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Abstract
Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and
cognition (i.e., problem solving by information processing) are essential to how we, as humans,
respond to changes in our environment. Recent studies in cognitive science suggest that emotion
and cognition are subserved by different, although heavily integrated, neural systems.
Understanding the time-varying relationship of emotion and cognition is a challenging goal with
important implications for neuroscience. We formulate here the dynamical model of emotion-
cognition interaction that is based on the following principles: (1) the temporal evolution of
cognitive and emotion modes are captured by the incoming stimuli and competition within and
among themselves (competition principle); (2) metastable states exist in the unified emotion-
cognition phase space; and (3) the brain processes information with robust and reproducible
transients through the sequence of metastable states. Such a model can take advantage of the often
ignored temporal structure of the emotion-cognition interaction to provide a robust and
generalizable method for understanding the relationship between brain activation and complex
human behavior. The mathematical image of the robust and reproducible transient dynamics is a
Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have
been hypothesized to be possible mechanisms that lead to the sequential transient behavior
observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is
supported in one part of a network, we study conditions under which the SHC pertaining to the
cognition will continue to function in the presence of interfering activity with other parts of the
network, i.e., emotion.
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1 Introduction
The emotion-cognitive behavior has its basis in dynamical coordination of many brain
centers, which often participate in both emotion and cognitive activity (Fales et al. 2008;
Lewis 2005; Pessoa 2008). Due to this overlap, emotion and cognition are integrated in the
sense of being partly separable (Gray et al. 2002). There are three main mechanisms of
cognitive-emotional interaction: (i) involvement of multiple brain centers, like amygdala and
prefrontal cortex, in both emotion and cognitive networks (Adolphs 2008; Phelps 2006); (ii)
the high degree of connectivity between different brain areas (Bechara et al. 2000); and (iii)
rhythmic brain activity (electric brain oscillations) at certain frequencies that supports
coherent interactions between anatomically distinct regions of the brain during cognitive
tasks, which require attention, working memory, or sensory processing (see, for example
Kelso 1995; Buzsaki 2006; Buzsaki and Draguhn 2004). An intriguing aspect of emotion-
cognition interaction is the cognitive control via emotions. On the neurobiological level,
cognitive control may be attributed to prefrontal activity inhibiting relevant subcortical
emotion processing regions.

Emotion and cognition are sequential dynamic processes resulting from interactions of
different brain subsystems (circuits) and their coordination/synchronization in time (Scherer
1993). Such properties make the modeling of mental processes an intriguing problem from
dynamical systems point of view. Several attempts have been taken recently in this direction
and in modeling disorders (Huber et al. 2001, 2004; beim Graben and Potthast 2009).

Sequential steps of emotion-cognition interactions are directly relevant to action control, in
terms of memory, decision-making, reasoning, attention, and emotion regulation (Reis et al.
2007). A predominant phenomenon governing the dynamics of the brain is that the nervous
system is responsible for its internal regulation, i.e., the generation and distribution of the
energy and memory resources between the emotions, thoughts, and actions. Thus, emotions
and cognition are active processes that result in specific functional changing of the brain
organization in time and the dynamical brain’s response to environmental information.
These processes are determined by the functional (not necessary synaptic) connections
between brain areas or neural circuits that participate in the execution of cognitive functions
and generation of emotions. At different segments or steps of temporal emotional or
cognitive process, the participating networks may vary, thus the temporal structure of the
different emotions in the brain also is different. In terms of the collective network activity,
emotion and cognition are not just spatial but spatio-temporal patterns, which are very
sensitive to external or internal stimulus events. This is the way for brain to solve the
fundamental conflict between the finite number of functionally-relevant centers in the
representation and the continuous spectrum of different emotions and the huge variety of
cognitive functions to be expressed. Such stimulus-dependent encoding is the origin of the
enormous brain capacity. The understanding of the temporal structure of spatio-temporal
patterns and experimentally verifiable models of the emotion-cognition sequential dynamics
are the key steps to enlighten specific functional relationship within multiple neuro-
anatomical structures, which are responsible for specific emotional and psychiatric
disorders. The dynamical system theory is a natural domain for the analysis of such a
complex network of neural clusters working coherently in time. Two key experimental
observations guide us towards a dynamical model: (i) the existence of metastable cognitive
states, and (ii) transitivity of reproducible cognitive processes (Rabinovich et al. 2008).

Despite the strong coupling between the cognition and emotions, their dependence on time
can be quite different. The main difference is the following: the emotion may be quasi-static
or recurrent in time, whereas a cognitive activity, by the nature of its task, must be transient
in time until the termination of the executed cognitive function. It can then return back to a
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static or rhythmic regime. Nonlinear dynamics constitutes the only feasible medium that can
accommodate such a behavior. The idea that emotion-cognitive activity can be understood
using nonlinear dynamics has been intensively discussed at length for the last 15 years
(Lewis et al. 2008; Friston 1997, 2000; Friston et al. 2003; Port and van Gelder 1995).

