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Abstract
When feedback follows a sequence of decisions, relationships between actions and outcomes can
be difficult to learn. We used event-related potentials (ERPs) to understand how people overcome
this temporal credit assignment problem. Participants performed a sequential decision task that
required two decisions on each trial. The first decision led to an intermediate state that was
predictive of the trial outcome, and the second decision was followed by positive or negative trial
feedback. The feedback-related negativity (fERN), a component thought to reflect reward
prediction error, followed negative feedback and negative intermediate states. This suggests that
participants evaluated intermediate states in terms of expected future reward, and that these
evaluations supported learning of earlier actions within sequences. We examine the predictions of
several temporal-difference models to determine whether the behavioral and ERP results reflected
a reinforcement-learning process.
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To behave adaptively, humans and animals must monitor the outcomes of their actions, and
they must integrate information from past decisions into future choices. Reinforcement
learning (RL) provides normative techniques for accomplishing such integration (Sutton &
Barto, 1998). According to many RL models, the difference between expected and actual
outcomes, or reward prediction error, provides a signal for behavioral adjustment. By
adjusting expectations based on reward prediction error, RL models come to accurately
anticipate outcomes. In this way, they increasingly select advantageous behaviors.

Early studies using scalp-recorded event-related potentials (ERP) provided insight into the
neural correlates of performance monitoring and behavioral control. These studies identified
a frontocentral error-related negativity (ERN) that appeared 50–100 ms after error
commission (Falkenstein, Hohnsbein, Hoormann, & Blanke 1991; Gehring, Goss, Coles,
Meyer, & Donchin 1993). The findings that ERN is responsive to instruction manipulations
and task performance establish a relationship between this component and behavior. For
example, ERN is larger when instructions stress accuracy over speed, and ERN is predictive
of such behavioral adjustments as posterror slowing and error correction (Gehring et al.,
1993).
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Subsequent studies have revealed a related frontocentral negativity that appears 200–300 ms
after the display of aversive feedback (Gehring & Willoughby, 2002; Miltner, Braun, &
Coles, 1997). Features of this feedback-related negativity (fERN) indicate that it reflects
neural reward prediction error. First, fERN is larger for unexpected than for expected
outcomes (Hajcak, Moser, Holroyd, & Simons 2007; Holroyd, Krigolson, Baker, Lee, &
Gibson 2009; Nieuwenhuis et al., 2002). Second, when outcomes are equally likely, fERN
amplitude and valence depend on the relative value of the outcome (Holroyd, Larsen, &
Cohen 2004). Third, fERN amplitude correlates with posterror adjustment (Cohen &
Ranganath, 2007; Holroyd & Krigolson, 2007). Fourth, and finally, neuroimaging
experiments (Holroyd et al., 2004; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis 2004),
source localization studies (Gehring & Willoughby, 2002; Martin, Potts, Burton, &
Montague 2009; Miltner et al., 1997), and single-cell recordings (Ito, Stuphorn, Brown, &
Schall 2003; Niki & Watanabe, 1979) suggest that the fERN originates from the anterior
cingulate cortex (ACC), a region implicated in cognitive control and goal-directed
behavioral selection (Braver, Barch, Gray, Molfese, & Snyder 2001; Kennerley, Walton,
Behrens, Buckley, & Rushworth 2006; Rushworth, Walton, Kennerley, & Bannerman 2004;
Shima & Tanji, 1998).

These ideas have been synthesized in the reinforcement-learning theory of the error-related
negativity (RL-ERN; Holroyd & Coles, 2002). The RL-ERN was motivated by the finding
that phasic activity of midbrain dopamine neurons tracks whether outcomes are better or
worse than expected (Schultz, 1998). According to RL-ERN, midbrain dopamine neurons
transmit a prediction error signal to the ACC, and this signal reinforces or punishes actions
that preceded the outcomes (Holroyd & Coles, 2002). By this account, ERN and fERN
reflect a unitary signal that differs only in terms of the eliciting event (but see Gehring &
Willoughby, 2004; Potts, Martin, Kamp, & Donchin 2011). In support of this view,
neuroimaging experiments and source localization studies have indicated that ERN and
fERN both originate from the ACC (Dehaene, Posner, & Tucker 1994; Holroyd et al., 2004;
Miltner et al., 1997). Additionally, ERN and fERN are often negatively associated (Holroyd
& Coles, 2002; Krigolson, Pierce, Holroyd, & Tanaka 2009). As people learn response–
outcome contingencies, ERN propagates back from the time of error feedback to the time of
incorrect responses. A recent experiment tested whether conditioned stimuli, like responses,
could also produce an ERN (Baker & Holroyd, 2009). Participants chose between arms of a
T-maze and then viewed a cue that was or was not predictive of the trial outcome. When
cues were predictive of outcomes, fERN followed cues but not feedback. When cues were
not predictive of outcomes, fERN only followed feedback. Collectively, these results
indicate that fERN follows the earliest outcome predictor.

Although the RL-ERN theory has stimulated a great deal of research (for a review, see
Nieuwenhuis, Holroyd, Mol, & Coles 2004), feedback immediately follows actions in most
studies of fERN. Humans and animals regularly face more complex control problems,
however. One such problem is temporal credit assignment (Minsky, 1963). When feedback
follows a sequence of decisions, how should credit be assigned to intermediate actions
within the sequence?

