events that that have a relatively slower rate limiting step such as the interaction between
multiple sub-units. Feedback interactions emerge when the activation of transcription factor
B, goes back and affects the activation of transcription factor A in addition to the standard
feed forward response. The tolerance mechanism is a response which involves the loss of
activation despite continued activation. In the LCA, there is a continuous infusion of the
soluble signal, and therefore, this response should be quite evident. One of the possible
mechanisms for this response is the loss of various receptors in the cytosol under continuous
stimulation. Fig. 3 shows these basic interactions and the expected responses of the system.
In addition to these simple models, the motifs can be combined for composite responses
such as profiles that have both a time delay and tolerance effect.

3. Results
Despite fitting the derivatives rather than the florescence values obtained from the LCA, we
were still able to get accurate fits for the data, Fig. 4. In Fig. 4, we attempted to simulate the
original experimental data via conducting a forward Euler integration via

to show that from our numerical representation f(i,j,t) it is possible to accurately reconstruct
the signal. However, one issue with this reconstruction is the fact that there is significant
error propagation. Due to the recurrence from of standard Euler integration, the errors from
previous time points are incorporated into the prediction for later time points (Dunn et al.,
2006). Thus certain reconstructions such as the one where NFkB is stimulated via
Dexamethasone show a reconstruction with deviated significantly. Even so, for the most
part, most of the reconstructions appear to be accurate reflection of the underlying data.

3.1. Fully connected network
In Fig. 5 the profiles of the time varying weights f(i,j,t) are given. In this figure, there is
evidence as to how each of the transcription factors interacts with others as well as
themselves. Each row corresponds to the individual transcription factors whose activity we
seek to reconstruct, and each column corresponds to the effect a specific transcription factor
has upon the other factors within the system. The matrix in Fig. 5 represents an incidence
matrix in which the outgoing connections for a given transcription factor are represented as
columns, and the incoming connections are indicated as rows. Therefore, the first row
corresponds to the factors which affect the activity of NFkB, whereas the first column
represents the effect NFkB has upon other transcription factors. In these figures, a negative
value for f(i,j,t) represents down-regulation effect whereas positive value represent an up-
regulation event i.e., an increase in the activity of one transcription factor decreases the
activity of another and vise versa. From the profiles, we believe that evidence points to the
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fact that many of the dynamic processes are regulated by feedback control loops and
therefore the simple notion that genes are only up or down-regulated may be too simplistic.
For instance the stimulation of NFkB via GRE appears to be initially down-regulated, but
also have a time period in which it is up-regulated after which it remains constant.

From the results, it may seem obvious which of the connections can be removed, i.e., those
which show very low levels of activity. However, this may not always be the case. For
instance, the STAT3→STAT3 interaction which corresponds to the stimulation of STAT3
by IL6 seems to be at a rather low level and can be removed. However, this connection
needs to be included due to the design of the system in which STAT3 is stimulated via its
soluble factor. Therefore, it is not immediately obvious as to which connection should be
removed. Such ambiguities therefore lead up to the next formulation in which the network is
solved.

3.2. Freely optimized network
The freely optimized network solves the problem parametrically from six to 36 connections.
The lower bound for the number of connections corresponds to the fact that each
transcription factor needs to have some form of regulation, either via its soluble factor, or
due to the effects of another transcription factor. The upper bound for the number of
connections is the number of connections for a fully connected network. One of the
problems with solving for the network in this manner is that it is difficult to tell a priori how
many connections are needed. This then requires one to solve exhaustively for all possible
number of connections. The trade-off between complexity and the quality of fit is expressed
as the pareto frontier. The pareto frontier indicated that one cannot obtain a better solution
unless one increases the complexity of the problem being solved is given in Fig. 6.

The pareto frontier for this system does not exhibit a typical “knee” feature which allows us
to determine whether a sufficient number of connections have been obtained. The
progression of the pareto frontier shows an exponentially decaying response. This fit an
exponential curve with an R2 of 0.997 indicating the high quality of fit. This signifies that
the formulation for freely optimizing the network obtains relatively more important
connections early rather than later. We hypothesize that the reason for this response is due to
the small scale of the experimental data. Due to the fact that these transcription factors all
related to inflammation, it is not surprisingly that all of the transcription factors may be part
of a larger interconnected network. The small scale of the data means that many
intermediate transcription factors are not present and therefore none of the links are truly
redundant.

