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Abstract

Alkamides are fatty acid amides of wide distribution in plants, structurally related to N-acyl-L-homoserine lactones (AHLs)
from Gram-negative bacteria and to N- acylethanolamines (NAEs) from plants and mammals. Global analysis of gene
expression changes in Arabidopsis thaliana in response to N-isobutyl decanamide, the most highly active alkamide identified
to date, revealed an overrepresentation of defense-responsive transcriptional networks. In particular, genes encoding
enzymes for jasmonic acid (JA) biosynthesis increased their expression, which occurred in parallel with JA, nitric oxide (NO)
and H2O2 accumulation. The activity of the alkamide to confer resistance against the necrotizing fungus Botrytis cinerea was
tested by inoculating Arabidopsis detached leaves with conidiospores and evaluating disease symptoms and fungal
proliferation. N-isobutyl decanamide application significantly reduced necrosis caused by the pathogen and inhibited
fungal proliferation. Arabidopsis mutants jar1 and coi1 altered in JA signaling and a MAP kinase mutant (mpk6), unlike
salicylic acid- (SA) related mutant eds16/sid2-1, were unable to defend from fungal attack even when N-isobutyl decanamide
was supplied, indicating that alkamides could modulate some necrotrophic-associated defense responses through JA-
dependent and MPK6-regulated signaling pathways. Our results suggest a role of alkamides in plant immunity induction.
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Introduction

Plants continuously respond to abiotic and biotic stress by

adjusting their metabolism and activating diverse intracellular and

systemic responses. Biotic stress induced by pathogens triggers

complex signaling cascades regulated by hormones once an

invader has been detected. Three main phytohormones have

been classically recognized as essential components of responses

triggered by pathogens, namely salicylic acid (SA), jasmonic acid

(JA) and ethylene (ET). Hormonal-dependent pathways result in

the expression of defense-related genes such as those encoding

pathogenesis-related (PR) proteins, and the production of

antimicrobial secondary metabolites [1]. These responses are

assisted by reactive molecules, such as nitric oxide (NO) and

reactive oxygen species (ROS) that function both, as signaling

components of transcriptional and metabolic readjustment and as

antimicrobial substances [2]. Lifestyle of pathogens largely

determines the effectiveness of a plant-induced response to combat

the pathogen challenge. The SA-dependent signaling pathway is

often considered to be effective against pathogens that derive

nutrients from living hosts cells (biotrophs), and JA/ET pathways

against pathogens that derive nutrients from dead cells (necro-

trophs), although, the persistence of defense responses and the

disease outcome are determined by complex networks of

interactions between multiple hormone signaling pathways [3].

Lipids have a key role in maintaining the fluidity and structural

integrity of all cell membranes. Additionally, lipids and various

fatty acid derivatives have been described to act as signaling

molecules in response to diverse environmental cues [4]. Structural

features of fatty acids, such as the chain length and their

unsaturation degree, determine their function and biological

activity by altering membrane lipid composition [5]. Exogenous

and endogenous mono- and poly-unsatured fatty acids (PUFAs)

alter plant gene expression and metabolism, thus impacting the

plant-microbe and plant-herbivore interactions [5,6]. For instance,

alterations in enzymatic machinery that regulates production of

cellular unsaturated fatty acids alter the SA- and JA-mediated

defense signaling. A reduction in the endogenous levels of oleic
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acid (18:1) caused by mutation of a gene encoding STEAROYL-

ACYL CARRIER PROTEIN-DESATURASE, increases the

expression level of PR genes in a SA-dependent way, but at the

same time, reduces expression of a subset of JA-dependent

response genes and decreases resistance to Botryris cinerea in

Arabidopsis [7]. A kind of PUFAs that impact plant defense

responses are the eicosapolyenoic acids, which are produced and

released by several species of oomycete plant pathogens.

Specifically, exogenous application of arachidonic acid (20:4) to

Arabidopsis and tomato (Solanum lycopersicum) plants induces

expression of general-stress responsive genes, increases endoge-

nous JA levels and confers resistance against the necrotrophic

fungi Botrytis cinerea [8]. Based on this evidence, it has been

proposed that lipids and their derivates have transorganismal

signaling activity, and that their dependent pathways are

conserved throughout the evolutive history of organisms [8].

Commonly, the full range of biological effects triggered by PUFA

signals, are carried out by their metabolism into more potent

substances, the oxylipins. Oxylipins are a diverse class of lipid

metabolites that include fatty acid hydroxiperoxides, hydroxy-, oxo-

, or keto-fatty acids, volatile aldehydes, or mostly, jasmonates (JAs)

[9]. JAs act as regulatory molecules in metabolic and developmental

processes, as well as in defense responses [10,11,12]. They rapidly

accumulate by wounding, insect attack and necrotrophic pathogen

infection [13]. JA is synthesized through a series of reactions

involving lipoxygenases (LOXs), allene oxide synthases (AOSs),

allene oxide cyclases (AOCs) and 12-oxophytodienoate reductases

(OPRs). Then, JA is further modified to produce JAs, for example,

as conjugates with various lipophilic amino acids such as isoleucine

(Ile) produced by a jasmonate amino acid synthetase, encoded by

JASMONATE RESISTANT1 (JAR1). The JA signal (JA-Ile) is

perceived by an intracellular receptor, the F-box protein COI1,

which plays a key role in JA signaling [14], and is required for the

majority of the JA-mediated responses described to date, such as

fertility, secondary metabolite biosynthesis, pest and pathogen

resistance, and wound responses [15]. COI1 is an E3 ubiquitin

ligase that catalyzes the ubiquitination of proteins destined to

degradation via the proteosome-mediated pathway. COI1 activates

a signal transduction pathway that culminates in the transcriptional

activation or repression of JA-responsive genes. The coi1 mutant is

resistant to JAs and to the Pseudomonas syringae toxin coronatine. The

essential role of JAs in plant immunity is also evidenced by JA-

related mutant phenotypes, for example both jar1 and coi1 show an

enhanced susceptibility to necrotrophic pathogens [16,17]. In

addition, protein phosphorylation and dephosphorylation have

important roles in JA signaling. The mitogen-activated protein

kinase (MAPK) cascade, which is one of the major signal

transduction pathways in plants, as well as other eukaryotes, has

been found to be regulated by JA to modulate JA-dependent gene

expression [17]. In Arabidopsis, three MAPKs (MPK3, MPK4 and

MPK6) have been implicated in defense against pathogens

[18,19,20]. MPK6 functions as substrate of at least four MAPK

kinases (MKK2, MKK3, MKK4 and MKK5) in response to

different stimuli, including developmental, microbial or environ-

mental cues. Once phosphorylated, MPK6 activates several

transcriptional regulators, such as members of the WRKY, MYC

and ERF gene families. Particularly, but not exclusively, the

MKK3-MPK6 cascade is activated in response to JA and both,

positively and negatively regulates the expression of JA-related

genes [17,21]. Concordantly, the MKK3-knockout mutant mkk3 and

coi1 had an altered activation of MPK6 in response to JA. Moreover,

mutations in MPK6 compromise the accumulation of antifungal

phytotoxin camalexin in response to infection with Botrytis cinerea

[17,22].

