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Purpose: Cochlear implant surgery is used to implant an electrode array in the cochlea to treat

hearing loss. The authors recently introduced a minimally invasive image-guided technique termed

percutaneous cochlear implantation. This approach achieves access to the cochlea by drilling a sin-

gle linear channel from the outer skull into the cochlea via the facial recess, a region bounded by

the facial nerve and chorda tympani. To exploit existing methods for computing automatically safe

drilling trajectories, the facial nerve and chorda tympani need to be segmented. The goal of this

work is to automatically segment the facial nerve and chorda tympani in pediatric CT scans.

Methods: The authors have proposed an automatic technique to achieve the segmentation task in

adult patients that relies on statistical models of the structures. These models contain intensity and

shape information along the central axes of both structures. In this work, the authors attempted to

use the same method to segment the structures in pediatric scans. However, the authors learned that

substantial differences exist between the anatomy of children and that of adults, which led to poor

segmentation results when an adult model is used to segment a pediatric volume. Therefore, the

authors built a new model for pediatric cases and used it to segment pediatric scans. Once this new

model was built, the authors employed the same segmentation method used for adults with algo-

rithm parameters that were optimized for pediatric anatomy.

Results: A validation experiment was conducted on 10 CT scans in which manually segmented

structures were compared to automatically segmented structures. The mean, standard deviation,

median, and maximum segmentation errors were 0.23, 0.17, 0.18, and 1.27 mm, respectively.

Conclusions: The results indicate that accurate segmentation of the facial nerve and chorda tympani

in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed

automatically. VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3634048]

Key words: facial nerve, chorda tympani, cochlear implant, ear, optimal cost path, pediatric CT,

image segmentation, atlas creation

I. INTRODUCTION

Cochlear implantation (CI), a surgical technique, is routinely

performed to restore hearing ability for patients that experi-

ence bilateral, severe hearing loss.1 In CI, an electrode array is

surgically placed in the cochlea, via either a natural opening

(the round window) or a surgical opening (cochleostomy), for

electrical stimulation of the auditory nerve. The electrode

array receives signals from externally worn components con-

sisting of a microphone, a sound processor, a signal transmit-

ter, and a signal receiver. The microphone senses sound

waves. Then, the sound processor decomposes the sound

waves, in a process that usually involves Fourier analysis, and

converts them into electrical signals that can be transmitted to

the signal transmitter. Finally, the signal transmitter relays the

electrical signals to an internally implanted receiver that, in

turn, transmits the electrical signals to the electrode array.

In traditional CI procedures, access to the cochlea is

achieved by a wide excavation of the temporal bone region of

the skull and manually accessing the cochlea through the facial

recess. Recently, we introduced a minimally invasive image-

guided CI technique called percutaneous cochlear implantation

(PCI).2 PCI achieves access to the cochlea by drilling a single

linear channel from the outer skull into the cochlea via the fa-

cial recess. The facial recess is a region approximately 2.5 mm

wide bounded posteriorly by the facial nerve that controls ipsi-

lateral facial mimetic motion and anteriorly by the chorda tym-

pani that controls ipsilateral taste to the tip of the tongue. The
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drilling trajectory is computed by algorithms that we devel-

oped to find a path that targets the cochlea and optimally pre-

serves the safety of critical ear anatomy structures such as the

ossicles, ear canal, facial nerve, and chorda tympani.3 Drilling

is constrained to follow the computed trajectory by a patient-

customized micro-stereotactic drill guide, called a microtable,

which was designed by our group.4 The PCI approach involves

the following four steps: (1) preoperative planning, (2) intrao-

perative registration, (3) drill guide fabrication, and (4) drill

guide mounting and drilling.

Step 1: Preoperative planning
Prior to CI surgery, a CT scan of the patient’s head con-

taining the ear region is acquired. Then, the ear structures

are automatically identified and accurately segmented.5,6

Based on the segmented structures, a safe drilling trajectory

is computed automatically.3

Step 2: Intraoperative registration
On the day of surgery, three fiducial markers are

implanted, typically at the most inferior (mastoid tip), poste-

rior, and superior positions of the temporal bone. The marker

consists of an anchor that is screwed into the bone, a metal

sphere that serves as a fiducial marker, and a tubular ex-

tender that connects the two. A CT scan of the part of the

head containing the markers and ear region is obtained using

a CT scanner (e.g., xCAT ENT Mobile from Xoran Technol-

ogies, Ann Arbor, MI; voxel size 0.3� 0.3� 0.4 mm3).