Though RED is unable to determine outright the number of connections present in the
system, we hypothesized that it may still be able to give the relative importance of a given
connection between two transcription factors. By solving the formulation from six to 36
connections, we expect the more important interactions to appear early and then to be
conserved in solutions containing more connections. Therefore, if a set of interactions were
present in a solution of size N, we would expect the great majority of the interactions would
be present in solutions with more than N connection. Therefore, the most important
interaction would be found first, and conserved throughout all the other solutions, the second
most important interaction found second, etc. Plotting the number of times an interaction is
present amongst the different solutions we obtain Fig. 7 which exhibits this behavior. There
is a smooth linear progression of importance, whereas had the interactions been included at
random, a connection would have been conserved an intermediate number of times (15) with
a small amount of variability.
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Given the structure of the pareto frontier, it is relatively difficult to determine the optimal
number of connections. In Fig. 8, the dynamics are shown for 18 connections which
represent half of all possible connections utilized. What is remarkable about the
reconstructed dynamics is that for the links that are common between the networks most of
the profiles seem similar in quality as in the fully connected network. This suggests that the
reconstruction is reasonably robust not only in the way the individual links are incorporated,
but also in the way the dynamics are obtained.

3.3. Bi-clustered network
One of the strengths of utilizing this formulation is that outside information can be
incorporated, thus allowing for the ability to examine other network architectures. The
primary reason as stated previously was that the use of a priori information could greatly
reduce the computational complexity of the problem by reducing either the number of free
binary variables or eliminating them outright. While the bi-clustering formulation is also an
MILP formulation, the bi-clustering formulation scales better in terms of the number of
binary variables needed for a given problem size having 2N binary variables as opposed to
N2 binary variables as in the case of the fully optimized network. Therefore, one of the
questions is what the trade-off between runtime and reconstruction error is. Since the bi-
clustered network itself consists of 18 connections, this result was compared with the fully
optimized network with 18 connections.

Normally the simplest method for assessing the “correctness” of a network is to assess the
error associated with the reconstruction. In the presented formulation this is indicated by the
L1 norm, which is the sum of the positive and negative slacks. The overall range of possible
errors ranges from above fifty to a minimum of 9.9. Since in the fully optimized network,
we attempt to select network architectures with the lowest error, we have to determine
whether the bi-clustered network represents a good trade-off between the ability to
reconstruct the dynamics and its decrease in run time. To evaluate this, we wanted to see
whether on average randomly generated networks have a higher error associated with them
than a bi-clustered network. Generating 1000 random networks, we found that the mean
error for the networks was 36.8632 with a standard deviation of 4.2, whereas the bi-clustered
network corresponded to an error of 30.31. Therefore, while the bi-clustered network does
not reconstruct the profiles as accurately as either the freely optimized network or the fully
connected network, we hypothesize that it does capture many salient features of these
networks due to a reconstruction error which is significantly lower than that of a randomly
generated network. Therefore, while the bi-clustered network does not yield an optimal
reconstruction, it may function as an adequate approximation of the structures present within
a given biological network. One of the advantages of utilizing bi-clustering to first
determine the underlying structure is rather than the freely optimizing the network structure
is the fact that bi-clustering coupled with the formulation in Eq. (3) yields an operation that
requires less binary variables which at a first approximation yields far lower runtimes.
Therefore, the use of bi-clustering may be considered as a trade-off between accuracy and
run time. Because there are differences between the network architecture generated via RED
and bi-clustering, we wish to determine whether these differences lead to changes in the
dynamics of f(i,j,t), Fig. 9, and whether the changes in dynamics can be explained due to
mechanistic differences between the two solutions. For instance the NFkB/GRE interaction
appears to have moved from a feedback dynamic to a standard feed forward interaction. The
most glaring differences between the networks generated via RED and the ones generated
via bi-clustering is fact that AP-1 no longer affects or is affected by the rest the network, and
HSE does not have any outgoing connections. Given the qualitative differences between the
networks, the question which arises is whether the change in dynamics is due to the loss of
AP-1’s effect upon the system or HSE’s effect upon the system.
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3.4. Constrained optimized network
One of the things which we observed with the bi-clustered network was the fact that AP-1
was not incorporated into the network, and there were no outgoing links for HSE. Therefore,
we manually remove the connections associated with AP-1 and then allow the optimizations
framework to evaluate the presence of the rest of the network. This allows us to assess the
role of HSE independently of AP-1. Doing so, we can see that the feed back dynamics
associated with NFkB in response to GRE stimulation has returned as well as the response to
ISRE. From this result it appears that the response of NFkB to both IFN-γ and
Dexamethasone are in part affected by HSE, Fig. 10. Moreover, without AP-1 affecting the
dynamics of HSE, we see a large change in the dynamics of other transcription factors,
thereby suggesting that AP-1 plays an important role in HSE activation.