An additional class of lipids conserved among different

kingdoms with signaling functions in plants is the fatty acid

amides group, including the plant-, fungal- or animal-produced N-

acylamides (alkamides), N-acylethanolamines (NAEs), and the N-

acyl-L-homoserine lactones synthesized by Gram-negative bacte-

ria. Compounds representative of these three classes of lipids have

been shown to modulate seedling development in Arabidopsis and to

affect plant biomass production in a dose-dependent way,

indicating a strong biological activity [23,24,25]. NAEs are

compounds with aminoalcohol linked as an amide to the fatty

acid, which accumulate in seeds of higher plants, including cotton,

corn, soybean, tomato, pea and Arabidopsis, and decrease during

germination [26]. Pioneering research on fatty acid amides

showed that NAE production in plants is associated to defense

responses. NAE 14:0 accumulates in tobacco leaves treated with

fungal elicitors, and exogenous application of this NAE is able to

induce expression of defense-related genes [27]. Moreover, the

ectopic overexpression of a plant fatty acid amide hydrolase

(FAAH), an enzyme that degrades NAEs, renders Arabidopsis plants

more susceptible to both host and non-host bacterial pathogens

[28]. N-acyl-L-homoserine lactones (AHLs) are structural analogs

of NAEs and alkamides, that are produced by Gram negative

bacteria and participate in the cell-to-cell communication process

commonly referred to as quorum-sensing (QS). Interestingly,

plants have the genetic machinery to perceive and respond to

AHLs. The presence of AHL-producing bacteria in the rhizo-

sphere of tomato induces SA- and JA-dependent defense

responses, conferring resistance to the fungal pathogen Alternaria

alternata [29]. Moreover, the application of purified AHLs to

Medicago truncatula and Arabidopsis plants results in differential

transcriptional changes in roots and shoots, affecting expression of

genes potentially involved in immune responses and development

[30,31]. Interestingly, FAAH knockouts and overexpressors

Arabidopsis lines are more sensitive and tolerant, respectively, to

the root inhibitory effects of AHLs, in a similar fashion to their

response to exogenous NAEs and alkamides, while an alkamide

resistant mutant termed decanamide resistant root 1 (drr1) showed

decreased root responses to alkamides and AHLs [25,32].

Alkamides comprise over 200 related compounds and they have

been found in several plant families: Aristolochiaceae, Asteraceae,

Brassicaceae, Convolvulaceae, Euphorbiaceae, Menispermaceae,

Piperaceae, Poaceae, Rutaceae, and Solanaceae, reviewed in

[33,34]. Some traditional medicinal plants produce these second-

ary metabolites during their life cycle in response to several stress

conditions to mediate, among other processes, plant chemical

defense against plant competitors or microbial and herbivorous

predators [35]. Several species from the genus Echinacea accumu-

late unsaturated alkamides ranging from 12 to 18 carbon atoms in

response to JAs [36,37]. These unsatured alkamides are also active

in mammals; they activate immune responses in alveolar

macrophages from rats, in concert with a sustained production

of NO, a canonical messenger in plant and animal defense

responses [38,39]. Alkamides have also been identified in insects,

such as N-linolenoyl-L-glutamine, present in oral secretions of the

tobacco hornworm (Manduca sexta), which is able to elicit defensive

responses in plants by inducing volatile chemicals that attract

predators and parasites of the attacker [40]. The wound-induced

JA production is amplified by application of these oral secretions in

Nicotiana attenuata leaves, indicating a reciprocal crosstalk between

JAs- and alkamides-related signal pathways [41]. To date,

however, there is no direct evidence as to whether alkamides

can switch JA production and its transcriptional targets.

The short-chain alkamide affinin from the ‘‘gold-root’’ Heliopsis

longipes has been reported to have antimicrobial activity inhibiting
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in vitro growth of some plant microbial pathogens, including

bacteria and fungi [35]. To explore the structure-activity

relationships of alkamides, we previously evaluated the root

developmental responses of Arabidopsis seedlings to application of a

group of affinin-derived natural and/or synthetic fatty acid amides

with similar chain length [42]. We found that N-isobutyl

decanamide, a C:10 saturated alkamide that is naturally produced

in Acmella radicans [43] and Cissampelos glaberrima [44], was the

most active compound in inhibiting primary root growth and

stimulating lateral root formation. Interestingly, root developmen-

tal alterations induced by N-isobutyl decanamide were related to a

sustained increase in nitric oxide (NO) production and required

the activity of the DRR1 protein [45].

To further understand the molecular responses to fatty acid

amides, in this work we performed whole-genome transcriptional

profiling of Arabidopsis thaliana seedlings in response to N-isobutyl

decanamide. Our results show the activation of defense-related

gene expression, concomitant to an increase in JA accumulation

and in the expression of JA-responsive and senescence-associated

genes. Moreover, N-isobutyl decanamide application to mature

Arabidopsis leaves conferred resistance against fungal necrotizing

pathogen Botrytis cinerea in a process involving JA-dependent

signaling.

Results

Transcriptomic profiling of Arabidopsis in response to
N-isobutyl decanamide

To characterize at the transcriptional level the molecular

responses of Arabidopsis to N-isobutyl decanamide, Col-0 WT

seedlings were germinated and grown for 6 d on 0.26 MS

medium and then transferred to fresh medium supplied with or

without 60 mM of N-isobutyl decanamide to directly compare their

effect on whole-genome transcriptional profile after 1, 3, 7 and

14 d of treatment (Figure S1) employing a two-channel long-

oligonucleotide microarray platform (see Methods).

According to a stringency level of FDR 0.05 (fold change $2), a

total of 1,281 genes showed differential expression in at least one of

the four sampled time points. The complete list of differentially

expressed genes is provided in Table S1. Among differentially

expressed genes, 727 were found to be up-regulated and 554

down-regulated by N-isobutyl decanamide (Figure 1A). Only 22

from the 727 induced genes and 33 down-regulated genes were

common to all time points evaluated (Figure 1B). Of these

overlapping genes, highest expression values were reached on the

seventh day of N-isobutyl decanamide treatment (Figure 1C).

Analysis of expression patterns by agglomerative hierarchical

clustering showed that the number of differentially regulated genes

increased from day 1 to day 7 after treatment and then decreased

at day 14 (Figure 1C).

In addition to the statistical methods described (see Materials

and Methods), validation of microarray data was achieved by real-

time quantitative PCR (qRT-PCR) of 15 randomly chosen genes,

including up- and down-regulated genes. These experiments were

carried out using RNA extracted from an independent batch of

control and treated plants than those used for microarray analysis

experiments. qRT-PCR gene expression profiles obtained for the

analyzed loci were quite consistent with those generated by the

microarray analysis (Figure S2).

Functional categories of genes up-regulated by
N-isobutyl decanamide

Differentially expressed genes were classified into functional

categories according to the Munich Information Center for

Protein Sequences classification (MIPS) using the FunCat database

[46]. The categories ‘‘Metabolism’’ (290 genes), ‘‘Storage protein’’

(16 genes), ‘‘Cellular transport, transport facilities and transport

routes’’ (161 genes), ‘‘Cell rescue, defense and virulence’’ (189

genes), ‘‘Interaction with the environment’’ (165 genes), ‘‘Systemic

interaction with environment’’ (92 genes), ‘‘Cell fate’’ (31 genes)

and ‘‘Biogenesis of cellular components’’ (90 genes) were identified

as significantly over-represented MIPS categories among N-

isobutyl decanamide responsive genes (Table S2). Most of these

genes belong to defense- and stress-related categories, including

subcategories belonging to the ‘‘Metabolism’’ set such as,

‘Metabolism of glutamate, polyamines, nitrogen and related

groups, chitin and others polysaccharides, and secondary metab-

olism’ (Table S2).