The main problem faced when using dynamical systems theory to describe transient neural
activity is the fundamental contradiction between reproducibility and flexibility of transient
behavior (Vogels et al. 2005; Abott 2008). A nonlinear dynamical behavior confined in a
stable sequence of metastable states is the only feasible solution to this dilemma.

Metastability is a general nonlinear dynamics concept, which describes states of delicate
equilibrium. A system is in a metastable state when it is in the vicinity of such an
equilibrium, i.e., a state where the system spends an extended (but finite) period of time.
Under the action of perturbations or interaction system is susceptible to fall into another
state. Metastability in the brain is a phenomenon, which is being studied in neuroscience to
elucidate how the human mind processes information and recognizes patterns. There are
semitransient signals in the brain, which persist for a while and are different than the usual
equilibrium state (Abeles et al. 1995; Werner 2007). Thus, metastability is a principle that
describes the brain’s ability to make sense out of seemingly random environmental cues
(Oullier and Kelso 2006). In the past 25 years, interest in metastability and the underlying
framework of nonlinear dynamics has been fueled by advancements in the methods by
which computers model brain activity. The metastability is supported by the flexibility of
coupling among diverse brain centers or neuron groups (Friston 1997, 2000; Ito et al. 2007;
Sasaki et al. 2007): that is, in the form of a continuum of dynamically shifting, discrete
configurations of brain networks (for a review, see Fingelkurts and Fingelkurts 2006). The
temporal order of the metastable states are determined by the functional connectivity of the
underlying networks and their causality structure (Chen et al. 2009).The brain metastable
states, in their turn, must appear in the EEG in the form of its piecewise stationary
organization which can be studied by means of the change-point analysis (Kaplan and
Shishkin 2000).

We develop here a theoretical description of the transient emotion-cognitive dynamics based
on the interaction of functionally-dependent emotion-cognitive modes. The basis of this
model has been recently discussed in Rabinovich et al. (2008) in the context of cognitive
modes competition without taking into account an emotional influence. The core of this
paradigm is a sequential Winnerless Competition (WLC) of different cortical subnetworks
for the brain resources along the execution process. Such competition is reminiscent of the
competition of different species for the environmental resources in ecology. WLC principle
was formulated first for the sensory systems (Rabinovich et al. 2001; Levi et al. 2004) and
was then applied for the description of some cognitive function like decision-making
(Rabinovich et al. 2008). Recent experimental evidence pinpoints competition among
metastable states in the rat gustatory cortex (Jones et al. 2007) also in olfactory system
(Rabinovich et al. 2008). A competitive and concurrent activity of multiple brain areas (Fox
et al. 2005, 2007) that collaborate in a large-scale cortical process is fundamentally
important for thinking, in particular, for sentence comprehension (Just and Varma 2007).
The physiological mechanism of such competition is inhibition (see for a review Aron 2007;
Rabinovich et al. 2006).

The paper is organized as follows: The winnerless competition principle and a unified model
of such joint activity among brain modes is introduced in the following section, which also
presents a simulation that accounts for possible qualitative and quantitative aspects of their
interaction. In Sects. 3 and 4, the mathematical frame-work of this interference is presented
and rigorous conditions on the robustness of metastable behavior are derived.
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2 Competition in the Brain
Neural activity demands certain physical (e.g., glucose, oxygen, etc.) and informational
(e.g., sensory stimulation) resources. A predominant factor underlying the brain dynamics is
the competition among brain centers and modes for these finite resources. The fundamental
mechanism in carrying out this competition is inhibition, which is widespread in the cortex.
Under mild constraints, the multi-agent competition induces a transient and predictable
dynamics. The stable heteroclinic channel (SHC) is a solid embodiment of these vital
features.

Thus, let us formulate the desired features of the basic dynamical model: (1) the model must
be dissipative with an unstable trivial state (origin) in the phase space and corresponding
linear increments must be stabilized by nonlinear decrements organized by self- and mutual-
inhibition (modes competition); (2) the phase space of the system must include metastable
states that represent the activity of an individual mode, when others modes are passive; and
(3) these metastable states must be connected by separatrices in a specific order and build
the sequence. Well-known rate models in neuroscience naturally satisfy these conditions in
some regions of their control parameter spaces (Rabinovich et al. 2006).

2.1 Generalized Lotka–Volterra Equations
A widely-accepted rate model of competition among N agents is the Generalized Lotka–
Volterra (GLV) system (Muezzinoglu et al. 2010; Murray 2002)

(1)

where xi ≥ 0 denotes the ith competitor, I summarizes all observable environmental factors
that influence competition, σi ≥ 0 is the resources available for the competitor i to prosper,
ρij is the competition matrix with nonnegative entries, and η is a noise process, capturing all
unpredictable effects from the environment.