4. Discussion
4.1. Evaluation of multiple network architectures

The most obvious question one has with multiple network architectures is which of the
proposed network architectures is correct, in which the simplest answer is which network
yielded the lowest reconstruction error. However, at this point it would be incorrect to
suggest that the small proof of principle implementation of the LCA would yield the correct
underlying network. Therefore while it is reasonably simple to rank the different gene
network architectures by their reconstruction error, it may be more informative to decipher
how different networks relate to each other in terms of their response.

We hypothesize that for a given network architecture, the removal of a link may have a
minimal impact upon the dynamics of the rest of the system and thus be a sign of its
redundancy. Secondly, the removal of an important link could significantly alter the
reconstructed dynamics of the system thus signaling that the removal of a link is
incompatible with the measured response, i.e., that while the data can still be fitted to the
model, the intrinsic response of the architecture is different from what was measured
experimentally. The most obvious changes would be if the removal of the link causes the
response of the rest of the interactions of a given transcription factor to significantly change.
However, there exists a third case which we hypothesize is more interesting, which is the
loss of a link which changes the dynamic response of f(i,j,t) in a mechanistically relevant
manner. This would be akin to a mutation in which the changes in an organism’s response
are only evident during times of stress (Frenkel et al., 1999). Candidates for such a response
would be found in feedback loops, Fig. 11, where one of the links is responsible for signal
propagation and the other link is responsible for regulating the response within a certain
range. Under reasonable stimulation, it is possible that the feedback portion may be
redundant, and the dynamics associated with the forward–forward portion may transform
from a dynamic that is characteristic of a feedback mechanism to that of a feed forward
mechanism.

4.2. Predicted result of NFkB activation
The transcription factor interaction with the clearest activity profile is the activation of
NFkB in response to TNF-α stimulation. This profile was present in all four solutions, Figs.
5, 8–10. It is possible to see a clear lag in the activity of the transcription factor to the step
response, in which it takes a non-trivial amount of time to reach a maximum, after which
there is a return to baseline. This is indicative of a time lagged response coupled with a
tolerance mechanism. This dynamic provides evidence of a rate limiting event in NFkB thus
accounting for time lag before a maximum value is reached. This rate limiting step could be
due to the time it takes for the subunits to be released from IkB (Campbell and Perkins,
2004) or via a rate limiting dimerization step. The return to baseline despite continuous
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infusion of the TNF-α signal illustrates that the NFkB shows a tolerance like response under
prolonged administration of inflammatory cytokines (Sass et al., 2002). One result which is
unexpected is the fact that NFkB activation seems to have a low level of effect upon the
other inflammatory cytokines, but seems to be significantly affected by the activity of the
other inflammatory cytokines. This suggest that while TNF-α is an important mediator of
inflammation, its reporter NFkB lies downstream in comparison to the other inflammatory
transcription factors which were measured in this experiment. This result was consistent
over the different solutions which leads us to the belief that this response is both highly
robust, as well as the fact that the experiment yielded data of high quality for this particular
transcription factor.