When we performed functional categorization per day of

treatment, we found that the highest percentage of genes in every

category was represented at the seventh day (Figure 2A). Two

remarkable over-represented categories identified were ‘‘Cell

rescue, defense and virulence’’ and ‘‘Systemic interaction with

environment’’ (Figure 2A). Detailed analyses of these two

categories showed significant overrepresentation of the ‘stress

response’, ‘disease, virulence and defense’, ‘detoxification’, ‘plant/

fungal specific systemic sensing and response’ and ‘animal systemic

sensing and response’ subcategories (Figure 2B). Within these

subcategories, we found 70 genes involved in oxygen and radical

detoxification, 75 genes involved in hormone-related responses

(auxin, ethylene, cytokinin and abscisic acid), and particularly,

genes encoding enzymes involved in JA synthesis and associated

responses (Table S2; Figure 3). Additional differentially regulated

genes encoded proteins related to biotic stress, including different

secreted pathogenesis-related proteins (PR) such as chitinases and

glucanases (At4g07820, At2g19990, At2g14610, At3g57260,

At3g04720, At1g75040, At2g19970, At2g14580, At4g33720 and

At2g14580) (Table S1). Overrepresentation of biotic stress-related

categories can be appreciated more clearly in the functional

categorization of N-isobutyl decanamide-induced genes (Figure 2C).

These results suggest that alkamides are likely involved in triggering

defense-associated responses in Arabidopsis.

General defense responses but not salicylic acid
biosynthesis are activated by N-isobutyl decanamide

Because N-isobutyl decanamide increased the transcript level of

a wide class of PR genes, we examined its effect on the production

of salicylic acid (SA) and signaling molecules related to local and

systemic responses in defense processes. SA is a phenolic hormone

whose activity is required to successfully respond against several

different invading pathogens [47] and their biosynthesis succeeds

in association with changes in redox homeostasis producing

reactive oxygen species (ROS) such as superoxide and hydrogen

peroxide (H2O2) [48]. In turn, SA and H2O2 release is

accompanied by another reactive signalling molecule, nitric oxide

(NO). Whole-transcriptional profiling regulated by N-isobutyl

decanamide showed that PATHOGENESIS-RELATED1 (PR1,

At2g14610), a marker for SA signaling, and overall defense

responses [49,50,51] increased its transcript level by 7.5-fold at day

7 (Table S1). However, none of the genes encoding enzymes

related to SA biosynthesis were significantly up-regulated.

Moreover, N-isobutyl decanamide did not appear to significantly

affect the overall SA content despite an observed induction of the

PR1:GUS reporter-gene expression (Figure 3A &B), suggesting that

N-isobutyl decanamide-mediated gene expression of PR1 occurred

independently of SA accumulation.

It is well documented that some stress-associated molecules,

such as ROS, play signaling roles as second messengers in

Alkamide-Regulated Transcriptional Networks
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developmental and defense process. Among the N-isobutyl

decanamide differentially expressed genes, at least 70 belonging

to the functional group ‘‘oxygen and radical detoxification’’ were

regulated by alkamide treatment (Table S2), having their highest

expression level at days 3 and 7 after transfer. Up-regulated genes

included ten peroxidases (At4g08780, At5g06730, At4g08770,

At5g06720, At5g58390, At5g05340, At2g18150, At3g49960,

At3g49110 and At2g18140), two thioredoxin H-type TH8 and

TH7 (At1g69880, At1g59730) and a glutaredoxin (At5g40370),

two glutathione peroxidases ATGPX4 and ATGPX6 (At2g48150,

At4g11600), five FAD-binding oxidoreductases (At1g26410,

At1g26380, At1g26390, At1g26400 and At1g26420), the catalase

CAT3 (At1g20620) and HYDROPEROXIDE LYASE1 (At4g15440)

(Table S1 & S2). Given this overrepresentation, we decided to

explore whether ROS accumulation coincided with the increase in

transcript level of the group of oxygen and radical detoxification

genes. We detected hydrogen peroxide (H2O2) production in situ

in Arabidopsis seedlings that were transferred for 7 d from MS 0.26
medium to a medium containing N-isobutyl decanamide. At this

stage the seedlings were treated with 3,3-diaminobenzidine (DAB),

which in the presence of peroxidases polymerizes as soon as it

comes into contact with H2O2, forming a brown precipitate.

Leaves from N-isobutyl decanamide-treated seedlings clearly

showed an increase in H2O2 (Figure 3C) and NO production

(Figure 3D) when compared to solvent-treated seedlings. Overall,

these results suggest that general defense-associated responses

elicited by N-isobutyl decanamide appear to be related to both

hormonal and oxidative stress response.

Endogenous levels of JA and their corresponding
transcripts are induced by N-isobutyl decanamide

Virtually all genes encoding for biosynthetic enzymes for JA

production were regulated by N-isobutyl decanamide (Figure 4A).

Canonical JA-dependent inducible genes involved in JA signaling

and response pathways showed predominantly induction profiles

(Figure 4C). Among them CORONATINE-INDUCED3 (CORI3,

At4g23600), NAC DOMAIN-CONTAINING PROTEIN81 (ATAF2/

ANAC081, At5g08790), JASMONATE-ZIM-DOMAIN (JAS1/

JAZ10, At5g13210), ETHYLENE RESPONSE FACTOR2 (ERF2,

Figure 1. Overview of N-isobutyl decanamide responsive genes in Arabidopsis seedlings. Number of genes (vertical axis) Up-regulated
(red) and Down-regulated (blue) by N-isobutyl-decanamide treatment at 1, 3, 7, and 14 d.a.t. (A). Edwards-Venn diagrams showing common or
distinct responsive genes identified at every time evaluated (B). The number of genes up- or down-regulated in a single condition is shown in bold
letters. The number of genes regulated at all sampled-times are shown in bold italic font. Agglomerative hierarchical clustering of differentially
expressed genes at every sampled times (C). Clustering was performed using the Smooth correlation and average linkage clustering in GeneSpring
GX 7.3.1 software (Agilent TechnologiesH). Blue color indicates Down-regulated, red Up-regulated and white unchanged values, as shown on the
color scale at the right side of the figure.
doi:10.1371/journal.pone.0027251.g001
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At5g47220), VEGETATIVE STORAGE PROTEIN2 (VSP2,

At5g24770), LIPID TRANSFER PROTEINS (LTP3, LTP2 and

LTP, At5g59320, At2g38530, and At4g12490, respectively) and

the SENESCENCE-ASSOCIATED GENE13 (SAG13, At2g29350)

sustained high expression values through our temporal kinetic

experiment. The genes CORI1 (At1g19670), JAZ8 (At1g30135),

ERF4 (At3g15210) and PHYTOALEXINE DEFICIENT3 (PAD3,

At3g26830) showed increased expression from basal levels to

induced expression levels. Four PLANT DEFENSIN genes

PDF1.2a, PDF1.1, PDF1.2b and PDF1.2c (At5g44420,

At1g75830, At2g26020, At5g44430) and a chitinase (BASIC

CHITINASE, At3g12500) ranged from repression to induction

values (Figure 4B). However, all of them, in a similar way to the

genes of the JA biosynthetic pathway, were overexpressed at day 7

after alkamide treatment (Figure 4A &B).