As introduced in Afraimovich et al. (2004), the following conditions ensure a periodic
Stable Heteroclinic Sequence (SHS) (see Sect. 3.1) of N saddles:

(2)

(3)

(4)

The self-inhibition of each competitor is quantified by ρii = 1, and the noise magnitude |η| is
assumed to be sufficiently small. Without loss of generality, these conditions place the N
saddles on the N axes of the phase space with the ith one σi from the origin, and, order them
along the SHC with respect to the index i (see Fig. 1).
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2.2 Model of Weak Emotion–Cognition Interaction
We represent the cognitive modes participating in the modes interaction by Ai ≥ 0, i = 1, … ,
N. Following the competition principle discussed above, for a given cognitive load I, we
adopt the GLV model (1) for the cognitive modes

(5)

where B = [B1 … BM] denotes the activity of emotional modes Bi ≥ 0, i = 1, … , M, and all
other parameters are defined as in (1). We also assume that, in the absence of an emotional
distractor (which may be a certain spatio-temporal pattern observed in B), the cognitive
activity follows a sequence of metastable equilibria, i.e., the cognitive trajectory Ai(t), i = 1,
… , N, is confined in an SHC. In particular, αi and ρij satisfy the conditions (2)-(4) and |ηA| is
sufficiently small.

Generated by specific brain modes subject to competition, the emotional modes activity Bi is
also considered to be varying according to GLV equations:

(6)

Here, S denotes the emotional stimuli (or stressor), and all other parameters are defined as
above. In contrast to the cognitive process, we do not restrict the emotion model to a
heteroclinic dynamics; it can also demonstrate periodic or chaotic oscillations.

Equations (5) and (6) describe the joint emotio-cognitive course-grain dynamics. In the
sequel, we limit ourselves to the special case where the term αi(I, B) in (5) can be
decomposed as σi(I) + ∊ · γi(B) and the competition matrix ρij is constant. With these
assumptions, the joint dynamics also fall under the winnerless competition model introduced
in (1).

2.3 Example
To illustrate the structural stability of sequential cognitive process, we simulated the
interaction between cognitive and emotional activities in the framework of (5) and (6) with
N = 5 cognitive and M = 5 emotional modes. The cognitive and emotional modes evolve in
different manner: In particular, the former evolve in periodic way and the latter changing
sequentially.

We simulated N = 5 cognitive and M = 5 emotional modes that evolve in periodic (closed)
SHCs using the GLV equations (5) and (6). The simulation focused on the effect of
emotional process on the cognitive process, thus we further simplified the emotion model by
selecting ζi(S, A) = ζi(S) = S, and ξij as independent of A. The cognitive resource component
σi(I) is selected as the unity.

The constant competition matrices ρij and ξij are set based on the conditions (2)-(4), with σi
substituted by the unity in all inequalities. Specifically, we evaluated ρi−1,i and ρi+1,i at the
mid-points of the intervals imposed in (2) and (3), and assigned ρji = ρi−1,i + 0.5 to satisfy
(4). This establishes the periodic stable heteroclinic sequence e1 → e2 → … → e5 → e1, ei
denoting the ith unit vector, in each of the cognitive and the emotive working (phase)
spaces, when the resource terms αi and ζi equal 1 for all i.
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Our setup assigns to certain emotional modes, namely B1 and B2, a distracting role on the
sequential behavior on the A network, whereas B4 is a motivating emotional mode. We
implement this through the coupling term γi(B) = [0.5 0.5 1.0 2.0 1.0]T · B for i = 1, 5 , ߪ .
With this interaction scheme, the distracting emotional modes slow-down the cognitive
network’s switching pattern in time and reduce the cognitive modes magnitude. In the
extreme distraction, the order of cognitive modes is disrupted.

We set the emotion process to evolve on a slower time scale, thus the noise terms ηA and ηB
were selected as white noise processes with variances 10−8 and 0.005, respectively. The
result is shown in Fig. 2.

3 General Mathematical Framework
3.1 Stable Heteroclinic Sequences and Channels

We will begin with the transient (cognitive) part of the dynamics, which we suppose is
modeled by a Stable Heteroclinic Channel, a concept that we make precise now.

Definition 3.1 Consider a system of differential equations:

(7)

where . This system is said to possess a heteroclinic sequence if:

1. It has a finite sequence {Q1, Q2, … , QN of equilibrium points and at Qi the
eigenvalues of the linearization of (7) can be ordered as:

Thus, each Qi is a saddle with a 1 dimensional unstable manifold consisting of two
components,  and .

2. For each 1 ≤ i ≤ N − 1,  intersects the stable manifold  of Qi+1.

Denote

The set Γ is commonly called a heteroclinic sequence. If in addition, QN is connected to Q1
by a heteroclinic orbit then the sequence is called periodic or a heteroclinic cycle.