Temporal-difference (TD) learning provides one solution to the problem of temporal credit
assignment. According to this solution, the agent learns values of intermediate states and
uses these values to evaluate actions in the absence of external feedback (Sutton & Barto,
1990; Tesauro, 1992). Researchers have used TD learning to model reward valuation and
choice behavior (Fu & Anderson, 2006; Montague, Dayan, & Sejnowski 1996; Schultz,
Dayan, & Montague 1997). TD learning is not the only solution to the problem of temporal
credit assignment, however. For example, the agent might hold the history of actions in
memory and assign credit to all actions upon receiving external feedback (Michie, 1963;
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Sutton & Barto, 1998; Widrow, Gupta, & Maitra 1973). This is called a Monte Carlo
method because the agent treats trials as samples and calculates action values after viewing
the complete sequence of rewards. Importantly, TD learning and Monte Carlo methods
make quantitatively similar (and sometimes identical) behavioral predictions (Sutton &
Barto, 1998).

These models make qualitatively distinct ERP predictions, however. Specifically, the TD
model predicts that fERN will follow negative feedback and negative intermediate states,
whereas the Monte Carlo model predicts that fERN will only follow negative feedback. To
test these predictions, we recorded ERPs as participants performed a sequential decision
task. In each trial, they made two decisions. The first led to an intermediate state that was
associated with a high or low probability of future reward, and the second decision was
followed by positive or negative feedback.

Based on the idea that fERN reflects neural prediction error (Holroyd & Coles, 2002), we
tested two hypotheses. First, fERN should be greater for unexpected than for expected
feedback; because RL models are sensitive to statistical regularities, prediction error in RL
models is greater following improbable than following probable outcomes. Although some
studies have reported a positive relationship between fERN and prediction error (Hajcak,
Moser, Holroyd, & Simons 2007; Holroyd et al., 2009; Nieuwenhuis et al., 2002), others
have not (Donkers, Nieuwenhuis, & van Boxtel 2005; Hajcak, Holroyd, Moser, & Simons
2005; Hajcak, Moser, Holroyd, & Simons 2006). Consequently, it was important to establish
a relationship between fERN and prediction error in our task. Second, if credit assignment
occurs “on the fly,” as predicted by the TD model, negative feedback and negative
intermediate states will evoke fERN. Alternatively, if credit assignment only occurs at the
end of the decision episode, only negative feedback will evoke fERN. In addition to testing
these two hypotheses, we examined the specific predictions of several computational models
to determine whether the behavioral and ERP results reflected an RL process.

Experiment
Method

Participants—A total of 13 graduate and undergraduate students participated on a paid
volunteer basis (7 male, 6 female; ages ranging from 18 to 29, with a mean age of 23). All
were right-handed, and none reported a history of neurological impairment. All provided
written informed consent, and the study and materials were approved by the Carnegie
Mellon University Institutional Review Board (IRB).

Procedure—A pair of letters appeared at the start of each trial (Fig. 1). Participants
pressed a key bearing a left arrow to select the letter on the left, and they pressed a key
bearing a right arrow to select the letter on the right. Responses were made using a standard
keyboard and with the index and middle fingers of the right hand. Participants had 1,000 ms
to respond, after which the letters disappeared and a cue appeared. A second pair of letters
followed the cue. Participants had 1,000 ms to respond, after which the letters disappeared
and feedback appeared. Participants completed one practice block of 30 trials and two
experimental blocks of 400 trials.

Within each block, one pair of letters appeared at the start of all trials (Fig. 2). When
participants chose the correct letter in the first pair (J in this example), a positive and a
negative cue appeared equally often. When they chose the incorrect letter (R), a negative cue
always appeared. A second pair of letters followed the cue. The correct letter in the second
pair depended on the cue identity. The correct letter for the positive cue (V in this example)
was rewarded with 80% probability, and the correct letter for the negative cue (T) was
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rewarded with 20% probability. Incorrect letters were never rewarded. As such, optimal
selections yielded rewards for 80% of trials with the positive cue (.8 cue) and for 20% of
trials with the negative cue (.2 cue).

For each participant and block, cues were randomly selected from 10 two-dimensional gray
shapes, and letters were randomly selected from the alphabet. Letters were randomly
assigned to the left and right positions in each trial to prevent participants from preparing
motor responses before letter pairs appeared. The symbols # and * denoted positive and
negative feedback and were counterbalanced across participants. For all participants, the !
symbol appeared if the final response did not occur before the deadline, and the .2 cue
appeared automatically if the initial response did not occur before the deadline. Participants
rarely missed either deadline, and late responses were excluded from behavioral and ERP
analyses (~3% responses).

In addition to receiving US$5.00, participants received performance-based payment.
Positive feedback was worth 1 point, and 50 points were worth $1.00. After every 100 trials,
participants saw how many points they had earned over the preceding trials. Participants
were told that the initial choice affected which cue appeared, and that the final choice
depended only on the cue that appeared. They were also told that the identity, but not the
location, of letters mattered.