Next, the acquired intraoperative and preoperative CT scans

are isotropically downsampled by a factor of 4 and rigidly

registered using a 6 DOF (translation and rotation in three

dimensions) transformation. Then, the regions of the ear are

cropped from both images and subsequently registered using

a 12 DOF (translation, rotation, scale, and skew in three

dimensions) affine transformation. The transformations are

automatically estimated with an intensity-based registration

method that maximizes the mutual information between the

images.7,8 Usually, the preoperative image is acquired a few

days before the surgery, but for cases where there is a sub-

stantial time gap between the preoperative CT and the sur-

gery, this affine registration is necessary to account for local

deformations caused by growth of the temporal bone. Using

the compound affine transformation, the drilling trajectory

generated from the preoperative plan is transformed into the

intraoperative image space, i.e., the space in which the fidu-

cial markers are located. Finally, the centers of the markers

are identified by a semiautomatic method developed by our

group that starts with a user provided seed point.9,10

Step 3: Drill guide fabrication
The microtable used as a patient specific drill guide is

manufactured from a slab of Ultem (Quadrant Engineering

Plastic Products, Reading, PA). The tabletop of the microt-

able has four holes. In three of them, legs are affixed that

connect it to the fiducial markers. The drill bit is guided

through the fourth hole (targeting hole). Fabrication of the

microtable requires determining the location and depth of

the four holes. These values are determined so that the tar-

geting hole is collinear with the planned drilling trajectory.

A component of the intraoperative software developed by

our group is used to generate the command files that are

used by a CNC machine (e.g., Ameritech CNC, Broussard

Enterprise, Inc., Santa Fe Springs, CA) to manufacture the

microtable. The CNC machine takes less than 3 min to com-

plete the fabrication of the microtable.

Step 4: Drill guide mounting and drilling
Once the microtable is fabricated, it is mounted on the

marker spheres, and a drill press is attached to the targeting

hole. Finally, drilling is performed to just lateral to the facial

recess with a wide bore drill bit (4 mm diameter) and

through the facial recess and more medially with a 1.5 mm

diameter drill bit. The bit is guided through the targeting

hole along the preoperatively planned drilling trajectory and

perpendicular to the tabletop of the microtable. Figure 1

shows a microtable mounted on a patient’s head with a sham

drill bit inserted during clinical validation testing.

I.A. Challenges in segmentation

The facial nerve, which controls the movement of the ip-

silateral face, and the chorda tympani, which controls the

sense of taste, are sensitive anatomical structures that are in

close proximity to the desired CI drilling trajectory. Thus, to

compute a safe insertion trajectory that will avoid damage to

these structures, the facial nerve and chorda tympani need to

be segmented. The effectiveness of traditional segmentation

methods, such as atlas-based segmentation, is limited since

the facial nerve and chorda tympani are thin structures

(0.8–1.7 mm and 0.3–0.8 mm in diameter, respectively), ex-

hibit poor contrast with adjacent structures, and are sur-

rounded by highly variable anatomy. To accurately segment

these structures, we developed an automatic segmentation

method that relies on a statistical model of the structures.5

The models include intensity and shape information that

varies with position along the medial axis of the respective

structures. We are now extending the PCI concept to pediat-

ric patients. This requires segmenting the facial nerve and

chorda tympani in pediatric CT scans. While doing so, we

learned that substantial differences exist between the ear

anatomies of adults and children. This led to poor segmenta-

tion of the facial nerve and chorda tympani when a model of

adult anatomy was used to segment a pediatric CT.