Definition 3.2 The number

is called the saddle value for Qi. If νi > 1, then the saddle Qi is called dissipative. If all the
saddles in a heteroclinic sequence are dissipative, then we call Γ a Stable Heteroclinic
Sequence (SHS).
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If a system has a Stable Heteroclinic Sequence, then it also has a Stable Heteroclinic
Channel (SHC).

Theorem 3.3 (Afraimovich et al. 2004) In any neighborhood of a SHS there is a connected
open set O called a Stable Heteroclinic Channel such that an orbit starting at any initial
condition inside O will continue inside O until it emerges near QN. It is robust under an open
set of small perturbations of f in the sense that given any neighborhood of Γ and ∊
sufficiently small, there is a set  in the neighborhood that has the same properties as O for
any perturbation of size ∊ in an open set of perturbations (in an appropriate Banach space of
vector fields) and  as ∊ → 0.

Remarks on the proof of this theorem The condition on each νi gives the existence of O. If
we consider perturbations of size, ∊ because Qi is a saddle,  is close to , and thus will
approach a neighborhood, Vi+1 of Qi+1. The local piece of  divides Vi+1 into two
parts: the one containing  will be denoted by . There are two possibilities: (1)

 enters , or (2) it enters . Each of these corresponds a different class of
perturbations of f (x); call them S1 and S2. The main problem is to describe the conditions for
the occurrence of the class S1 in a suitable form for i = 1, … , N − 1, since, if the situation S2
holds, then the x-coordinate of an orbit with an initial point close to  can follow 
preventing the realization of the SHC. The important point is: of the conditions for the
occurrence of S1, these conditions are “open”, i.e., they single out an open set in the Banach
space of vector fields. For competition type equations, such as those considered in Sect. 2,
case S2 is ruled out by the equations since no coordinate, Ai, can be negative. Under
condition S1, the dissipativeness at each saddle was used in the proof of the theorem to show
that O persists under small perturbations.

3.2 SHC in the Joint Emotion-Cognition Phase Space
In addition to the SHS in the components of the system represented by the x variables, we
now suppose that the network has other components (emotive), represented by the vector
variable . Later we will emphasize periodic and quasiperiodic behavior in the y
variable, but first we formulate it generally, that is, the entire network (5), (6) satisfies
equations of the form:

(8)

where for this f, (7) possesses a SHS. We will also consider the case as in the previous
section where the equations for the x variables are of the competitive form:

(9)

We will denote by  the solution flow on  generated by (8) and we will use the
notation ϕt to denote the flow on  generated by the subsystem (7). When ∊ = 0 the x
variable is uncoupled from the y variable and so the projection onto the x variables possess a
SHS and SHC. We wish to study conditions for which some structure equivalent to the SHC
persists for ∊ > 0 in the full equations. Thus, we will consider (8) with ∊ > 0 as a
perturbation of ∊ = 0.
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We will assume that h(x, y) in (8) is dissipative in y in the sense that for each x, the system:

(10)

contracts volume in phase space and has a ball of dissipation, i.e., a bounded ball 
such that any orbit in  eventually enters B and no orbits in B escape from B in forward
time. Under these conditions, (10) has a maximal compact attracting set Λx for each x. In
particular, let Λi denote the maximal attracting set for x = Qi. This implies that for each Qi
the system (8) with ∊ = 0 has a compact invariant set given by Qi × Λi.

We note here that each maximal attracting set Λi will contain one or more “attractors”. We
say that a compact set A ∈ Λi is an attractor for a flow Ψt if (1) there is an open
neighborhood U of A such that ⋂t>0 Ψt (U) = A and (2) A is the ω-limit set of at least one
point in U.

If A ⊂ Λi is an attractor for (10), then Qi × A is an invariant set for (8) with ∊ = 0.

In the unperturbed equations (8) with ∊ = 0 even though the x variable contains a SHS, the
full equations do not necessarily contain a SHS as defined above. There is an exception in a
particular case that we describe next.

3.3 Exceptional Case: The Attractors Are Stable Equilibria
Suppose that each attractor A is a globally attracting fixed point. That is, for ∊ = 0, and each
i, (10) has a globally attracting fixed point Pi. If this is the case, because Qi is a saddle point
for φt, Qi × Pi is a saddle point for . It is a classical result that a saddle and its local stable
and unstable manifolds are preserved for ∊ > 0.

Lemma 3.4 If for each i, Λi consists of a unique, globally attracting stable equilibrium, Pi,
then for ∊ = 0 there is a heteroclinic connection between Qi × Pi and Qi+1 × Pi+1 for each 1
≤ i < N − 1.