Recording and analysis—Participants sat in an electromagnetically shielded booth.
Stimuli were presented on a CRT monitor placed behind radio-frequency-shielded glass and
set 60 cm from participants. An electroencephalogram (EEG) was recorded from 32 Ag–
AgCl sintered electrodes (10–20 system). Electrodes were also placed on the right and left
mastoids. The right mastoid served as the reference electrode, and scalp recordings were
algebraically re-referenced offline to the average of the right and left mastoids. A vertical
electrooculogram (EOG) was recorded as the potential between electrodes placed above and
below the left eye, and a horizontal EOG was recorded as the potential between electrodes
placed at the external canthi. The EEG and EOG signals were amplified by a Neuroscan
bioamplification system with a bandpass of 0.1–70 Hz and were digitized at 250 Hz.
Electrode impedances were kept below 5 kΩ.

The EEG recording was decomposed into independent components using the EEGLAB
infomax algorithm (Delorme & Makeig, 2004). Components associated with eye blinks were
visually identified and projected out of the EEG recording. Epochs of 800 ms (including a
200-ms baseline) were then extracted from the continuous recording and corrected over the
prestimulus interval. Epochs containing voltages above +75 μV or below −75 μV were
excluded from further analysis (<6% of epochs).

Because we were interested in neural responses to intermediate states (which were
distinguished by cues) and feedback, we created cue- and feedback-locked ERPs. Cue-
locked ERPs were analyzed for trials on which participants selected the correct starting letter
(after which the probabilities of receiving the .2 and the .8 cues were equal). The cue fERN
was measured as the mean voltage of the cue difference wave (.2 cue – .8 cue) from 200 to
300 ms after cue onset, relative to the 200-ms prestimulus baseline. Data from three midline
sites (FCz, Cz, and CPz) were entered into an ANOVA using the within-subjects factor of
Cue. Feedback-locked ERPs were analyzed for trials on which participants selected the
correct letter for the cue, and the fERN was calculated as the difference between ERP
waveforms after losses and wins. Because changes in P300 amplitude confound changes in
fERN amplitude, we compared losses and wins that were equally likely (Holroyd et al.,
2009; Luck, 2005).1 We created an “expected feedback” difference wave (losses after .2
cues – wins after .8 cues) and an “unexpected feedback” difference wave (losses after .8
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cues – wins after .2 cues). The fERN was measured as the mean voltage of the difference
waves from 200 to 300 ms after feedback onset, relative to the 200-ms prestimulus baseline.
Data from three midline sites (FCz, Cz, and CPz) were entered into an ANOVA using the
within-subjects factor of Outcome Likelihood. All p values were adjusted with the
Greenhouse–Geisser correction for nonsphericity (Jennings & Wood, 1976).

Results
Behavioral results—Response accuracy varied by choice, F(2, 24) = 11.088, p < .001
(start choice, 80.7 ± 4.2; .8 cue, 91.1 ± 1.3; .2 cue, 73.0 ± 2.2), but reaction times for correct
responses did not, F(2, 24) = 2.510, p > .1 (start choice, 444 ± 14 ms; .8 cue, 443 ± 11 ms; .2
cue, 462 ± 17 ms). We also analyzed performance over the first and second halves of blocks.
Response accuracy varied by choice, F(2, 24) = 10.527, p < .001, and increased by block
half, F(1, 12) = 97.592, p < .0001 (Fig. 3). The interaction was not significant, F(2, 24) =
2.396, p > .1. Reaction times did not vary by choice, F(2, 24) = 2.471, p > .1, or block half,
F(1, 12) = 2.549, p > .1. The interaction was not significant, F(2, 24) = 2.464, p > .1.

ERP results—We first examined feedback-locked ERPs. Participants displayed a fERN
(loss – win) for unexpected and expected outcomes (Fig. 4). A 3 (site: FCz, Cz, CPz) by 2
(outcome likelihood: unexpected, expected) ANOVA on fERN amplitude revealed effects of
site, F(2, 24) = 14.335, p < .001, and outcome likelihood, F(1, 12) = 11.755, p < .01. The
interaction was not significant, F(2, 24) = 0.586, p > .1. At FCz, fERN was greater for
unexpected (−4.49 ± 0.88 μV) than for expected (−2.21 ± 0.69 μV) outcomes, t(12) = 3.615,
p < .01.2 We also analyzed fERN over the first and second halves of blocks. A 2 (outcome
likelihood) by 2 (block half) ANOVA at FCz revealed an effect of outcome likelihood, F(1,
12) = 12.496, p < .01, but not of block half, F(1, 12) = 0.000, p > .1. Although the difference
in fERNs for unexpected and expected outcomes was greater in the second half of blocks
(Fig. 5), the interaction between outcome likelihood and block half was not significant, F(1,
12) = 1.290, p > .1. In the first half of blocks, the fERN was not significantly affected by
outcome likelihood, t(12) = 1.562, p > .1, but in the second half, the fERN was significantly
larger for unexpected than for expected outcomes, t(12) = 2.958, p < .05.