FIG. 1. Microtable mounted on a patient head.
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The facial nerve is a thin tubular structure that travels

through the temporal bone. In the second-genu region, the

facial nerve bends and travels between the stapes and lateral

semicircular canal. The facial nerve then continues in the

mastoid portion of the temporal bone and exits through the

stylomastoid foramen. Figure 2 shows the facial nerve and

chorda tympani. To visualize the full length of the structures

in panels (a) and (b), we mapped the 3D centerlines of the

structures onto the coronal plane. This mapping was used to

create a thin-plate-spline (TPS)-based transformation that

was then used to interpolate the CT images to the same

plane. It is clearly seen in panels (a) and (b) that the facial

nerve makes a sharper turn in pediatric patients than it does

in adult patients. The chorda tympani typically branches

from the vertical segment of the facial nerve approximately

1–2.5 mm superior to the stylomastoid foramen and runs at

an angle to the tympanic membrane as shown in panel (c).

During our study, we have observed that in some pediatric

cases, the chorda tympani enters the temporal bone near the

stylomastoid foramen. Panel (a) in Fig. 2 shows a chorda

tympani of an adult patient that branches from the vertical

segment of the facial nerve, whereas panel (b) shows a

chorda tympani of an infant that originates near the stylo-

mastoid foramen, instead of branching from the vertical seg-

ment of the facial nerve. We have also observed that the

angle and position at which the chorda tympani originates in

pediatric cases exhibit higher interpatient variation than in

adult cases.

To address the issue of anatomical differences, we have

constructed a new model for pediatric patients, and we have

employed the same segmentation algorithm that we used for

adults with parameters optimized for pediatric populations.

We report that, with this new model, accurate and automatic

segmentation of the facial nerve and chorda tympani is

achievable in pediatric patients.

II. METHODS

II.A. Data

A total of 22 pediatric scans, with age range of 11 months

to 16 yr, were used in this study. The images were acquired

from different scanners. Typical scan resolution is

512� 512� 130 voxels of 0.3� 0.3� 0.4 mm3 size. Out of

the 22 scans, one was selected as a reference (atlas) volume,

11 were used as training volumes in order to generate the

model, and the other ten were used as test volumes. The atlas

volume was chosen based on subjective criteria, i.e., there

was strong contrast between bone and soft tissue in the

image, the spatial resolution of the image was high, the size

of the patient’s head was representative of the data set, and

the patient’s head was roughly located near the center of the

image and oriented in the transverse direction.

II.B. Segmentation approach

The general approach we use to segment the structure

involves extracting the centerline of the structure and then

expanding it into the full structure using a standard level set

method.11 In order to find the centerline in a target volume,

we use a minimal cost path algorithm. To provide the mini-

mum cost path algorithm with a priori intensity and shape

FIG. 2. Comparison of facial nerve and chorda tympani

structures in an adult and a pediatric CT scans. (a) Con-

tours of facial nerve and chorda tympani in an adult

CT. (b) Contours of facial nerve and chorda tympani in

a pediatric CT. (c) 3D rendering of the anatomy.
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costs, we create a model of the structure. The model is

designed so that it can be aligned with the target volume.

II.C. Model generation

The model is composed of statistical intensity and shape

information associated with each voxel along the centerline

of the structure of interest (SOI). The model centerline is

defined as the centerline of the manually delineated SOI in

the atlas volume. Each model centerline voxel is associated

with statistical values of three features: intensity, width, and

unit orientation vector. These values are computed as an en-

semble average of the respective feature values measured

from all the training scans’ corresponding centerline points.

The model is used to both define a cost function for center-

line extraction and to create a speed function. The speed

function defines the rate of expansion at each voxel for the

level set algorithm, which expands the centerline into the

full structure.11 The model data are stored only on the left

ear of the reference volume. The right ear is modeled by

reflecting the left ear model across the midsagittal plane,

which is possible due to the symmetry of the human head.12

The model generation process, outlined in Fig. 3, consists

of the following four steps: (a) the SOIs are manually

segmented in the reference and training scans. The manual

segmentations were created by a student rater and later cor-

rected by two experienced physicians. (b) The training

images are aligned with the reference image by applying a

series of three affine registrations. The first is a surface-

based registration computed to correct the size difference

between the reference and training images. This is necessary

because the size of the head in the pediatric population

varies substantially. This variability can be problematic for

standard image registration algorithms, which are sensitive

to initial position. Thus, the skull surfaces of the training vol-

umes are first registered to the skull surface of the reference

volume using the iterative closest point (ICP) algorithm.13

This minimizes the sum of squared distances between all

points from the reference surface to their closest points on

the training surface. The surfaces of the skulls are extracted

using the marching cubes algorithm, which creates triangle

models of constant intensity surface from 3D image data.14

For some volumes, manual initialization (rotation and trans-

lation) of the surface-based registration is necessary- because

the images are acquired with the head in various positions

(rotation and translation from the center of the field of view)