Proof By the assumptions, the unstable manifold of Qi × Pi is one-dimensional. Since Qi
itself has a one-dimensional unstable manifold for (7), this manifold must be the projection
onto x of the unstable manifold for Qi × Pi. If (x0, y0) is any point in this unstable manifold,
since the x equation is uncoupled, it follows that φt(x0) limits onto Qi+1 in the forward
direction. For ∊ = 0 this orbit must coincide with the x projection of . Now since
Pi+1 is globally attracting for x = Qi+1, there is a globally attracting fixed point, near Pi+1 for
(10) for x sufficiently close to Qi+1. Thus, once the x coordinate enters a sufficiently small
neighborhood of Qi+1, the y coordinate will be attracted to a small neighborhood of Pi+1. We
can take this later neighborhood arbitrarily small, and thus it follows that the y coordinate of
the flow approaches Pi+1.

Thus, the set of equilibria  along with the heteroclinic connections between them
form a Heteroclinic Sequence (8) with ∊ = 0.

Since Pi is an attracting equilibrium for (10), the eigenvalues of the linearization of (10) at
Pi must satisfy:
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where m is the dimension of y. It follows that the eigenvalues of the linearization of (8) at Qi
× Pi are simply: {λ1, … , λn, μ1, … , μm}. Thus, if in addition to the requirement that the
heteroclinic sequence be dissipative for (7), we also have

then the equilibrium Qi × Pi is dissipative in the full equations (8) when ∊ = 0. If this is the
case for each i, then the full system (8) has a SHS, and so by Theorem 3.3 it will have a
Stable Heteroclinic Channel.

3.4 General Persistence of Solutions in the Channel
Since the x equations possess a SHC, O, the set  is a weak generalization of the stable
heteroclinic channel. Any orbit with an initial condition in it will remain in it and the x
components of the orbit will obviously follow the heteroclinic sequence. The following is
trivial.

Proposition 3.5 Suppose that x is in O and a small neighborhood of Q1. Then for any
, the solution of (8) with ∊ = 0 and initial condition (x, y) will remain in  until

it emerges at QN.

We then easily have the following.

Proposition 3.6 Let γ (t), 0 ≤ t ≤ T be a solution segment of (8) for ∊ = 0 whose x coordinate
is in O. Then for any δ > 0 sufficiently small there exists ∊ (δ) > 0 such that given any 0 < ∊
≤ ∊ (δ), any orbit of  starting with initial condition in a δ-ball centered at γ(0) will have x
coordinate that remain in  for 0 ≤ t ≤ T.

This follows simply because the time span considered is finite and a sufficiently small
neighborhood of γ does not contain any singularity. Therefore, persistence follows from
standard results on smooth dependence of solutions on initial conditions and parameters.
This result is actually rather limited in scope. Given δ, there is not necessarily an ∊
sufficiently small so that the pertubed system has a SHC in a δ neighborhood of the
heteroclinic cycle. In other words, the SHC does not persist in the sense of Theorem 3.3. To
obtain that, we will consider the problem more deeply in the next section.

4 Preservation of the SHS
In this section, we consider stronger results in which invariant sets in the sequence and the
SHC are preserved. This will be the case if the invariant sets happen to be hyperbolic, or
more generally Normally Hyperbolic which we define in an Appendix for the convenience
of the reader.

4.1 The Stable Heteroclinic Network
In general, not all of the attractors will be equilibria and a maximal attracting set Λi may
contain more that one attractor. While each Λi may contain multiple attractors, not all of
these attractors are relevant. Only those contained in a certain collection of attractors and
heteroclinic connections plays a role in the preservation of a SHC. We define the
Heteroclinic Network associated with the SHS, or simply the Net, inductively,

• Any attractor A ⊂ Λ1 is in the Net.
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• An attractor C ⊂ Λi+1 is in the Net if there exists B ⊂ Λi such that there is a
heteroclinic connection from Qi × B to Qi+1 × C. In this case C is a successor to B.

• If attractor B is a successor to A, then we include all heteroclinic connections
between Qi × A and Qi+1 × B in the Net.

This structure makes a partial ordering of the attractors in the Net in the obvious way.
Consider the attractors as nodes, with directed vertexes connecting those nodes that have a
heteroclinic connection, the Heteroclinic Network can be represented by a multipartite,
acyclic directed graph.

We note that if Λi contains a (unique) global attractor, then that attractor is necessarily in the
Heteroclinic Net.

Lemma 4.1 If Λi+1, 1 ≤ i ≤ N − 1, contains a global attractor B, then for any attractor A in
Λi there is a heteroclinic connection between Qi × A and Qi+1 × B.

The proof is similar to that of Lemma 3.4.

Another simplification occurs if an attractor A in the Net is an equilibrium. In this case, the
equilibrium has only a 1-dimensional unstable manifold, and thus there can only be one
successor B to this attractor in the net. For any other type of attractor, the unstable manifold
will have dimension greater than one. Since such a manifold contains an uncountable family
of orbits, A may have any number of successors.