We then examined cue-locked ERPs. A 3 (site) by 2 (cue: .8, .2) ANOVA revealed a
nonsignificant effect of site, F(2, 24) = 0.672, p > .1, and a marginal effect of cue, F(1, 12) =
4.434, p < .06. The interaction was not significant, F(2, 24) = 1.869, p > .1. ERPs were more
negative for .2 cues (2.46 ± 0.85 μV) than for .8 cues (3.40 ± 1.06 μV) at site FCz, t(12) =
2.313, p < .05. We also analyzed cue-locked ERPs over the first and second halves of blocks
(Fig. 6). A 2 (cue) by 2 (block half) ANOVA at FCz revealed a significant effect of cue,
F(1, 12) = 4.904, p < .05, and a marginal effect of block half, F(1, 12) = 4.372, p < .06.
Although the difference in voltage for the .2 and .8 cues was greater in the second half of
blocks (Fig. 5), the interaction between cue and block half was not significant, F(1, 12) =
2.333, p > .1. In the first half of blocks, ERPs were not significantly affected by the cue,
t(12) = 1.305, p > .1, but in the second half, ERPs were more negative for .2 than for .8 cues,
t(12) = 3.361, p < .01.

1P300 depends on outcome likelihood, whereas fERN depends on the interaction between outcome likelihood and valence. By
comparing wins and losses that were equally likely, effects related to the P300 subtracted out, while effects related to the fERN
remained.
2One could also measure the mean area under each of the four waveforms and test for effects of outcome valence and likelihood. We
calculated mean area under the waveforms at site FCz from 200 to 300 ms. A 2 (valence: win, loss) by 2 (outcome likelihood:
unexpected, expected) ANOVA revealed a significant effect of outcome valence, F(1, 12) = 21.561, p < .001, but not of outcome
likelihood, F(1, 12) = 0.166, p > .1. Outcome likelihood interacted with valence, F(1, 12) = 13.068, p < .01. Unexpected wins were
more positive than expected wins, t(12) = 2.916, p < .05, and unexpected losses were more negative than expected losses, t(12) =
2.451, p < .05, as predicted by RL-ERN.

Walsh and Anderson Page 5

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2011 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The scalp distribution of the cue-locked effect resembled that of the fERN. To compare the
scalp distributions of the feedback- and cue-locked effects, we entered the two outcome
difference waves and the cue difference wave from the second half of blocks into a 3
(difference wave) by 3 (site) ANOVA. The effect of site was significant, F(2, 24) = 8.573, p
< .01, but the interaction was not, F(4, 48) = 2.888, p > .1, because all difference waves
shared a frontal negativity. To quantify similarity in the topography of effects over the entire
scalp, we computed the mean amplitudes of the difference waves at all 32 sites. Over all
sites, the differences between unexpected outcomes correlated strongly with the differences
between expected outcomes (r2 =.78, p < .0001) and cues (r2 =.92, p < .0001), and the
differences between expected outcomes correlated strongly with the differences between
cues (r2 =.79, p < .0001). Thus, the time courses and scalp distributions of the feedback- and
cue-locked effects were extremely similar, indicating that the fERN followed both negative
feedback and negative intermediate states.

Temporal-difference learning
The finding of a cue fERN indicated that participants evaluated intermediate states in terms
of future reward. This result is consistent with a class of TD models in which credit is
assigned based on immediate and future rewards. To evaluate whether the behavioral and
ERP results reflected such an RL process, we examined the predictions of three RL
algorithms: actor/critic (Barto, Sutton, & Anderson 1983), Q-learning (Watkins & Dayan,
1992), and SARSA (Rummery & Niranjan, 1994). Additionally, we considered variants of
each algorithm with and without eligibility traces (Sutton & Barto, 1998).

Models
Actor/critic—The actor/critic model (AC) learns a preference function, p(s,a), and a state-
value function, V(s). The preference function, which corresponds to the actor, enables action
selection. The state-value function, which corresponds to the critic, enables outcome
evaluation. After each outcome, the critic computes the prediction error,

(1)

The temporal discount parameter, γ, controls how steeply future reward is discounted, and
the critic treats future reward as the value of the next state. The critic uses prediction error to
update the state-value function,

(2)

The learning rate parameter, α, controls how heavily recent outcomes are weighted. By
using prediction error to adjust state values, the critic learns to predict the sum of the
immediate reward, rt+1, and the discounted value of future reward, γ· V(st+1).

The actor also uses prediction error to update the preference function,

(3)

By using prediction error to adjust action preferences, the actor learns to select advantageous
behaviors. The probability of selecting an action, π(s,a), is determined by the softmax
decision rule,
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(4)

The selection noise parameter, τ, controls the degree of randomness in choices. Decisions
become stochastic as τ increases, and decisions become deterministic as τ decreases.

Q-learning—AC and Q-learning differ in two ways. First, Q-learning uses an action-value
function, Q(s,a), to select actions and to evaluate outcomes. Second, Q-learning treats future
reward as the value of the optimal action in state t+1,

(5)

The agent uses prediction error to update action values (Eq. 6), and the agent selects actions
according to a softmax decision rule.

(6)

SARSA—Like Q-learning, SARSA uses an action-value function, Q(s,a), to select actions
and to evaluate outcomes. Unlike Q-learning, however, SARSA treats future reward as the
value of the actual action selected in state t+1,

(7)

The agent uses prediction error to update action values (Eq. 6), and the agent selects actions
according to a softmax decision rule.