To determine whether increase in the transcript level of JA-

related genes correlated with changes in endogenous levels of JA,

we quantified, by gas chromatography coupled to mass spectrom-

Figure 2. Functional classification of Arabidopsis genes differentially expressed in response to N-isobutyl decanamide treatment.
Categorization of 1,281 genes regulated by treatment was obtained according to the Munich Information Center for Protein Sequences classification
(MIPS) classification using FunCat database (http://mips.helmholtz-muenchen.de/proj/funcatDB/) and Arabidopsis annotation. Statistically significant
categories were identified by using a hypergeometric method and Bonferroni correction with a cutoff of p-value .0.05 (A). MIPS defense-related
subcategories significantly represented (B). Percentages relate to total differentially regulated genes per sampled times. The average transcriptional
change of all induced genes in overrepresented functional categories was also calculated along time of treatment (C).
doi:10.1371/journal.pone.0027251.g002

Alkamide-Regulated Transcriptional Networks
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etry (GC-MS), JA accumulation in seedlings treated with the

solvent or 60 mM N-isobutyl decanamide . A nearly two-fold

increase in JA level was observed in response to alkamide

treatment (Figure 5A), indicating that the effects of this alkamide

on gene expression might be mediated, at least in part, by

increasing JA production in the plant. To gain further insight into

the transcriptional activation of JA-dependent responses to N-

isobutyl decanamide, transgenic seedlings containing a chimeric

gene in which the LOX2 promoter is fused to the GUS reporter

gene (LOX2:GUS) were treated with 30 and 60 mM N-isobutyl

decanamide, and GUS histochemical analysis performed in 7 d-

old seedlings. Interestingly, increased expression of this marker

was observed throughout the shoot in alkamide-treated seedlings

in a dose-dependent manner (Figure 5B).

Because a concentration of 30 mM N-isobutyl decanamide was

able to induce LOX2 expression, we evaluate the expression levels

of JA-responsive transcripts by qRT-PCR in seedlings treated for 7

days with this alkamide concentration. Among the biosynthetic

genes, we focused on genes encoding the LOX2 and LOX3

lipoxigenases, ALLENE OXIDE SYNTHASE (AOS) and ALLENE

OXIDE CYCLASE2 (AOC2) enzymes, and OPDA REDUCTASE3

(OPR3). We also examined the expression levels of the JA-

inducible genes JAZ8, VSP2 and ERF2. All tested genes were

induced by N-isobutyl decanamide application more strongly than

JA itself (Figure 5C). It has been reported that JA-responsive gene

expression occurs in a short time after JA perception [52]. For this

reason, the JA insensitive mutant coronatine insensitive1 (coi1-1) was

employed as negative control to determine if an intact JA signaling

pathway was required for the long-term (7 days) response. As

shown in Figure 5C, most tested genes either did not respond or

were repressed in response to JA or to N-isobutyl decanamide

treatment in the coi1-1 mutant.

Additionally, we evaluated local activity of N-isobutyl decana-

mide to induce transcriptional activation of defense-related genes

in fully developed leaves, which were excised and incubated for

24 h in media supplemented with 30 mM N-isobutyl decanamide.

Alkamide-treated leaves showed increased expression of the

LOX2:GUS reporter gene in a dose-dependent manner as

compared to untreated controls (Figure S3A). Moreover, the

relative expression level of OPR3, VSP2 and PAD3 genes was at

least two-fold higher in treated wild-type leaves than in the

controls (Figure S3B). These results show that at least some

transcriptional networks modulated by N-isobutyl decanamide are

active even in detached tissue.

N-isobutyl-decanamide confers resistance to fungal
necrotizing pathogen Botrytis cinerea

JA accumulation and JA-responsive gene expression analyses

suggest that N-isobutyl decanamide may function as a potential

defense-inducing factor. To determine whether N-isobutyl decan-

amide could effectively activate defense mechanisms that lead to

pathogen resistance, we tested the responses of leaves from 20 d-

old Arabidopsis plants to the necrotrophic pathogen Botrytis cinerea.

In these experiments, again, fully developed leaves were

transferred 24 h to agar plates supplied with 30 mM N-isobutyl

decanamide or with the solvent as control. A 10 ml droplet of B.

cinerea spores was inoculated on the leaf surface and disease

symptoms evaluated 3, 4 and 5 days after inoculation (d.a.i.). In

leaves transferred to control medium and inoculated for 3 days,

the fungus induced necrotic lesions in over 90% of inoculated

leaves (Figure 6A), whereas in N-isobutyl decanamide leaves

treated only 10% presented necrotic lesions (Figure 6A). Four

d.a.i., it was found that 100% of the control leaves showed necrotic

lesions, whereas in N-isobutyl decanamide-treated leaves, around

Figure 3. Effects of N-isobutyl decanamide on defense-related
metabolite production and PR1 expression. Arabidopsis seedlings
were grown for 6 days on N-isobutyl decanamide-free medium and
transferred to control plates with or without N-isobutyl decanamide for 7
additional days. Salicylic acid (SA) accumulation was determined by
measuring free and conjugated SA by GC-MS (A). Benzoic acid was used
as internal standard, data are means of three independent experiments
6 SD. Transgenic Arabidopsis line carrying PR1:GUS was stained for GUS
expression (B). Detection of hydrogen peroxide (H2O2) was made by
staining leaves from control and treated seedlings with DAB (C). Images
were captured with a Nomarski microscope. Nitric oxide (NO) from leaves
of control and treated seedlings was detected by analyzing fluorescent
signal of DAF-2DA with a confocal microscope (D). All photographs are
representative individuals from at least 9 seedlings analyzed.
doi:10.1371/journal.pone.0027251.g003

Alkamide-Regulated Transcriptional Networks

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27251



15% and 60% of infected leaves showed necrotic lesions at fourth

and fifth d.a.i., respectively. It is important to note that lesions in

control leaves five d.a.i. were of about 6 mm in diameter, whereas

in alkamide-treated leaves, the lesions had a diameter between 0.8

and 1.5 mm (Figure 6B). Visual inspection showed that after 5-d of

inoculation, solvent-treated leaves inoculated with the pathogens

presented generalized necrotic lesions spanning half or more the

surface of the leaf, while N-isobutyl decanamide-treated leaves

manifested significantly reduced symptoms (Figure 6C). We

monitored hyphal growth of the pathogens by direct microscopic

observation of stained mycelium in infected leaves. We found that

disease symptoms in solvent-treated leaves at day 3 after

inoculation were accompanied by prolific mycelium growth. In

contrast, N-isobutyl decanamide treatment inhibited fungal growth

over leaf surfaces, as compared to the control (Figure 6C). On the

basis of these findings, it can be concluded that N-isobutyl

decanamide treatment renders enhanced resistance to B. cinerea in

Arabidopsis leaves.