4.2 Normal Hyperbolicity at Attractors
Each Λi will contain at least one attractor, but maybe more, and each of these is necessarily
invariant set of (8) for ∊ = 0. We saw in a previous section that if the attractor happens to be
a stable equilibrium, Pi, then the point Qi × Pi will be a saddle in the full equations for ∊ = 0
with a 1-d unstable manifold. As it is hyperbolic, the saddle will persist under small
perturbations, as will its local stable and unstable manifolds. A generalization of this
situation is when an attractor happens to be a normally hyperbolic manifold (see the
Appendix). Then it and its stable and unstable manifolds will be preserved for ∊ > 0.

There are two special cases of attractors A where normal hyperbolicity always occurs:

1. A a stable (attracting) period orbit for (10).

2. A is a quasi-periodic attractor for (10).

Periodic behavior in y Suppose that (10) has a periodic orbit in  which we denote by γ. If
γ is a stable attracting orbit for (10) then Mi = Qi × γ is automatically a hyperbolic periodic
orbit for (8) with ∊ × 0. This is because each point in γ will have a one-dimensional unstable
subspace, a one-dimensional center subspace T Γ along the direction of the flow and the rest
of the directions will be strictly contracting. Thus Qi × γ and its local stable and unstable
manifolds are preserved under small perturbations.

Quasi-Periodic behavior in y In this case A is an attracting torus with an irrational flow. If
the flow on the torus is irrational then Qi × A will be normally hyperbolic since the
directions T A (tangent space to A) will all be neutral. There will be one unstable direction at
each point in A and all the other directions will be exponentially attracting.

It may happen that the maximal attracting set Λi contain more than one attractor. Each of
these may be considered separately.
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Note that each A is an attractor for (10). Thus if A is a manifold, the normal directions to the
manifold must be stable. For Qi × A to be normally hyperbolic the only conditions are
conditions on A with respect to y. Namely, if there is any contraction within A is must be
weaker than the contraction due to the normal direction and if there is any expansion within
A it must be weaker than the expansion in the one unstable x direction. If Ai is an attractor
for (10) at Qi and is a normally hyperbolic manifold, then one may define an attraction rate
for A as

.

By definition λs is negative. Parallel to Definition 3.2, we make the following definition.

Definition 4.2 Consider Qi × Ai. Let

where as before  is the positive eigenvalue of the linearization of (7) at Qi. We call  the
saddle-value for Qi × Ai and say that Qi × Ai is dissipative if νs > 1.

We will now show that under certain conditions there will be an analogous structure to the
SHC that will persist for ∊ > 0.

Theorem 4.3 Suppose that (7) has a SH and that for each i, Λi contains a global attractor Ai
and Qi × Ai is a normally hyperbolic manifold for (8) with ∊ = 0. Suppose further that either

1. Each Qi × Ai is dissipative, or,

2. The x equation (7) has the competitive form (9).

Then there exists an open set in the Banach space of vector fields (8) such that for ∊ > 0
sufficiently small the full system has a SHC and it persists for ∊ > 0. In this context, this
means: Given any δ > 0, there exists ∊0 > 0 and an open set O in δ-neighborhood of the SHS
such that any solution , with ∊ < ∊0 starting from an initial condition in O will
remain in O until it leaves this set in a neighborhood of QN.

Outline of the Proof Because of the normal hyperbolicity assumption each Qi × Ai along
with  and its stable manifold  will be preserved under small perturbations (A.1). Denote
these structures by ,  and . Since the  is close to  locally,  will
enter a neighborhood, Vi+1 of Qi+1. The local piece of  divides Vi+1 into two parts:
the one containing  will be denoted by . There are two possibilities: (1) 
enters , or (2) it enters . Each of these corresponds a different class of vector
functions g(x, y), say, S1 and S2. In the case of S1, the x-coordinate of an orbit will follow

. The conditions for the occurrence of S1 are “open”, i.e., they single out an open set
in the Banach space of vector fields.

Now we consider case (1) Each Qi × Ai is dissipative. The proof is similar to that in
Rabinovich et al. (2008). A piece of  has an end point, say,  with
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, Ki being a constant independent of ∊. Given an initial point (x0,
y0) with , dist((x0, y0), (x, y)) < ∊, the corresponding solution (x(t), y(t)) of (8) at the
instant of exit from  satisfies the inequality

(11)

where  is the saddle value of Qi × Ai. The validity of (11) can be shown by a local study of
solutions of (8) in a neighborhood of a saddle invariant subset, similar to the considerations
(Shilnikov et al. 1998, 2001). To proceed in the study from i to i + 1, one must be sure that

(12)

The condition (12) also singles out an open set in the Banach space of vector fields (8).