Eligibility traces—Although RL algorithms provide a solution to the temporal credit
assignment problem, eligibility traces can greatly improve the efficiency of these algorithms
(Sutton & Barto, 1998). Eligibility traces provide a temporary record of events such as
visiting states or selecting actions, and they mark events as eligible for update. Researchers
have applied eligibility traces to behavioral and neural models (Bogacz, McClure, Li,
Cohen, & Montague 2007; Gureckis & Love, 2009; Pan, Schmidt, Wickens, & Hyland
2005). In these simulations, we took advantage of the fact that eligibility traces facilitate
learning when delays separate actions and rewards (Sutton & Barto, 1998).

In AC, a state’s trace is incremented when the state is visited, and traces fade according to
the decay parameter λ,

(8)

Prediction error is calculated in the conventional manner (Eq. 1), but the error signal is used
to update all states according to their eligibility,

(9)
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Separate traces are stored for state–action pairs in order to update the preference function,
p(s,a). Similarly, in Q-learning and SARSA, traces are stored for state–action pairs in order
to update the action-value function, Q(s, a).

Method
Simulations

We examined the behavioral and ERP predictions of six RL models. At the start of each
trial, the model chose a letter from the first pair. Although the first selection was not
followed by immediate reward (e.g., rt+1 = 0), the selection was followed by future reward
associated with the subsequent state or state–action pair. Prediction error was calculated as
the difference between the discounted future reward and the value of the previous state or
state–action pair. The model then chose a letter from the second pair. The second selection
was followed by immediate rewards of +1 and 0 for positive and negative feedback,
respectively. Prediction error was calculated as the difference between the immediate reward
and the value of the previous state or state–action pair.

Parameter estimates and model fits
We estimated separate parameter values for each participant. To do so, we presented the
model with the exact history of choices and rewards that the participant experienced. For
each trial, t, we calculated the probability that the model would make the same choice as the
participant, pt(k). We fit the model by maximizing the log likelihood of the observed
choices,

(10)

Models without eligibility traces contained three free parameters: learning rate (α), selection
noise (τ), and temporal discount (γ). Models with eligibility traces contained an additional
trace decay parameter (λ).3 To account for complexity when comparing models, we used the
Bayesian information criterion (BIC; Schwarz, 1978). The BIC score is defined as −2 · LLE
+ p · ln(n), where p is the number of free parameters and n is the number of observations
(~1,600 per participant4). Larger BIC scores indicate a poorer fit. We calculated separate
BIC scores for each participant and model.

Aside from comparing fits, one could ask whether the model predicts the characteristic
behavioral and ERP results over time. To that end, we generated predictions for 13
simulated participants using the individual parameter estimates and trial histories. For each
trial, we calculated the probability that the model, given the same experience as the
participant, would make correct choices. This allowed us to compute model selection
accuracy over the first and second halves of blocks. For each trial, we also calculated model
prediction error arising from the true choices participants made and the rewards they
received. We calculated the difference in δ for expected feedback (losses after .2 cues – wins
after .8 cues), unexpected feedback (losses after .8 cues – wins after .2 cues), and cues (.2
cues – .8 cues) to derive a model’s fERN. We then fit model fERN to the observed fERN
using a scaling factor and a zero intercept for each participant. This allowed us to compute
model fERN over the first and second halves of blocks.

3We used the simplex optimization algorithm (Nelder & Mead, 1965) with multiple start points to identify parameter values that
maximized the log likelihood of the observed choices. Preference functions, state-value functions, and action-value functions were
initialized to zero, and eligibility traces were reset to zero at the start of each trial.
4Participants made two choices in 800 trials, yielding a total of 1,600 observations. The exact number of observations varied,
however, because participants sometimes failed to respond in time.
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Results
Figure 7 (left panel) shows the parameter estimates for models without eligibility traces.
Learning rate was lower for AC than for Q-learning, t(12) = 2.097, p < .06, or for SARSA,
t(12) = 2.620, p < .05, but did not differ between Q-learning and SARSA. Selection noise
and temporal discount did not differ between models. We identified the models with the
highest and lowest BIC scores for each participant (Table 1). AC produced the highest BIC
scores for all but 1 participant, and Q-learning and SARSA produced the lowest BIC scores
for similar numbers of participants.

Figure 7 (right panel) shows parameter estimates for models with eligibility traces. Learning
rate was lower for AC than for Q-learning, t(12) = 2.265, p < .05, or for SARSA, t(12) =
2.465, p < .05, but did not differ between Q-learning and SARSA. Additionally, temporal
discount was lower for AC than for either Q-learning, t(12) = 2.174, p = .05, or SARSA,
t(12) = 2.483, p < .05, but did not differ between Q-learning and SARSA. Selection noise
and trace decay did not differ between models. As before, AC produced the highest BIC
scores for all but 1 participant (Table 1), and Q-learning and SARSA produced the lowest
BIC scores for similar numbers of participants.5 Finally, we compared models with and
without eligibility traces. For AC, Q-learning, and SARSA, the models with eligibility traces
produced lower BIC scores for all but 2 participants.