To determinate if the reduced leaf damage and fungal growth

inhibition observed in alkamide-treated leaves could be the result

of a direct toxic effect of N-isobutyl decanamide on the fungal

pathogen tested, we evaluated the antifungal activity of N-isobutyl

decanamide on B. cinerea mycelial growth by inoculating mycelia

disks on Petri plates containing PDA media supplemented with the

solvent or with increasing concentrations of alkamide. Although

120 mM N-isobutyl decanamide inhibited mycelium growth by

approximately 15%, any lower concentration had no significant

effect (Figure S4). Indicating that plant defense responses elicited

by N-isobutyl decanamide, and no an antifungal activity were

responsible of pathogen proliferation over inoculated leaves.

JA signaling is required for the N-isobutyl
decanamide-induced resistance to B. cinerea

To test whether JA signaling is involved in the N-isobutyl

decanamide-induced increased resistance to necrotrophic fungal

infection of Arabidopsis leaves, we evaluated the responses of

Arabidopsis JA-related mutants jasmonic acid resistant1 (jar1), coronatine

insensitive1 (coi1-1), a mutant defective at the MITOGEN-ACTIVAT-

ED PROTEIN KINASE6 (MPK6) locus, which has been found to be

critical in defense responses to B. cinerea [22], and the SA-related

mutant enhanced disease symptoms16 (eds16/sid2-1). Fully developed

leaves from Col-0 wild-type (WT) and mutant plants were pre-

Figure 4. JA-related pathways are transcriptionally induced by N-isobutyl decanamide. Simplified representation of JA biosynthetic
pathway, genes and metabolites are illustrated (A). Fold-change values of JA-biosynthetic and –responsive pathway genes differentially expressed
with N-isobutyl decanamide treatment (A, B). Data from microarray expression profiles are shown in the color scale from blue to red.
doi:10.1371/journal.pone.0027251.g004
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incubated for 24 hours with 30 mM N-isobutyl decanamide or with

the solvent as control and then, inoculated with a droplet of 56105

spores/ml B. cinerea spores on the surface. WT and eds16 leaves

showed decreased disease symptoms when treated with N-isobutyl

decanamide, unlikely jar1, mpk6 and coi1-1 leaves, which presented

symptoms similar to solvent-treated controls, and, therefore, were

not responsive to the alkamide-activated resistance (Figure 7A & B).

Similarly, fungal growth, assessed by quantitative PCR amplifica-

tion of Actin A DNA of B. cinerea [53], was significantly enhanced in

the jar1, mpk6 and coi1-1 mutant leaves, but restricted in the WT and

eds16 with the N-isobutyl decanamide treatment (Figure 7C).

In order to qualitatively analyze the damage caused by the

pathogen, infection was estimated by recording a range of severity

of disease symptoms (from no symptoms, to severe tissue

maceration). For this purpose, we placed leaves from WT and

mutant plants on 0.7% agar plates supplied with solvent or N-

isobutyl decanamide for 24 hours. Then, leaves were immersed

into B. cinerea spores solution and transferred to N-isobutyl

decanamide-free agar plates. As shown in Figure 7D, three

d.a.i., lesion severity was higher in the jar1, mpk6 and coi1-1

mutants than in WT leaves, even when they received N-isobutyl

decanamide pre-treatment. As expected in the WT, disease

symptoms decreased when the alkamide was supplied. Unlike

JA-related mutants, eds16/sid2-1 leaves displayed reduced injuries

with N-isobutyl decanamide pretreatment, as compared to those

observed for the corresponding untreated controls (Figure 7D).

All together, these results show that N-isobutyl decanamide-

induced resistance to B. cinerea in Arabidopsis WT leaves is due to

the induction of defense programs that require an intact JA

signaling pathway.

Discussion

Lipids, besides being important structural molecules in living

systems, function as modulators of a multitude of signal

transduction pathways evoked by environmental and develop-

mental stimuli. Alkamides belong to a novel class of lipid signals

that regulate morphological processes in plants [23]. Recent

findings provided evidence of a widespread distribution of

structurally related lipid amide signals in evolutionary distant

organisms, including the animal, fungal and plant-produced NAEs

and the bacterial quorum-sensing AHL regulators [54,33].

Figure 5. Levels of JA and their corresponding transcripts are enhanced by N-isobutyl decanamide. N-isobutyl decanamide-dependent
accumulation of JA was determined by GC-MS from three biological replicate samples (A), data are means of three independent experiments 6 SD,
asterisks denote a significant difference from control seedlings (P#0.05). Transgenic Arabidopsis seedlings expressing GUS under the regulation of the
JA-induced LOX2 promoter (LOX2:GUS) were grown for 7 days on solidified medium supplied with the solvent (control) or with 30 and 60 mM N-
isobutyl decanamide, and then stained for GUS expression (B). Quantitative real-time PCR (qRT-PCR) analysis of nine JA-responsive genes using CT

value of ACT2/7 as internal expression reference (C). Relative expression values were normalized with endogenous levels from each transcript in Col-0
control seedlings. Bars represent 6 SE from three independent biological replicates, and there were four technical replicates for qRT-PCR assay.
doi:10.1371/journal.pone.0027251.g005
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The central idea of this work was to explore the transcriptional

responses in Arabidopsis to alkamides and ascertain its relevance in

activating long-term defense responses. Toward this goal, we

performed a global transcription profile of Arabidopsis response to

N-isobutyl decanamide (Figure S1).

Our results establish that exogenous application of N-isobutyl

decanamide triggers profound physiological changes in Arabidopsis,

with activation of developmental and defense- and stress-related

genes (Table S1; Figures 2 & 3). Interestingly, treatment with N-

isobutyl decanamide resulted in an increase in the endogenous

levels of JA (Figure 5), a lipid phytohormone known to be central

in activation of plant defense responses to a range of biotic

challengers, including herbivores, insects, necrotrophic fungi and

oomycetes [55,56,57]. These results are consistent with previous

reports showing that NAEs induce LOXs activity and JA

accumulation [58,59]. NAEs comprise a group of bioactive

signaling lipids naturally present from fungi to plants to mammals

that share structural and functional relationship with alkamides. In

mammals, anandamide (NAE 20:4) acts as an endogenous ligand

for cannabinoid receptors and plays different physiological roles

including the modulation of neurotransmission in the central

nervous system [60], synchronization of embryo development [61]

and vasodilation [62]. Interestingly, arachidonic acid (AA, 20:4) a

precursor of anandamide in mammals has been shown to posses

important signaling roles in plant stress and defense networks

trough production of JA and the activation of JA-dependent

transcripts [8]. These results indicate that lipid signals biochem-

ically related to alkamides and NAEs could regulate the same or

similar signaling pathways.