due to patient sedation. Next, an intensity-based affine regis-

tration is applied to the images, after being downsampled by

a factor of four in each dimension. Once global alignment of

the training images with the reference images is achieved,

the part of the scan with the ear anatomy is cropped from the

training volumes using a bounding box on the region of in-

terest projected from the reference volume. Finally, the

cropped images are registered using an intensity-based affine

registration applied at full resolution. The intensity-based

registrations use Powell’s direction method and Brent’s line

search algorithm15 to optimize the mutual information7,8

between the images and estimate a transformation matrix

with 12 DOF (three rotations, translations, scales, and

skews). Applying registration on the whole volumes at a

lower resolution followed by registration of the cropped

regions at full resolution is computationally more efficient

and, in our experience, leads to improved accuracy in the

region of interest. (c) The manual delineations of the SOIs in

the training volumes are projected onto the affinely regis-

tered reference space using the compound registration trans-

formation. Then, centerlines of the manual segmentations

are extracted using a topology preserving voxel thinning

algorithm.16 At each point along the extracted centerlines,

values of structure width, intensity, and curve orientation are

measured and stored. The orientation vector at each voxel is

estimated using central differences, except for the first and

last voxels where forward and reverse differences are used.

(d) The reference volume is nonrigidly registered to each

affinely registered training volume using an intensity-based

nonrigid registration technique17 that registers images by

maximizing a normalized mutual information-based objec-

tive function.18 Centerline points from the reference volume

are projected onto each affinely registered training volume

using the obtained nonrigid deformation field. A correspon-

dence, based on the minimum Euclidean distance, is estab-

lished between each reference centerline point and the

closest point from each affinely registered training volume’s

centerline. This results in one corresponding point in each

training volume for every reference point. Subsequently, sta-

tistical values of width, intensity, and orientation features at

each point along the model centerline are computed as the

average of the measurements from its set of corresponding

FIG. 3. Model-generation steps.
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points. Features are measured on the affinely registered train-

ing images.

The above model generation process is applied to both

the facial nerve and chorda tympani to create models for

these two structures. In Fig. 4, panel (c) shows the surfaces

of the facial nerve and chorda in the reference volume. The

mean and standard deviation of the intensity (in Hounsfield

units) along the facial nerve and chorda tympani in the pedi-

atric population is shown in panels (a) and (b), respectively.

These panels clearly show that the intensity of the structures

in CT scans changes along their length. It also shows that

there is a considerable variation in intensity at each point

along the length. This represents a challenge to segmentation

methods that rely on a single threshold or even on intensity

distributions.

Figure 5 demonstrates the differences in intensity and

shape characteristics between adult and pediatric models.

Panel (a) compares the average intensity profiles of the facial

nerve in the two populations. Although the two functions

have a similar trend, the intensities along the pediatric facial

nerve are consistently higher. The average intensity profile

of the chorda in the pediatric volumes, shown in panel (b), is

consistently lower compared to the adult model. Surface

models of the average adult and average pediatric facial

nerves are shown in panel (c). It is clearly shown that, on av-

erage, the facial nerve in the second-genu region makes a

sharper turn for pediatric than for adult individuals. In order

to create this image, the pediatric model is projected onto the

adult image space using the transformation matrix obtained

by applying a series of affine registrations, as described in

step (b) of the model generation procedure, to align pediatric

and adult images. These intensity and shape differences

explain the limited success we achieved when applying an

adult model of the anatomy to segment pediatric images.