4.3. Predicted result of AP1 activation
The perturbation of the system through an administration of IL1 did not seem to have a large
impact upon the AP-1 reporter in any of the solutions. This suggests that the reporter gene
for AP-1 activation may need to be optimized. The level of up/down regulation of the AP-1
reporter in response to IL1 activation is low in contrast to the dynamics seen via the HSE,
and NFkB reporters. This was evident in the fully connected and freely optimized networks,
Figs. 5 and 8, and as such the effect of the soluble factor IL1 is evident within the system,
though not through its individual reporter. In the solutions of the fully connected and freely
optimized networks given in Fig. 5 and 8 there appears to be a feedback mechanism
associated with AP1 and HSE, with an oscillatory behavior in the weights. We see that in
the freely optimized network, there is still a great deal of commonality in the response of
f(i,j,t) between the two cases despite the removal of the effects of GRE and NFkB upon the
system. With the removal of AP1 however, we see that there exists a major change in the
dynamics of the rest of the system, Figs. 9 and 10. Computationally, this means that the loss
of AP1 as a connection, requires significant alterations to the dynamics of other transcription
factors in order to fit the data. We hypothesize that this effect is due to HSE repressing the
synthesis of IL1 which is the activator of AP-1 (Xie et al., 2002), and that IL1 affects the
phosphorylation of various heat shock proteins (Saklatvala et al., 1991). The combination of
these two factors suggests the existence of a cycle and therefore the need for a feedback
interaction between the two elements.

It may be tempting to suggest that the effect of AP1 upon the rest of the system can
predicted merely the magnitude of its interaction. However, this is not necessarily the case
as seen in the interactions of the other transcription factors with NFkB. What we see is that
even with the removal of AP1, Fig. 10, from the solution, the interaction dynamics of the
other transcription factors with NFkB are still reasonably consistent and that it requires the
removal of both HSE and AP1 before there exists a significant change.

4.4. Predicted result of STAT3 activation
Similar to the results obtained with the IL1 stimulation, the IL6 stimulation did not appear to
have a large effect upon the induction of its reporter. This dynamic was again present in all
of the solutions that were obtained. This evidence suggests that the sequence of the reporter
could perhaps be better designed. Specifically, while these reporters are able to show
qualitative changes, they may be optimized to show greater fold change when activated. In
spite of the low fold change in STAT3 reporter activation, there was a significant alteration
in the activity of the NFkB reporter by IL6. This was present in three of the four solutions,
Figs. 5, 8 and 10, being present in the solutions where the network was determined via the
MILP formulation and absent when utilizing the bi-clustered network. This activation
appears to have a feedback-type dynamic for NFkB. In the literature, it has been reported
that IL6 is induced by TNF-α, an activator of NFkB (Yamada et al., 1997) as well evidence
that IL6 down-regulates the activity of NFkB (Hatzigeorgiou et al., 1993). This combination
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of effects points to the existence of the feedback mechanism as suggested via the
reconstructed dynamics. The other reporters in response to IL6 stimulation have inconsistent
results and connectivity. Given that the connection strengths of STAT3 to the other
transcription factors is low, this suggests that perhaps the connections may not actually exist,
or that IL6 represents a relatively non-specific inducer of inflammation and that while it
affects many system, its individual contribution to the dynamics of the measured reporters is
reasonably low.

4.5. Predicted result of ISRE activation
While many of the transcription factor interactions seem to have dynamics which are similar
to those predicted via the network motifs in Fig. 3, the responses for IFN-γ stimulation do
not. This may be due to the highly connected nature of IFN-γ due to its central role in the
JAK-STAT pathway (Levy, 1995). Aside from the interconnectedness of the IFN-γ, the
networks generated via the full optimization, and the bi-clustering both appear to reflect the
fact that ISRE is consistently more connected than any of the other elements. Due to small
scale of the system, the effect of IFN-γ on the other factors may be in reality mediated
through several intermediates. Without these intermediates, the effect of IFN-γ upon the
system represents the combination of the effects of these different intermediates, thereby
obscuring the direct effect that IFN-γ has upon the system. However, the pseudo-oscillatory
behavior may be indicative of a significant amount of feedback that underlies an organism’s
response to IFN-γ, and may be due to factors which have not been previously identified.