Previously, Teaster and coworkers [63] conducted microarray

analyses to identify transcriptional targets of plant NAE 12:0 in

4 d-old Arabidopsis seedlings. We found a set of 171 differentially

expressed genes by N-isobutyl decanamide, whose expression was

also reported as regulated by NAEs, including ABA-responsive

genes (At3g02480, At5g53820) and germin-like genes (At5g38910,

At5g39550, At5g39180, At5g39110, At5g39190) (Table S1). Our

results indicate that although important differences in plant age,

concentrations of compounds and time of exposure already exists

when comparing our expression analysis results with those

reported for NAE 12:0, common genes were found to be up-

regulated by the two compounds, indicating commonalities in the

transcriptional responses elicited by NAE 12:0 and N-isobutyl

decanamide. One of the first indications that plant fatty acid

amides indeed participate in plant-pathogen interactions was the

observation that NAEs accumulated in the growth media of

tobacco suspension cells and leaves after application of the fungal

elicitor xylanase. Indeed, exogenous NAE application triggered

the expression of the PHENYLALANINE AMMONIA LYASE gene

(PAL), which has been implicated in plant defense against

Figure 6. N-isobutyl decanamide confers protection against
Botrytis cinerea attack. Leaves from 20 day-old plants grown in soil
were pre-incubated 24 h on solvent (control, white squares), or 30 mM
N-isobutyl decanamide containing plates (black squares), transferred to
decanamide-free plates and then inoculated with a 10 ml droplet of B.
cinerea spores (56105 conidiospores/ml). The percentage of leaves with
necrotic symptoms at 3, 4 and 5 days after inoculation was determined
(A). Bars mean 6 SE of 30 inoculated leaves from two independent
experiments. Tissue damage caused by B. cinerea was measured at 5
days after inoculation (B). Data points represent average lesion size 6
SE from 30 independent leaves, asterisks denote a significant difference
from control leaves (P#0.05) as determined by t test. Representative
inoculated leaves at 5 days after inoculation were imaged (C, top
panels) and trypan blue-stained, inoculation sites are shown (C, bottom
panels).
doi:10.1371/journal.pone.0027251.g006
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pathogens [64,27]. Moreover, the ectopic overexpression of

FAAH, a NAE-metabolizing enzyme, renders Arabidopsis seedlings

more susceptible to both host and non-host bacterial pathogens

[28,65]. However, it remains to be determined whether NAE

application can actually confer improved resistance of plants to

pathogens.

Upon N-isobutyl decanamide treatment, several JA-related

genes such as PDFs (At2g43510, At5g44420, At1g75830,

At2g26010), VSP2 (At5g24770), JAZ10 and JAZ8 (At5g13210,

At1g30135), were induced, with a maximum at day 7 after

alkamide treatment (Figure 4), which correlates with the up-

regulation of several genes encoding enzymes involved in JA

biosynthesis and with a two-fold increased JA level (Figure 4).

Similar long-term gene induction patterns and JA increase have

been described in Medicago truncatula plants inoculated with the

pathogenic soilborne fungus Phymatotrichopsis omnivora, which has a

very broad host range and infects almost 2,000 dicotyledonous

species. Transcriptomic analysis of this interaction provided

evidence that JA production is sustained and prolonged, inducing

expression of genes encoding for LOXs, AOC2, OPR3, OPR5,

OPR12, and wound-inducible serine proteinase inhibitors (PII) at

3 and 5 days after inoculation [66]. We show that N-isobutyl

decanamide treatment conferred protection against B. cinerea

attack to Arabidopsis leaves (Figure 6). In contrast to wild-type and

the SA-related mutant eds16/sid2-1, all three jar1, coi1 and mpk6

Arabidopsis mutants, whose gene products are involved in JA

sensitivity and signaling, failed to resist B. cinerea attack when

N-isobutyl decanamide was supplied (Figure 7), suggesting that

N-isobutyl decanamide-conferred resistance to necrotrophic fungi

requires an intact JA signaling pathway.

Responses of plants to necrotrophic pathogens involve multiple

intermediates in signal transduction and anti-microbial responses,

which includes nitric oxide (NO) and reactive oxygen species

(ROS) [67]. The production and accumulation of reactive oxygen

species ROS, primarily superoxide (O2-) and hydrogen peroxide

(H2O2), during the course of a plant-pathogen interaction has long

been recognized. Evidence suggests that the oxidative burst and

the cognate redox signaling engaged subsequently, may play a

central role in the integration of a diverse array of plant defense

responses [68,69]. One well studied effect of oxidative burst is the

induction of hypersensitive response (HR) mechanism, where the

tissue at the infection site dies and in turn confines the pathogen

growth preventing its spreading [70]. In our microarray analysis,

we identified several potential components of the ROS signaling

pathway, including scavenging enzymes catalases and ascorbate

peroxidases, as well as at least 20 cytochrome P450 genes,

including the antifungal gene CYP71B15/PAD3, which plays a key

role in camalexin production and resistance against necrotrophic

pathogens [71] (Figure 4B & Table S1). Activation of these genes

correlated with accumulation of hydrogen peroxide (H2O2) and

NO in N-isobutyl decanamide-treated leaves (Figure 3). We

propose that alkamides might influence plant-pathogen interac-

Figure 7. Effect of JA-related mutations on disease resistance response induced by N-isobutyl decanamide. (A–C) Disease symptoms
on detached 20 day-old leaves at 4 days after drop inoculated with a 5 ml droplet as described in the legend for Figure 6 from wild-type (Col-0) plants,
JA-related mutants jar1, coi1-1 and mpk6, and the SA-deficient mutant eds16/sid2-1. Images show necrotic lesions (A), mean lesion size (B) and, in (C),
fungal growth. The data show the qPCR amplification of B. cinerea ActinA relative to the Arabidopsis ACT2/7 gene. (D) Leaves from 20 day-old wild-
type and mutant plants were pre-incubated 24 h on solvent (control), 30 or 60 mM N-isobutyl decanamide containing plates, dipped into a B. cinerea
inoculum of 56105 spores/ml, transferred to decanamide-free plates and then incubated. Disease symptoms were scored 3 days post-inoculation,
graphical representation of disease rating (upper panel) caused in leaves was determined as percentage of leaves showing no symptoms (white bars),
chlorosis (grey bars), necrosis (dark grey bars), or severe tissue maceration (black bars). Data values represent one of two independent experiments
that gave similar results, 15 leaves were employed per treatment in each assay.
doi:10.1371/journal.pone.0027251.g007
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tions by affecting the level of other lipids or by modulating the

levels of second messengers involved in signal transduction to these

lipids such as Ca2+, NO, and/or ROS. In a developmental

context, the relationship between NO and alkamides pathways in

Arabidopsis was recently investigated, mitotic activation of pericycle

cells from seedlings roots induced by N-isobutyl decanamide

occurred in parallel and in a dependent way to NO synthesis [45].

However, whether NO mediates the defense responses to

alkamides remains to be clarified.

Our previous research revealed a genetic interaction of

alkamides and senescence responses mediated by the DRR1 locus

in Arabidopsis [32]. Leaf senescence is a metabolic active process

controlled by a genetic program [72,73]. Interestingly, ultra-

structural changes in senescing cells are accompanied by

production of several metabolites that may influence interactions

with other organisms. For example, antimicrobial compounds

often accumulate in senescing tissues, preventing diseases [74]. In

agreement with this, many senescence genes are transcriptionally

up-regulated by N-isobutyl decanamide, i.e. PR genes, SAG genes

(At2g29350, At4g17670, At5g47060), a member of TCP family

(At5g40070), and JA-related genes. It is tempting to speculate that

N-isobutyl decanamide can be recognized as a senescence-induced

signal, thus influencing developmental and defense programs

involving JA signaling and possibly other additional signaling/

metabolic pathways regulated by NO, ROS and/or MAPK

messengers.