Thus, we have constructed a new pediatric model for pediat-

ric patients and employed the same segmentation algorithm

we used for adults with parameters optimized for pediatric

populations.

FIG. 4. Pediatric structures model data. (a) Facial nerve intensity data for different patients. (b) Chorda intensity data for different patients. (c) Surfaces of ear

anatomy in a reference volume.
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II.D. Structure segmentation

Once created, the models can be used to segment the struc-

tures in a target image using the model-based segmentation

algorithm we have developed, called the navigated optimal

medial axis and deformable-model (NOMAD) algorithm.19

The flow chart in Fig. 6 shows the structure segmentation

process in a target image. In the flow chart, a circle represents

an image when the inside text is a Roman letter and a

FIG. 5. Adult and pediatric population statistical model. (a) Facial nerve average intensity data for different patients. (b) Chorda average intensity data for dif-

ferent patients. (c) Facial nerve average orientation.

FIG. 6. Structure segmentation flow chart.
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transformation when it is a Greek letter. Rectangles represent

operations on images. The diamond represents model informa-

tion. T is the target image we want to segment, A is the atlas

image, and AE is the ear region of the atlas image. T is first

affinely registered to A and AE in order to produce TA. Then,

AE is nonrigidly registered to TA using the adaptive bases non-

rigid registration algorithm.17 Subsequently, the model center-

line points are projected onto TA using sn, the nonrigid

registration deformation field. Next, for each voxel in TA, the

closest point on the projected centerline is found and a corre-

spondence is established between that voxel and the model

point. Based on the correspondence, a cost matrix, speed func-

tion, and the start and end points of the structure centerline are

computed. The cost matrix and start and end points are sup-

plied to a minimum cost path algorithm to extract structure

centerline. A standard level set algorithm uses the speed func-

tion to expand the extracted centerline to full structure

segmentation. Finally, the segmented surface is projected back

onto T using sa, the affine transformation matrix.

The expressions of the cost terms associated with each

feature are presented in Table I. The parameters a and b are

used to adjust the relative importance of each feature in the

overall cost of a transition from one voxel to a neighboring

voxel. The table reports the values of each of these parame-

ters, followed by the sensitivity of the results to each param-

eter, as will be discussed later. A voxel in TA is represented

by x. MI(x) and MoðxÞ
���!

are model intensity and orientation

values associated with the projected model point that is near-

est to x. t
!

is the curve orientation at x. Nbhd(x) is the set of

26 voxels that are in the neighborhood of voxel x. Term 1

penalizes deviation of intensity from the intensity predicted

by the model. This cost term is zero when the intensity at

voxel x is equal to the intensity predicted by the model

MI(x). We set the value of the normalization in this term to

2000, since, based on qualitative observations, the difference

in intensity between a target and reference point is not more

than 2000. Term 2 penalizes curve orientation in a direction

different from the direction predicted by the model. Transi-

tions in the direction of the predicted orientation have a cost

of zero, while transitions in the opposite direction have a

maximum cost. Term 3 is a model-independent term that

favors voxels that are local intensity minima. The cost term

is zero when the intensity at x is a local minimum and is

highest when the intensity at x is a local maximum. The total

cost associated with a transition from one point to a new

point is the sum of term (1) and term (3) at the new point,

and term (2) evaluated in the direction of the transition to the

new point. This results in a 3-D cost matrix.

The start and end points of the facial nerve are identified

as the center of mass of the most inferior 5% and the most an-

terior 5% of the projected facial nerve mask, i.e., the mask

obtained after the manually delineated facial nerve mask in

the atlas is projected onto TA. For the chorda tympani, the start

and end points were identified in the adult population also as

the center of mass of the most inferior 5% and most superior

5% of the projected chorda mask. However, in the pediatric

population, this did not lead to an accurate segmentation of

the chorda tympani because this structure is more variable in

its starting position and orientation. To correct this, we

delineated chorda tympani masks both in the reference and in

each training image such that they extend 2–3 mm inferior to

their true starting positions. This increases the chances for the

NOMAD algorithm to arrive at an accurate localization of the

chorda tympani when it reaches the region of interest.