Having examined the fits, we then tested whether the models predicted the characteristic
behavioral and ERP results. We generated behavioral predictions for 13 participants using
the individual parameter estimates and trial histories. Table 2 shows average response
accuracy over the first and second halves of blocks for all models. The values in Table 2
reveal two trends. First, all models without eligibility traces underpredicted accuracy for the
start choice in the first half of blocks [AC, t(12) = 6.486, p < .0001; Q-learning, t(12) =
7.447, p < .0001; SARSA, t(12) = 7.509, p < .0001]. Of the models with eligibility traces,
only AC underpredicted accuracy for the start choice in the first half of blocks, t(12) =
2.805, p < .05. Second, AC models systematically underpredicted accuracy in the first half
of blocks and overpredicted accuracy in the second half of blocks. To confirm this
observation, we applied separate 2 (data set: simulation, observed) by 3 (choice) repeated
measures ANOVAs to response accuracy in the first and second halves of blocks. In the first
half of blocks, AC models with, F(1, 12) = 95.461, p < .0001, and without, F(1, 12) =
94.246, p < .0001, eligibility traces underpredicted accuracy relative to the participants. Q-
learning and SARSA did not. In the second half of blocks, AC models with, F(1, 12) =
7.622, p < .05, and without, F(1, 12) = 17.668, p < .01, eligibility traces overpredicted
accuracy relative to the participants. Q-learning and SARSA did not.

We then generated ERP predictions for 13 participants using the individual parameter
estimates and trial histories. We computed model fERN as the difference in δ for expected
feedback, unexpected feedback, and cues. Average fERN scaling factors ranged from 3.01
to 3.19 and did not differ significantly between models. Table 3 shows average fERNs over
the first and second halves of blocks for all models. All predicted that the cue fERN would
increase with experience. Additionally, all predicted that the fERN for unexpected outcomes
would increase with experience while the fERN for expected outcomes would decrease with
experience. These trends were observed.

The behavioral and ERP predictions of Q-learning and SARSA are very similar. In fact,
these algorithms are functionally equivalent when the individual makes optimal selections.

5We also tested versions of AC with separate learning rates for the actor and critic elements. In the model without eligibility traces,
BIC scores were lower for all but 1 participant when a single learning rate was used, and in the model with eligibility traces, BIC
scores were lower for all participants when a single learning rate was used.
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This similarity notwithstanding, SARSA treats future reward as the value of the actual
action selected in the next state. To assess whether fERN depended on the value of the
actual action selected in the future, we reanalyzed the cue-locked waveforms based on cue
identity (.2 cue, .8 cue) and the accuracy of the forthcoming response. If prediction error
depended on the value of future actions, we expected that waveforms would be relatively
more negative before participants chose incorrect responses than before they chose correct
responses. From 200 to 300 ms after cue presentation, the mean amplitude was smaller for .2
than for .8 cues at site FCz, F(1, 12) = 5.927, p < .05. Mean amplitude did not depend on the
accuracy of the forthcoming response, however, F(1, 12) = 1.449, p > .1, and the interaction
was not significant, F(1, 12) = 0.134, p > .1. The finding that the cue fERN did not depend
on the value of the future response is inconsistent with SARSA.

General discussion
The goal of this study was to understand how people overcome the problem of temporal
credit assignment. To address this question, we recorded ERPs as participants performed a
sequential decision task. The experiment yielded two clear results. First, the fERN was
larger for unexpected than for expected outcomes, consistent with the view that fERN
reflects neural prediction error (Holroyd & Coles, 2002). In experiments that have failed to
establish a relationship between fERN and prediction error, feedback did not depend on
participant behavior (e.g., gambling or guessing tasks; Donkers et al., 2005; Hajcak et al.,
2005; Hajcak et al., 2006). In our experiment, and in other experiments that have established
a relationship between fERN and prediction error, feedback did depend on participant
behavior (Holroyd & Coles, 2002; Holroyd & Krigolson, 2007; Holroyd et al., 2009;
Nieuwenhuis et al., 2002). Second, and more importantly, ERPs were more negative after .2
cues than after .8 cues, even though cues did not directly signal reward. The time course and
scalp distribution of the cue-locked effect were compatible with those of the fERN. The
finding that fERN followed cues suggests that people evaluated intermediate states in terms
of future reward, as predicted by TD learning models.

The RL-ERN theory proposes that fERN reflects the arrival of a TD learning signal at the
ACC (Holroyd & Coles, 2002). The RL-ERN was motivated by electrophysiological
recordings from midbrain dopamine neurons in behaving animals. In an extensive series of
studies, Schultz and colleagues demonstrated that the phasic response of these neurons
mirrored TD prediction error (Schultz, 1998). When a reward was unexpectedly received,
neurons showed enhanced activity at the time of reward delivery. When a conditioned
stimulus (CS) preceded reward, however, neurons no longer showed enhanced activity at the
time of reward delivery. Rather, the dopamine response transferred to the earlier CS. The
results of the present experiment are consistent with these studies in showing that
intermediate states inherit the value of the rewards that follow. These results are also
consistent with a recent fMRI study of higher-order aversive conditioning in humans
(Seymour et al., 2004). When cues predicted the delivery of painful stimuli, activation in the
ventral striatum and anterior insula mirrored TD prediction error. The present experiment
provides further evidence of a neural TD signal in a sequential-learning task using appetitive
rather than aversive outcomes, and in the context of instrumental rather than classical
conditioning.