N-isobutyl decanamide share structural similarity to N-decanoyl

homoserine lactone (C:10 AHL) [25], a member of the bacterial

quorum-sensing signals, which have been found to alter root

development and activate defense responses in different plant

species [30,29,25]. An interesting hypothesis is that small lipid

signaling based on plant fatty acid amides and/or AHLs might be

part of an ancestral inter-kingdom communication system between

plants and their associated bacteria. Our data thus expand the

repertoire of signaling lipid molecules known to trigger plant

defenses and provide evidence that alkamides interact with the JA

pathway. The use of alkamides and bacterially produced fatty

amides in pathogen resistance by acting as defense elicitors in

plants shows great potential towards application of these

compounds to combat pathogen pests.

Materials and Methods

Plant material and growth conditions
Arabidopsis thaliana ecotype Col-0 was used for all experiments

unless indicated otherwise. Col-0, transgenic LOX2:GUS [75] and

PR1:GUS, and mutants jar1 [16], mpk6 [76], coi1-1 [77] and eds16/

sid2-1 [78] seeds were surface sterilized with 95% (v/v) ethanol for

5 min and 20% (v/v) bleach for 7 min. After five washes in

distilled water, seeds were germinated and grown on agar plates

containing 0.26MS medium. Plates were placed vertically at an

angle of 65u to allow root growth along the agar surface and to

allow unimpeded growth of the hypocotyl into the air. For plant

growth, we used a plant growth cabinet (Percival Scientific

AR95L, Perry, IA), with a photoperiod of 16 h of light, 8 h of

darkness, light intensity of 300 mmol/m-2/s-1 and temperature of

22uC. After grown for 6 days, plants were transferred to control or

N-isobutyl decanamide containing solid MS medium for different

times.

Homozygous coi1-1 seedlings were selected by screening a

heterozygous population in agar solidified MS medium supplied

with 5 mM JA (Sigma Chemical Co., St. Louis), seedlings resistant

to root inhibition were transferred to soil baskets and leaves from

20 d-old were detached for in vitro pathogenicity assays.

Synthesis of N-isobutyl decanamide
N-isobutyl-decanamide was obtained by catalytic reduction of

affinin, the most abundant alkamide present in Heliopsis longipes

(Gray) Blake (Asteraceae) roots as described before [23].

Experimental design and microarray platform
For microarray analyses a dye balanced modified loop design

was implemented. Four biological replicates representing each

sampling point were obtained by pooling in a 1:1 proportion shoot

and root purified RNA from 120 randomly chosen seedlings. This

experiment involved a total of sixteen sets of microarray

hybridizations, including direct and dye swap comparisons

between treatments as well as across time points for the same

treatment. This design allowed us to determine differences in gene

expression between N-isobutyl decanamide-treated and control

seedlings, and whether the differences were time dependent. The

Arabidopsis Oligonucleotide Array version 3.0 from The Arizona

University was used to carry out this study. Array annotation and

composition are available at http://ag.arizona.edu/microarray.

RNA isolation, fluorescent labeling of probes, slide hybridization

and washing were performed as described previously in [79].

Slides were scanned with an Axon GenePix 4100 scanner at a

resolution of 10 mm adjusting the laser and gain parameters to

obtain similar levels of fluorescence intensity in both channels.

Spot intensities were quantified using Axon GenePix Pro 5.1

image analysis software.

All microarray data is MIAME compliant and the raw data has

been deposited in the Gene Expression Omnibus database (GEO),

accession number GSE12107, as detailed on the MGED Society

website http://www.mged.org/Workgroups/MIAME/miame.html.

Normalization and data analysis
Raw data were imported into the R 2.2.1 software (http://

www.R-project.org). Background correction was done using the

method ‘‘substract’’ whereas normalization of the signal intensities

within slides was carried out using the ‘‘printtiploess’’ method [80]

using the LIMMA package (www.bioconductor.org). Normalized

data were log2 transformed and then fitted into mixed model

ANOVAs [81] using the Mixed procedure (SAS 9.0 software, SAS

Institute Inc., Cary, NC, USA) with two sequenced linear models

considering as fixed effects the dye, time, N-isobutyl-decanamide

treatment and time 6 N-isobutyl-decanamide treatment. Array

and array6dye were considered as random effects. The type 3 F-

tests and p-values of the time 6N-isobutyl-decanamide treatment

and N-isobutyl-decanamide treatment were also carried out.

Model terms were explored and significance levels for those terms

were adjusted for by the False Discovery Rate (FDR) method [82].

Estimates of the expression differences were calculated using the

mixed model. Based on these statistical analyses, the spots with

tests with an FDR less or equal to 5% and with changes in signal

intensity between N-isobutyl decanamide treatment and control

seedlings of 2.0-fold or higher were considered as differentially

expressed.

Expression analysis by qRT-PCR
Total RNAs were isolated from Arabidopsis plants using TRIzol

reagent (Invitrogen). Primer design (Tm, 60–65uC) was per-

formed using Primer Express Software, Version 3 (Applied

Biosystems); full sequences from each primer are shown in Table

S3. cDNA templates for PCR amplification were prepared from

all samples by using reverse specific primers and SuperScript III

reverse transcriptase (Invitrogen) according to the manufacturer’s

instructions. Each reaction contained cDNA template from
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,30 mg total RNA, 16SYBR Green PCR Master Mix (Applied

Biosystems) and 500 nM forward and reverse primers. Real-time

PCR was performed in an ABI PRISM 7500 sequence detection

system (Applied Biosystems) under the following thermal cycling

conditions: 10 min at 95uC followed by a total of 40 cycles of 30 s

at 95uC, 30 s at 60uC and 40 s at 72uC. For qRT-PCR, relative

transcript abundance was calculated and normalized with respect

to ACTIN2/7 to minimize variation in cDNA template levels,

with the solvent-treated (control) and control Col-0 samples

acting as calibrators (for microarrays validation assay for and JA

responsive genes assay respectively). Data shown represent mean

values obtained from at least three independent amplification

reactions; the SE of the CTs averaged 0.1, demonstrating the high

precision of the assays. All calculations and analyses were

performed using 7500 Software v2.0.1 (Applied biosystems) and

the 22DDCT method [83]. Amplification efficiency for the primer

sets was determined by amplification of cDNA dilution series

(1:5). The values obtained not change significantly between

different cDNA smaples, and were always higher than 0.90.

Specificity of the RT-PCR products was followed by a melting

curve analysis with continual fluorescence data acquisition during

the 65–95uC melt.

Analysis of JA levels
250 mg of freshly harvested plant tissues were chilled in liquid

nitrogen and JA extraction was performed as in [84] using

dihydrojasmonate as internal standar, derivatized with chloro-

form/N,N-diisoprpyl-etylamine 1:1. In order to analyze the

samples by GC/MS the extract was added with 10 ml of PFBr

and 200 ml of cloroform: N,N-diisopropilethilamine (1:1) then

incubated at 65uC for 1 h. When cooled, the solvent was

evaporated to dryness and resuspended in 100 ml methanol.

Samples were analyzed in a gas chromatograph (Agilent

Technologies 7890A) equipped with a capillary column J&W

DB-1 (60 m6250 mm60.25 mm) coupled to a mass selective

detector (Agilent 5973 Series MSD). Using an autosampler

7683B Series. 2 ml of the sample was injected in a splitless way.