Once the starting points, the ending points, and the cost

matrix are computed, the structure centerline is computed as

the optimal path in the cost matrix using a minimum cost

path finding algorithm.20 Since the chorda tympani is a very

thin structure, we complete its full segmentation by assign-

ing a radius of 0.325 mm at each point of the centerline. Full

structure segmentation of the facial nerve is accomplished

by a standard geometric deformable model based on level

TABLE I. Expression of cost terms for centerline extraction.

Cost term Purpose

Facial nerve Chorda tympani

a B a b

1 b jTAðxÞ �MIðxÞj=2000½ �a Penalizes deviation from intensity

predicted by model

1.7|30%* 2.4|50% 3.4|80% 11.5|40%

2
b 1� t

!
�MoðxÞ
���!�� t

!����MoðxÞjj
����!

 !�
2

" #a Penalizes deviation from orientation

predicted by model

2.4|60% 12.5|50% 4.0|30% 1.0|80%

3
b 1� #fy in NbhdðxÞ :TAðyÞ > TAðxÞg

#fy in NbhdðxÞg

� �� �a Penalizes deviation from local

intensity minima

4.0|40% 1.0|40% 1.2|70% 1.5|70%

*Percentile represents allowable variation in coefficient resulting in < 0.5 mm change in total segmentation error.

TABLE II. Speed function for level set expansion.

Speed function Purpose

Facial nerve

d c

1 e½cMwðxÞd� Slows the rate of

propagation when

the structure width

is small

0.5|60% 1.0|60%

2 e �cðjTAðxÞ�MIðxÞj=2000Þd½ � Slows the rate of

propagation when

the local intensity

deviates from the

predicted value

0.2|50% 1.1|70%
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sets. The generated centerlines are used to initialize the evo-

lution. The rate of evolution at each centerline point is speci-

fied using the speed function, which is defined as the sum of

the two expressions shown in Table II. The parameters c and

d are used to adjust the relative importance of each feature in

the speed function. As is done in Table I, the value of, and

sensitivity of the algorithm to, each parameter is given in

Table II. The first term in the speed function slows the rate

when width at each centerline point is smaller, whereas the

second term slows the rate when the local intensity deviates

from the intensity predicted by the model. In a typical use of

level set techniques, the process iterates until convergence.

Here, we fix the number of iterations to three because the

lack of contrast between the structure and its surrounding

leads to leakage. Thus, the values of d and c have been esti-

mated on the training scans to lead to full structure segmen-

tation in three iterations.

II.E. Segmentation validation

We used two quantitative distance measures to evaluate

our segmentation accuracy, which we call automatic-to-man-

ual (AM) and manual-to-automatic (MA). To compute these

distances, the surface voxels of the manual and automatic

surfaces are identified. Once this is done, the MA error is

computed as the Euclidean distance from each voxel on the

manual surface to the closest voxel in the automatic segmen-

tation. Similarly, the AM error is computed as the distance

from each voxel on the automatic surface to the closest voxel

in the manual segmentation. The nonsymmetric AM and

MA errors reduce to zero when the manual and automatic

segmentations are in complete agreement.

The manual delineation of the structures on the testing

scans was done by a student and corrected by two experi-

enced physicians. The manual segmentations were gener-

ated only for the segments of the structures that are in

close proximity with the drilling trajectory. For the facial

nerve, those segments are the mastoid (vertical) and the

tympanic (horizontal) segments. For the chorda, the region

of interest is the segment that runs from the stylomastoid

foramen to the tympanic membrane. Validation experi-

ments were performed on the ten test volumes. A statistical

model is created using the reference and the training vol-

umes. Each test volume is then segmented using that

TABLE III. AM and MA segmentation errors on the ten test scans. Total refers to the mean, standard deviation, median, and max errors for all scans.