4.6. Predicted result of GRE activation
One of the interesting aspects of corticosteroid stimulation is the fact that under direct
stimulation of corticosteroids, the signals obtained for processing were very noisy, Fig. 12,
as evidenced by the lack of repeatability in the measurements. The reason for this lack of
signal fidelity is due to the fact that the majority of the inflammatory cytokines are down-
regulated by corticosteroids. Working off a baseline fluorescence of the reporters being zero,
the down-regulation of this signal means that the measurements are dominated by noise. To
compensate for this, the experimental system also included composite stimulus represented
by an infusion of all the inflammatory cytokines with the addition of Dexamethasone. This
allows for a baseline fluorescence to be obtained and the effect of Dexamethasone to be de-
convolved from the system. The ability for these interactions to be de-convolved is an
important one because it shows that composite stimuli can be used successfully in the
optimization framework and presents less of a problem in the network generation than the
bi-clustering formulation. The response of the system to Dexamethasone provides similar
insights into the mechanism of corticosteroid activity. Unlike the response of NFkB to a step
input of TNF-α, the response of the Dexamethasone upon its reporter GRE is a decreasing
function indicative of a tolerance mechanism, Figs. 5, 8–10. Therefore, the maximum effect
of corticosteroids occurs early and there is no delay before a maximum is reached. This
suggests that unlike NFkB, there is no rate limiting step between the binding of the
corticosteroid to the glucocorticosteroid receptor (GR) and the activation of the transcription
factor. This suggests that the dimerization event is not rate-limited, i.e., there is a sufficiently
high concentration of endogenous GR present in the system which the rate of dimerization
occurs fast enough where it is not detectable given the time resolution of our system.

Another interesting aspect of Dexamethasone stimulation is the response of the NFkB
reporter in response to activated GRE. The currently accepted notion is that the activation of
GRE down-regulated NFkB, thus damping the inflammatory response. However, one of the
interesting aspects of this response is evident when the response over different solutions is
compared. In the bi-clustering solution where the contributions from STAT3 and HSE were
not included in the dynamics of NFkB, we see a clear shift from a feedback mechanism to

Yang et al. Page 15

J Theor Biol. Author manuscript; available in PMC 2011 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that of a standard feed-forward response in which the strength of GRE’s effect upon NFkB
is directly related to the amount that GRE is stimulated. This suggests that unlike AP1,
STAT3 and HSE play an important role in mediating the feedback mechanism that regulates
the response of NFkB to corticosteroids.

4.7. Outstanding issues
The issue of unmeasured and missing transcription factors poses a significant problem when
it comes to interpreting the results of the data. It is difficult to determine whether or not the
dynamics represent the direct interactions between two transcription factors, or whether the
dynamics reported by the algorithm are a composite of multiple interactions. For the
purposes of this manuscript, the interactions which were analyzed further were selected
based upon how well they reflected the responses of standard transcriptional network motifs.
Utilizing this method, it was possible to identify the mechanics and dynamics for a subset of
the interactions and predict the existence of more complex responses for the rest. The ideal
solution for this problem is through a more comprehensive LCA in which many more
transcription factors would be measured rather than just such a small subset as was used
here. Another issue which needs to be resolved is the issue of scale. The formulation will fit
profiles that show the greatest magnitude change over those with a smaller magnitude in
change. This is problematic because it depends upon the fluorescence reported via the LCA
apparatus. Therefore, dynamics which show a greater fold change had the appearance of
their connections prioritized when solving the problem parametrically. This means that the
appearance of a connection dependent both on the biological importance as well as the
signal to noise ratio of the reporter sequence. Therefore, while we were reasonably sure as to
the quality of the dynamics for NFkB and GRE, we were less sure about the dynamics
associated with the other reporters. A possible solution to this issue may be to obtain proper
calibration curves for each of the reporter plasmids such that the overall range of
fluorescence can be calibrated from minimum to maximum values and then normalized
accordingly.