Next consider case (2); he x equation has the competitive form (9). Consider the
linearization of (9) at Qi. Since the nature of the equations restricts Qi to lie on the xi axis, so
that the xj coordinate is 0 for j ≠ i. (In effect the x-coordinates of  are all restricted to
be zero.) It is clear from that for ∊ small enough, the contraction rates for all x variables
other than xi are only perturbed by the y term. The same is true for the expanding direction.

The only nontrivial direction is xi itself. The xi coordinate of Qi is σi. However, the equations
do not restrict the xi coordinate of  to be σi. Rather, the xi coordinate of  will
locally be a graph of a function ∊h(y,∊). Since  is invariant, this graph will be invariant
and if we make a local change of variables  we again obtain a form where

 is the coordinate for  and the linearization is again contractive. Since the
perturbations are smooth, the contraction rate in the  direction will be close to that of xi for
∊ = 0.

Now let us consider a passage through a neighborhood of . Fix δ > 0 (not necessarily
small) and suppose ∊ > 0 is small. Denote by  a neighborhood of  whose x
coordinates are no more than K ∊ from  and whose y coordinates are within δ of .
Note that g(y) can be uniformly bounded on a Kδ-neighborhood of . Suppose that
solution enters . Note that since Ai is an attractor in the y direction, the y coordinates will
remain within δ of . Further, from the previous analysis, we see that when the solution
leaves  its x coordinates will satisfy:

(13)

Since we may take , we see that this distance can be made less than ∊ for any ∊
sufficiently small.

Next, consider the passage from  to . Since the x coordinate of the solution begins
within distance ∊ of , and  is close to , it follows that the x coordinate of the
solution will come within K ∊ of  in a finite time, while the y coordinate during the
same time must come within Kδ of . However, since Ai is an attractor in the y
direction, the y coordinate will also enter  within a uniformly bounded time independent
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of ∊. Since we can make the time of passage close to  arbitrarily long by making ∊
small, we see that the solution will in fact enter .

The proof in both cases is finished by induction.

Note that orbits described in the theorem when projected onto the x directions will come
close to Q1, Q2, … , QN in order, thus executing the sequential pattern of activation
associated with the original heteroclinic sequence in the isolated system.

Remark on Periodic and Quasi-periodic behavior in y Suppose that in the y variables the
unperturbed system has an invariant globally attracting torus for each x in a neighborhood of
the Stable Heteroclinic Sequence and this torus depends smoothly on x in this neighborhood.
Further suppose that the flow is essentially quasi-periodic in the y variables for each x = Qi.
By that we mean that the flow on the attractor is either irrational or periodic (a periodic
attractor on the torus). In such a case, the attractor at each Qi is normally hyperbolic in the
full unperturbed system.

In all such examples, the SHC is preserved by small perturbations. Thus, we see that a
Stable Heteroclinic Channel is always compatible with weak coupling to a quasi-periodic or
periodic action in other variables, i.e., transient functionalities encoded by a SHC can
coexist with repetitive-type functionalities.

4.3 Return to the Winnerless Competition Model
In many applications, each xi represents the activation level of some neuron or cluster of
neurons or mode oscillation, etc. and the phase space is a . In this situation, it
is natural that each saddle Qi is on the boundary phase space and Γ− points outside. Thus,
orbits entering a neighborhood of Qi cannot follow  away from Qi, and so must follow Γ+,
i.e., the case S1 occurs automatically.

In (5) and (6), let us emphasize that the dissipativeness of the system (6), for any fixed A
and in the absence of noise follows directly from the assumption ξij(A) > 0.

In the absence of noise, the system (5) for ∊ = 0 has an equilibrium Qi : A(i) = (0 … σi 0 …
0) with characteristic exponents −σi and σj − ρji σi, j = 1, … , N, j ≠ i. Furthermore, for A =
A(i), the system (6), in the absence of noise, has equilibria Pi,k : Bi,k = (0 … 0 ζk(S, A(i)) 0 …
0), with characteristic exponents −ζk,i := −ζk (S, A(i)) and ζk,i − ξk,mζm,i, m = 1, … , M, m ≠
k.

Next, consider the B equations in (6). We note that we have set the parameters for those
equations such that the unperturbed system has a stable heteroclinic cycle. It was proved in
Afraimovich et al. (2004) that for perturbations of this equation there is always born a stable
limit cycle in the SHC. In the case of the simulations, we do not have precisely this situation
because the perturbation is stochastic, but we do expect the behavior in the B variable to be
close to being stably periodic. Thus in spirit, our main result Theorem 4.3 applies to the
simulations.