(a) Facial nerve segmentation errors measured in millimeters

Facial nerve

Mean Std. deviat Median Max I. Q. range

Volume Ear AM MA AM MA AM MA AM MA AM MA

1 Left 0.35 0.28 0.2 0.15 0.35 0.23 0.84 0.69 0.31 0.22

2 Left 0.19 0.25 0.11 0.12 0.19 0.23 0.53 0.72 0.16 0.14

3 Right 0.2 0.24 0.14 0.12 0.2 0.22 0.86 0.89 0.24 0.16

4 Right 0.26 0.21 0.21 0.11 0.26 0.19 1.27 0.7 0.25 0.15

5 Left 0.13 0.18 0.1 0.09 0.13 0.18 0.51 0.43 0.12 0.07

6 Right 0.23 0.27 0.15 0.13 0.23 0.25 0.95 0.81 0.25 0.19

7 Left 0.22 0.25 0.16 0.12 0.22 0.23 1.14 0.84 0.19 0.13

8 Left 0.26 0.22 0.16 0.1 0.26 0.19 0.91 0.58 0.15 0.11

9 Right 0.31 0.26 0.19 0.13 0.31 0.23 1.13 0.77 0.3 0.19

10 Left 0.14 0.18 0.09 0.07 0.14 0.17 0.55 0.58 0.13 0.1

total 0.23 0.24 0.17 0.12 0.18 0.21 1.27 0.89 0.22 0.15

(b) Chorda tympani segmentation errors measured in millimeters

Chorda tympani

Mean Std. devia Median Max I.Q. range

Volume Ear AM MA AM MA AM MA AM MA AM MA

1 Left 0.15 0.11 0.04 0.03 0.13 0.11 0.27 0.23 0.1 0.1

2 Left 0.1 0.09 0.03 0.05 0.1 0.07 0.24 0.35 0.09 0.07

3 Right 0.1 0.11 0.04 0.09 0.11 0.07 0.33 0.62 0.06 0.06

4 Right 0.32 0.3 0.28 0.28 0.14 0.13 1.25 1.07 0.15 0.12

5 Left 0.13 0.11 0.05 0.06 0.1 0.09 0.32 0.35 0.07 0.06

6 Right 0.09 0.07 0.02 0.02 0.09 0.06 0.17 0.13 0.08 0.06

7 Left 0.1 0.11 0.04 0.09 0.09 0.07 0.33 0.62 0.03 0.04

8 Left 0.16 0.14 0.04 0.05 0.14 0.12 0.3 0.32 0.14 0.12

9 Right 0.2 0.19 0.06 0.07 0.21 0.16 0.32 0.38 0.14 0.13

10 Left 0.09 0.07 0.02 0.02 0.09 0.06 0.17 0.16 0.09 0.06

total 0.14 0.13 0.1 0.1 0.1 0.08 1.24 1.07 0.09 0.06
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statistical model. The parameter values used for segmenta-

tion (see Tables I and II) are selected using the procedure

described in Sec. II F.

II.F. Parameter selection

The values of a and b in the cost terms (see Table I)

and the values of c and d in the speed function (see Ta-

ble II) were modified heuristically on the training scans

until an acceptable value of the total maximum AM or

MA error was found. Once good values of the parame-

ters were obtained, each of these values were modified

in 5% increments in the direction that decreased the

maximum AM or MA error, until converging to a value

for which the error clearly increased. The final parameter

value was chosen in the generally flat region preceding

the convergence value. To characterize the sensitivity of

the algorithm to these parameter values, each parameter

was then modified, also on the training scans, with 10%

increments and decrements until the maximum AM or

MA error increased by 0.5 mm. The sensitivity of the

algorithm to the parameter values was then measured as

the percent deviation of the parameters at which this

increase in error occurs. The final parameter values and

the sensitivity of the algorithm to each parameter are

presented in Tables I and II.

III. RESULTS

The results of the validation performed on the ten test

volumes are presented in Table III. Shown in the table are

FIG. 7. Segmentation result. (a) 3D and 2D segmentation results for volume 4(R). (b) 3D and 2D segmentation results for volume 9(R). (c) 3D and 2D segmen-

tation results for volume 10(L).
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the values of mean, standard deviation, interquartile range,

median, and maximum errors in millimeters for both the fa-

cial nerve and chorda tympani. The errors are measured

using the two evaluation metrics, MA and AM, as discussed

above. The mean and median errors for the structures are

approximately 0.2 mm (<1 voxel). Maximum errors are 1.3

mm for the facial nerve and 1.2 mm for the chorda tympani.