5. Conclusions
The LCA, given its ability to easily obtain combinations of transcription factor activation
under different stimulation profiles with very high temporal resolution offers a new and
powerful method to probe the underlying transcriptional network. Along with simple
network building and determining which transcription factors actively regulate each other,
the LCA combined with RED allows for the assessment of possible network connectivity
structures as well as giving intuitions as to the dynamics of the interactions. While solving
the MILP formulation is computationally expensive, the optimization framework allows for
the incorporation of a previously generated network which may not be optimal sufficiently
similar to the true underlying structure. This sub-optimal network has profiles which are
oftentimes very similar to those of the optimal network. However, in the cases where the
profiles are different, there is often a significant rationale behind the differences such as loss
of feedback loops with the removal of a given node. Therefore the loss of nodes or
interactions degrades the response of the system gracefully rather than catastrophically
inwhich no useful information can be extracted.

With these interactions, it is then possible to predict important underlying mechanistic
properties such as feed forward networks, tolerance mechanisms, feed-back networks, and
time delay properties. Even in the small proof of principles example provided here, these
network motifs are illustrated in the dataset. For instance, we were able to clearly see the
tolerance mechanism associated with corticosteroid stimulation, as well as the initial down-
regulatory effect of corticosteroids. Other effects visible were time-lagged effects of NFkB
due the necessity of sub-unit dimerization. Given that the evidence of these effects are
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present in our small scale system, we are confident that the same framework can be
expanded to much larger systems in which much less is known about the system. Such
interactions are almost as important as determining which transcription factors interact
because they provide the foundation of the dynamical system which controls the response of
an organism to outside stimulus.
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Fig. 1.
The resultant bi-partite network obtained from bi-clustering the LCA data. The nodes on the
left are the input layer and the ones on the right are the output layer which consists of the
reporter genes. Despite being in the experimental data, neither IL1 or its associated
transcription factor AP1 were found to be in a bi-cluster.
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Fig. 2.
The directed graph associated with the bi-clustering result. AP-1 is unconnected because it
was not found to be part of any bi-cluster.
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Fig. 3.
Expected network motifs and their expected responses. These interactions have a set
response to a step input which is part of the experimental design. In these hypothetical
interactions the x-axis represents time and the y-axis represents the interaction strengths.
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Fig. 4.
The reconstruction of the profiles obtained from the living cell array.
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Fig. 5.
The dynamics of the interaction strengths calculated with a fully connected network. It is
possible to see effects similar to those predicted via the motif patterns in Fig. 3.
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Fig. 6.
The Pareto frontier.
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Fig. 7.
The number of times a link is conserved over the different solutions. Under RED there is a
clear trend in the importance of links where as randomly assigned connects appear at a
relatively consistent rate.
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Fig. 8.
The freely optimized network corresponding to 18 connections. It is notable that many of the
dynamics are very similar to that of a fully connected network. The model formulation does
not force the connections to be bi-directional or symmetric.
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Fig. 9.
The reconstructed dynamics of the network obtained via bi-clustering. What is notable is the
change of the response of NFkB to Dexamethasone stimulation (GRE) which turned from
more of a direct interaction from a feedback interaction.
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Fig. 10.
The response of the system when outgoing nodes from HSE were enabled, but the outgoing
connections from AP1 were not.

Yang et al. Page 30

J Theor Biol. Author manuscript; available in PMC 2011 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
The two portions of a feedback element, one of which plays a role in the forward signal
propagation, whereas the second connection is responsible for regulating the overall range of
the response. During times of normal stimulation, the feedback link may not play a large
role in the overall response.
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Fig. 12.
The raw data from the living cell array. Note that the data for the singular stimulation by
Dexamethasone is relatively noisy (King et al., 2007).
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Table 1

The soluble factors and the transcription factors they are associated with.

Soluble factor stimulus Reporter gene

TNF-α NFkB (GGGAATTTCC)

IL1 AP1 (TGAGTCA)

IL6 STAT3 (TTCCCGAA)

IFN-γ ISRE (GAAACTGAAACT)

Dexamethasone GRE (AGAACAAAATGTTGT)

Heat shock element (HSE) was excluded from this table because it did not have a soluble factor directly associated with it.
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