Operating conditions were: injector temperature 250uC; the oven

temperature was programmed as: initial temperature 150uC for

3 min then increasing at the rate of 4uC per min to a final

temperature of 280uC maintained for 20 min. Helium was used as

carrier gas with a constant flow of 1 ml/min. The MS was set to

scan from 40 to 600 uam in Synchronous SIM/Scan mode for

selectively monitor the following ions for jasmonic acid derivative:

141, 181, 390, and 392. MS temperatures were: Source 230uC,

MS Quadrupole 150uC.

Microscope Analyzes
For histochemical analysis of transgenic lines LOX2:GUS and

PR1:GUS, 7 d-old transgenic seedlings expressing these marker

constructs were incubated at 37 uC in a GUS reaction buffer

(0.5 mg/ml of 5-bromo-4-chloro-3-indolyl-B-D-glucuronide in

100 mM sodium phosphate, pH 7.0). The stained seedlings

were cleared by the method of Malamy and Benfey [85].

For each treatment, at least 9 transgenic plants were analyzed.

A representative plant was chosen for each treatment and

photographed using the Nomarski optics on a Leica DMR

microscope.

H2O2 production was detected by the endogenous peroxidase-

dependent staining procedure using 3,3-diaminobenzidine (DAB)

uptake [86]. Control, 15 and 30 mM N-isobutyl decanamide-

treated 7 d seedlings were placed in a solution of 1 mg mL21

DAB, pH 3.8, and incubated in dark for 2 h. Subsequently, were

immersed in boiling 96% (v/v) ethanol for 10 min and then stored

in 96% (v/v) ethanol. For each treatment, at least 9 treated-

seedlings were analyzed. A representative plant was chosen for

each treatment. H2O2 production was visualized as a reddish-

brown precipitated coloration and photographed using the

Nomarski optics on a Leica DMR microscope.

Nitric Oxide (NO) was monitored by incubating Arabidopsis

seedlings with 10 mM of the fluorescent probe 4,5-diaminofluor-

escein diacetate (DAF-2DA) [87] in 0.1 M Tris–HCl (pH 7.4).

Treated seedlings were incubated for 2 h in the dark, and washed

three times for 20 min with fresh buffer. Fluorescence signals from

at least 9 treated and control leaves were detected using a confocal

laser scanning microscope (model BX50, Olympus), and moni-

tored with an argon blue laser with an excitation line from 488 to

568 nm and an emission window from 585 to 610 nm.

Fungal growth and plant inoculation
Pathogenesis assays were modified from [88]. Botrytis cinerea was

grown on agar PDA medium (PhytoTechnology) for 7–12 days at

22u C in darkness. Spores were collected with distilled water. Col-0

superficially sterilized seeds were germinated and grown in MS-

agar medium into 100 ml flasks with transparent lid. At 20 days

after germination, rosette leaves were placed in Petri dishes with

60 mM of N-isobutyl decanamide containing medium or medium

supplied with the solvent. Inoculation was performed by placing a

5 ml drop of a suspension of 56105 conidiospores/ml on the

surface of leaves. The samples were incubated at 22uC and

analyzed at a further 3, 4 and 5 d period after inoculation.

Susceptibility was evaluated by microscopic observation of

necrotic symptoms under a dissecting microscope (Leica MZ6)

connected to a digital color camera (Samsung SCC-131A). The

percent of necrotic leaves was scored for 30 independent

inoculated leaves. The disease symptoms on inoculated leaves

and fungal growth over leaves was estimated by trypan blue

staining and further cleared with chloral hydrate and the extension

of necrotic lesions (lesion diameter) measured at 4 d after

inoculation. For mutant inoculation, leaves from soil grown adult

plants were incubated in agar solution supplied with solvent

(ethanol) or N-isobutyl decanamide during 24 h prior to

inoculation by leaves immersion into solution of 56105 conidio-

spores/ml.

Supporting Information

Figure S1 Experimental design for microarray analysis.
6 day-old Arabidopsis Col-0 seedlings were grown on N-isobutyl

decanamide-free medium and then transferred to control medium

(A) supplied with the solvent, or to 60 mM N-isobutyl decanamide-

containing medium (B). Pictures were taken 14 days after transfer

(d.a.t.). Modified loop design including 4 independent replicates

evaluated at 1, 3, 7, and 14 d.a.t. (C). A total of 16 slides were

employed. Each replicate was conformed by at least 120

transferred seedlings, which were harvested from four independent

plates.

(TIF)

Figure S2 Validation of microarray results via qRT-
PCR. Quantitative real-time PCR analysis was performed for 15

genes in Arabidopsis (Col-0) seedlings, under the same conditions

used for microarray analysis (1, 3, 7 and 14 days of treatment with

60 mM N-isobutyl decanamide). Fold-change (control to N-

isobutyl-decanamide) expression for the indicated selected genes

in a log2 scale is shown. Expression ratios obtained by microarray

experiments (A). Estimates of the differences of expression levels

were calculated using the mixed model as described in methods.

Expression ratios obtained by qRT-PCR (B). RQ (relative
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quantification number) was obtained from the equation 2DDC
T

where DDCT represents DCT(control) - DCT(N-isobutyl decana-

mide 60 mM). Each CT was previously normalized using the

expression levels of ACT2/7 as internal reference. Expression

levels were obtained from four independent replicates, every set of

oligonucleotides had an efficiency greater than 99%. Standar

deviations were less than 0.1 arbitrary units.

(TIF)

Figure S3 Local induction of defense genes by N-
isobutyl decanamide on detached leaves. Leaves from 20

day-old transgenic LOX2:GUS or WT (Col-0) plants grown in soil

were detached and incubated 24 h on solvent (control, white

squares), or 30 mM N-isobutyl decanamide containing plates (black

squares), transferred to decanamide-free plates and then analized.

(A) Dose-response assay with leaves from transgenic Arabidopsis line

carrying LOX2:GUS were stained for GUS expression 24 h after

transference to agar plates. (B) qRT-PCR analysis of the JA-

responsive genes OPR3 and VSP2, and the camalexin biosynthetic

marker PAD3 using CT value of ACT2/7 as internal expression

reference. Relative expression values were normalized with

endogenous levels from each transcript in Col-0 control seedlings.

Bars represent 6 SE from three independent biological replicates

from 30 leaves each one, and from four technical replicates for the

assay.

(TIF)

Figure S4 Effect of N-isobutyl decanamide on Botrytis
cinerea mycelial growth. B. cinerea mycelium excised from a

solid culture in Petri dishes was transferred to potato dextrose agar

dishes supplemented with N-isobutyl decanamide at the concen-

trations indicated. Radial growth of the fungus was measured 24,

48 and 72 h after inoculation (A). Data means average radial

growth from three independent samples 6 SD; no statistical

differences were found at any concentration tested. Mycelial

growth at 72 h after inoculation on solvent-containing media

(Control) and 120 mM N-isobutyl decanamide-supplied media (B).

Fungicide Techto 60 was employed at 1 mg/ml as fungal growth

inhibition control to compare with the highest concentration of N-

isobutyl decanamide in divided Petri dishes (C).

(TIF)

Table S1 Full list of genes differentially expressed by
N-isobutyl decanamide in Arabidopsis.

(PDF)

Table S2 Functional categories over-represented in
N-isobutyl decanamide responsive genes.

(PDF)

Table S3 Sequences of oligonucleotides used as PCR
primers for quantitative expression analysis.

(PDF)
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