The RL-ERN theory proposes that fERN follows the earliest outcome predictor. For
example, when stimulus–response mappings could be learned in a two-alternative forced
choice task, the ERN only followed incorrect choices (Holroyd & Coles, 2002). Conversely,
when stimulus–response mappings could not be learned, the ERN only followed negative
feedback. The RL-ERN motivated a recent experiment in which participants chose between
arms of a T-maze and then viewed a cue that was or was not predictive of the trial outcome
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(Baker & Holroyd, 2009). When cues were predictive of outcomes, the fERN only followed
cues. Conversely, when cues were not predictive of outcomes, the fERN only followed
feedback.

Although the findings of Baker and Holroyd (2009) anticipate the present results, it was
unclear whether we would observe a cue fERN. In Baker and Holroyd’s study, participants
were told which cues signaled reward and punishment. Additionally, cues were perfectly
predictive of outcomes, and outcomes immediately followed cues. In our task, participants
learned which cues signaled reward and punishment. Additionally, cues were not perfectly
predictive of outcomes, and outcomes followed an intervening response. The present
experiment extends Baker and Holroyd’s conclusions in two important ways. First, because
our task permitted learning, we could observe the relationship between behavior, fERN, and
the predictions of TD learning models. Second, the probabilistic nature of our task allowed
us to observe fERNs after cues and feedback within the same trial, and in a manner
consistent with a TD learning signal.

Our computational simulations provide insight into the effects of experience on the fERN
and behavior. These dynamics are illustrated in Fig. 8, which shows how utility estimates
and response accuracy in one model, Q-learning with eligibility traces, evolved over the
course of the experiment. These dynamics clarify four nuanced features of the data.

First, fERN was greater for unexpected than for expected outcomes. The utility of correct
responses for the .2 and .8 cues approached .2 and .8 (Fig. 8, top). Consequently, the
magnitude of prediction errors following unexpected losses (0 – .8) and wins (1.0 – .2)
exceeded the magnitude of prediction errors following expected losses (0 – .2) and wins (1.0
– .8), yielding a greater fERN for unexpected outcomes. The cue fERN was similar to the
fERN for expected outcomes. Future rewards associated with the .2 and .8 cues were
approximately .16 (γ · .2) and .64 (γ· .8). The utility of the correct initial response
approached the average of these values, .4 (Fig. 8, top). Because the magnitudes of
prediction errors following .2 cues (.16 – .4) and .8 cues (.64 – .4) were so similar to the
magnitudes of prediction errors following expected losses and wins, fERN amplitudes were
also very similar. As this example illustrates, the temporal discount parameter and the values
of future rewards constrained the magnitudes of prediction errors for initial selections.

Second, response accuracy was greatest for the .8 cue, followed by the start choice, followed
by the .2 cue. The model produced this ordering (Fig. 8, bottom) because the difference in
utility between incorrect and correct responses was greatest for the .8 cue, followed by the
start choice, followed by the .2 cue (Fig. 8, top).

Third, the fERN decreased for expected outcomes and increased for unexpected outcomes.
Because utility estimates began at identical values, the model did not immediately
distinguish between expected and unexpected outcomes. As the utility of correct responses
for the .2 and .8 cues approached .2 and .8 (Fig. 8, top), however, the magnitude of
prediction errors decreased for expected outcomes and increased for unexpected outcomes,
producing the observed changes in fERNs. Physiological studies have also revealed
experience-dependent plasticity in neural firing rates (Roesch, Calu, & Schoenbaum 2007),
and fMRI studies have confirmed that changes in the BOLD response in reward valuation
regions parallel learning (Delgado, Miller, Inati, & Phelps 2005; Haruno et al., 2004;
Schonberg, Daw, Joel, & O’Doherty 2007).

Fourth, and finally, the cue fERN increased with experience. The model only strongly
distinguished between .8 and .2 cues after the values of actions that followed those cues (i.e.,
future rewards) became polarized. As this result demonstrates, the TD model learned the
utility of actions that were near to rewards before learning the utility of actions that were far
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from rewards. Humans and animals typically exhibit such a learning gradient (Fu &
Anderson, 2006; Hull, 1943).

These simulation results are consistent with a class of TD learning models. We examined
predictions of three such models: the actor/critic model, Q-learning, and SARSA. The actor/
critic model is the most widely used framework for studying neural RL. According to one
influential proposal, the dorsal striatum, like the actor, learns action preferences, and the
ventral striatum, like the critic, learns state values (Montague, Dayan, & Sejnowski 1996;
O’Doherty et al., 2004). Recent recordings from midbrain dopamine neurons in rats and
monkeys have provided evidence for Q-learning and SARSA, however (Morris, Nevet,
Arkadir, Vaadia, & Bergman 2006; Roesch et al., 2007). Thus, the models we evaluated
have received mixed support. Additionally, we considered variants of each model with and
without eligibility traces. Although traces were first explored in the context of machine
learning, they have since been applied to models of reward valuation and choice.