5 Conclusions and Perspectives
We have presented a coupled emotion-cognitive model based on three principles governing
the brain modes: competition, existence of metastable states, and robustness against noise
together with sensitivity to incoming information. The model and rigorous mathematical
results about the persistence of SHC are general enough and open new alleys in the
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quantitative theory of emotion-cognition interaction. We wish to formulate here a few of
them:

1. It is clear from imaging experiments that emotion and cognition can be represented
as the superposition of coarse-grain brain modes, whose activities are changing
with time. According to our model, the cognitive and emotional modes may have
distinct roles on different aspects of the mental activity. As our preliminary results
show, the vibrating part of emotion acts as a multiplicative noise on the cognition
vector field. This is consequential on the exit time from metastable states, i.e., the
maximal time the system spends in the vicinity of saddles (see Kifer 1981; Stone
and Holmes 1990 for a thorough treatment of this aspect). In fact, a local stability
analysis in the vicinity of a saddle fixed point allows one to estimate this time in
the light of the relation te = 1/l · ln 1/|g| where te is the mean exit time, |g| is the
level emotion pulsation, and l is an eigenvalue corresponding to the unstable
separatrix of the saddle. Thus, the vibrating part of emotion, unless it is too large in
magnitude, just facilitates the execution of the cognitive problem as it accelerates
the “stream of thought” along the SHC. Too strong emotion pulsation would move
the cognitive system out of SHC. It is an important problem to estimate this critical
value of emotional vibrations.

2. The slowly changing in time part of emotions (for example, chronic depression) is
able to change the stability structure of the heteroclinic channel because it changes
the effective increment σ. This part can generate saddles with multidimensional
unstable manifolds. Although this scenario may seem inconsequential for the
system performance (since the unstable direction with the maximum eigenvalue is
likely to be followed on exit from the saddle), in reality, each exit direction would
be assigned a certain probability for being followed by the system. We hope that it
would be possible to formulate the relationship between this probability
distribution and the eigenvalues.

3. In this article, we did not emphasize the fact that the B-system behaves also in a
sequential manner and did not study the relation between the switching instants
between metastable states in any of the systems. The coordination of multiple
SHCs in coupled neural networks is an important problem that will have both
theoretical and practical consequences.

It seems that the normal hyperbolicity approach works adequately in the considered
situations. Conditions of normal hyperbolicity enlightens the boundaries of the instability in
the emotion system to follow a prescribed cognitive function.

Acknowledgments
The authors would like to thank to the anonymous referees for their constructive comments. V.A. was partially
supported by PROMEP grant UASLP-CA21. M.K. acknowledges the support from Jet Propulsion Laboratory grant
1396686. M.K. and M.I.R. acknowledge the support from ONR grant N00014-07-1-074. T.Y. was partially
supported by NIH grant R01GM090207.

Appendix: Normal Hyperbolicity
We will use normal hyperbolicity as defined by Hirsh et al. (1977). An alternate definition
was formulated earlier by Fenicchel (1971). Let ∥·∥ be the usual operator norm and let m(A)
denote the minimum norm, i.e.,
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for a linear transformation A. Suppose that  is a differentiable flow and that M is
a smooth (C∞) compact submanifold of  that is invariant under Φt.

Definition A.1 (Hirsh et al. 1977) The flow Φt is r-normally hyperbolic at M for r ≥ 1 if Φt

is Cr, and

1. , the tangent bundle of  over M, has a DΦt-invariant splitting

2. There exists t0 ≥ 0 and a Riemann structure on  such that for all p ∈ M, all t >
t0:

a.
, and

b.

The following is the Fundamental Theorem of Normally Hyperbolic Invariant Manifolds. A
similar theorem was also proved by Fenicchel (1971).

Theorem A.2 (Hirsh et al. 1977) If Φt is r-normally hyperbolic at M, then through M pass
stable and unstable invariant manifolds Ws(M) and Wu(M) respectively which are tangent at
M to T M ⊕ Es and Eu ⊕ T M. They are of class Cr. The stable manifold is invariantly
fibered by Cr sub-manifolds tangent at M to the subspaces Es (these are .) Similarly for
the unstable manifold and Eu. These structures are unique and persistent under small
perturbations of Φt.

One would wish to define normal hyperbolicity in terms of the vector field (differential
equations) defining the flow, however, as pointed out in Hale (1969) and elsewhere, such
conditions are subtle.
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Fig. 1.
A structurally stable heteroclinic sequence of metastable states and the surrounding channel
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Fig. 2.
Simulation of the emotion-cognitive model with the parameters listed in the text. According
to the selected interaction scheme γ(B), the emotion modes B1 and B2 (indicated by the blue
and green curves in the second row) are capable of derailing the A network from the
cognitive SHC. When the coupling ∊ is weak (as in the early and the late phases of the
stressor cycle, the emotion modes B1 and B2 still inhibit (slow down) the cognitive process),
but the cognitive network does not loose its prescribed track, i.e., emotion does not destroy
cognition
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