To assist in the interpretation of the results, 2D and 3D ren-

derings for three of the experiments are shown in Fig. 7.

Two experiments that resulted in large segmentation errors

are presented in panels (a) and (b), respectively. In panel (c),

renderings of an experiment that resulted in low overall error

are presented. Manual segmentation contours are in light yel-

low and automatic contours are in dark purple. In the 3D vis-

ualizations, the color encodes the distance in millimeters to

the closest point on the corresponding manual surface. Each

3D rendering shows a view of the segmentations along the

path-of-flight of the planned drilling channel (position

marked with red circle) computed using the automatic seg-

mentations. The largest chorda segmentation error can be

seen at its superior endpoint in panel (a). Errors occurred in

this region adjacent to the tympanic membrane in several

experiments. This is because the chorda and surrounding

structures are highly variable and lack contrast in CT in

this region. The variability is so extreme that manual identi-

fication can be challenging. In panel (b), the largest facial

nerve error can be seen near the end of its horizontal seg-

ment. This also is a region where error maxima occur in sev-

eral experiments.

IV. DISCUSSION AND CONCLUSIONS

The percutaneous cochlear implantation surgery tech-

nique we have introduced requires the segmentation of the

facial nerve and chorda tympani to compute a safe drilling

trajectory. In previous work presented by our group, the seg-

mentation of these structures was achieved using an algo-

rithm that relies on a statistical model generated from an

adult population. We tested this algorithm on a pediatric

population with limited success due to the substantial differ-

ences between adult and pediatric anatomy. The differences

are observed in the second-genu region of the facial nerve

where the nerve makes a sharper turn in children than it does

in adult patients. In addition, we observed variation in the

starting position of the chorda tympani across patients. Typi-

cally, the chorda tympani branches from the vertical segment

of the facial nerve. However, in pediatric patients, it is not

uncommon for it to exit from the stylomastoid foramen

alone. In this work, to correct for the anatomical differences,

a pediatric-specific statistical model is built and the same

segmentation algorithm employed on adults is used for the

segmentation of the facial nerve and chorda tympani in the

pediatric population.

In both the pediatric and adult implementations (see Tables

1 and II of Ref. 5), the algorithm is less sensitive to the speed

function parameters {d, c} than those of the optimal path cost

function {a, b}. In the adult implementation, the orientation

term is weighted the lowest for both the facial nerve and chorda

tympani. In the pediatric implementation, the orientation term

is weighted the lowest for the chorda tympani. In contrast to

the adult implementation, the orientation term is weighted the

highest for the facial nerve in the pediatric implementation. We

attribute this to the sharp turn of the facial nerve in pediatric

individuals, which requires higher shape cost.

The automatic segmentation algorithm was evaluated on

ten CT scans, resulting in mean, standard deviation, median,

and maximum errors of 0.237, 0.121, 0.214, and 1.273 mm,

respectively, for the facial nerve. These results are 0.141,

0.1, 0.1, and 1.241 mm for the chorda tympani. Thus, the

segmentation algorithm was able to achieve subvoxel mean

error distance for both structures. Although the maximum

distances are substantial, they are highly localized. For the

facial nerve, these errors typically occur near the end of its

horizontal segment. Accuracy in this region is less vital for

PCI since it is not immediately adjacent to the facial recess.

Drilling trajectories were computed using each set of

automatic segmentations. All trajectories were assessed in

the patients’ CTs by an experienced surgeon and judged to

be safe. The results we have obtained thus suggest that the

percutaneous cochlear implant approach is a viable approach

for pediatric patients. To date, this technique has been suc-

cessfully used to perform planning prospectively on six pedi-

atric patients in the pediatric PCI clinical validation study

we are currently conducting.

The main limitation of the approach is that manual initial-

ization is required for registration of the atlas and target

images when there are substantial differences in head size,

position, and orientation between the images. This is because

large misalignments are not always corrected by the

automatic intensity-based registration methods described in

Sec. II C. Future work will include further automation of this

process as well as continuing the clinical validation of the

algorithm as a tool for safely planning pediatric PCI

surgeries.
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