We found that eligibility traces improved response accuracy in all models. The improvement
was limited to the start choice, however, because eligibility traces primarily facilitate
learning when delays separate actions and rewards (Sutton & Barto, 1998). We also found
that Q-learning and SARSA predicted the characteristic behavioral results, while actor/critic
underpredicted accuracy in the first half of blocks and overpredicted accuracy in the second
half of blocks. Why did this occur? The actor/critic model is a reinforcement comparison
method (Sutton & Barto, 1998); learning continues as long as suboptimal actions are
selected. As a consequence, actor/critic moved toward deterministic selections in the second
half of blocks. To offset the resulting error, actor/critic required a lower learning rate, α,
which produced lower accuracy in the first half of blocks. The use of separate learning rates
for the actor and critic elements did not eliminate this problem. This problem could be
mitigated, however, by gradually decreasing the learning rate or by increasing selection
noise. Finally, we found that the cue fERN did not vary with the accuracy of forthcoming
responses. This result is consistent with actor/critic and Q-learning, but not with SARSA.

Although the results of the experiment are consistent with TD learning, the apparent cue
fERN may have been related to factors besides credit assignment. For example, a long-
latency frontocentral negativity precedes stimuli with negative affective valence (Bocker,
Baas, Kenemans, & Verbaten 2001). Perhaps the cue-locked effect arose from emotional
anticipation of negative feedback after the .2 cue. Because stimulus-preceding negativities
(SPNs) develop before motivationally salient stimuli regardless of their valence, however,
there is no reason to expect that SPNs would uniquely follow cues that predicted negative
feedback (Kotani, Hiraku, Suda, & Aihara 2001; Ohgami, Kotani, Hiraku, Aihara, & Ishii
2004). Response conflict is also accompanied by a frontocentral negativity that occurs 200
ms after stimulus presentation (Kopp, Rist, & Mattler 1996; van Veen & Carter, 2002).
Perhaps the cue-locked effect was related to the fact that both response letters had low
utilities for the .2 cue, but one letter had a far greater utility for the .8 cue. This could
produce greater response conflict for the .2 cue. The absence of a difference in reaction
times between the .2 and .8 cues is not consistent with this account, however. Finally,
multiple ERP components, including the N2 and the P300, are sensitive to event
probabilities (Duncan-Johnson & Donchin, 1977; Squires, Wickens, Squires, & Donchin
1976). Although the .2 and .8 cues appeared with equal probability when participants
selected the correct letter in the first pair, the .2 cue always appeared when they selected the
incorrect letter. Averaging over initial selections, then, the .8 cue appeared less frequently
than the .2 cue. Perhaps the cue-locked effect related to these different probabilities.
Importantly, the difference between cue probabilities decreased over the experiment because
participants increasingly selected the correct letter. If differences in the cue-locked ERPs

Walsh and Anderson Page 12

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2011 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



related to cue probabilities, one would expect the cue-locked effects to decrease, rather than
increase, over the experiment.

Summary
Although an increasing number of studies have provided support for TD learning, most
involve situations in which feedback immediately follows actions or predictive cues. Our
study shows the evaluation of rewards beyond intervening actions. Although many theories
have proposed that such evaluations underlie temporal credit assignment (Fu & Anderson,
2006; Holroyd & Coles, 2002; Schultz et al., 1997; Sutton & Barto, 1998), to our knowledge
the present results provide one of the clearest demonstrations of this process. These results
advance theories of human decision making by showing that people use TD learning to
overcome the problem of temporal credit assignment. Additionally, these results advance
theories of neural reward processing by showing that the fERN is sensitive to immediate
reward and the potential for future reward.
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Fig. 1.
Experimental procedure
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Fig. 2.
Experimental states, transition probabilities, and outcome likelihoods
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Fig. 3.
Response accuracy (±1 SE) for start choice, .8 cue, and .2 cue
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Fig. 4.
(Left panels) ERPs for unexpected and expected losses and wins. Zero on the abscissa refers
to feedback onset, negative is plotted up, and the data are from FCz. (Right panels) Scalp
distributions associated with losses – wins for unexpected and expected outcomes. The time
is from 200 to 300 ms with respect to feedback onset
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Fig. 5.
Mean fERNs (±1 SE) at FCz for unexpected outcomes, expected outcomes, and cues
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Fig. 6.
(Left panels) ERPs for .2 and .8 cues for the first and second halves of the experimental
blocks. Zero on the abscissa refers to cue onset, negative is plotted up, and the data are from
FCz. (Right panels) Scalp distributions associated with .2 cues – .8 cues for the first and
second halves of the experimental blocks. The time is from 200 to 300 ms with respect to
cue onset
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Fig. 7.
Mean parameter estimates (±1 SE) for models without (left panel) and with (right panel)
eligibility traces
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Fig. 8.
(Top panel) Dynamics of the Q-learning model with eligibility traces: Q values for the .8
cue (long dashes), the .2 cue (short dashes), and the start choice (solid) letter pairs. Black
lines show the utility of the correct letter in the pair; and gray lines show the utility of the
incorrect letter in the pair. (Bottom panel)Response accuracy for the .8 cue, the .2 cue, and
the start choice
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