
Genome-Scale Consequences of Cofactor Balancing in
Engineered Pentose Utilization Pathways in
Saccharomyces cerevisiae
Amit Ghosh1,4¤, Huimin Zhao1,2,3*, Nathan D. Price1,3,4*¤

1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 2 Department of

Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 3 Center for Biophysics and Computational Biology, University of Illinois at

Urbana-Champaign, Urbana, Illinois, United States of America, 4 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of

America

Abstract

Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels.
Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-
xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-
arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced,
which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict
the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways.
Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The
dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose
utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase
in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%.
Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the
genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor
balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered
pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor
usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can
predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be
worth the significant time investment.
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Introduction

Reconstruction and simulation of genome-scale metabolic

networks provides a powerful approach to guide metabolic

engineering efforts [1,2,3]. Such model guided metabolic engi-

neering approaches have helped to generate rationally modified

strains with improved biological functions [4,5,6,7]. In this regard,

a genome-scale model (GEM) is highly useful to guide strain design

for improved production of chemicals and pharmaceuticals by

microorganisms as cell factories. Metabolic GEMs have been used

in industrial biotechnology for the production of chemicals,

biopolymers, and biofuels, as well as for bioremediation [8,9].

For example, the metabolic GEM for Lactococcus lactis was used to

enhance production of diacetyl, a flavoring compound found in

dairy products [10]. Moreover, the GEM of Pseudomonas putida was

used to improve the production of poly-3-hydroxyalkanoates

(PHA), which are biodegradable polyesters synthesized to replace

petrochemical based plastics [11]. Metabolic GEMs can also be

used to guide strain design for improved biofuel production by

microorganisms [9,12]. The scope of applying GEMs to strain

design continues to increase, aided by improvements in automated

reconstruction of metabolic [13] and integrated regulatory-

metabolic networks [14].

Increases in fuel prices coupled with concerns about global

warming and energy security, have rekindled interest in producing

ethanol and other biofuels from lignocellulosic raw materials such

as agriculture and forestry waste [15,16]. Pretreatment of

lignocellulose by chemical or enzymatic methods yields a mixture

of hexoses (primarily glucose and mannose) and pentose (primarily

D-xylose and L-arabinose, though L-arabinose is typically less

abundant than D-xylose) [17]. The fermentation of almost all the

available hexose and pentose sugars to biofuels is vital to the
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overall economics of these processes because this will maximize the

yield and minimize the costs associated with waste disposal [18].

The yeast S. cerevisiae is often chosen for ethanol production

because of its high inhibitor tolerance and its ability to grow at low

pH to avoid bacterial contamination [19,20]. Although well suited

for fermentation, S. cerevisiae has the substantial drawback that it

cannot fully utilize the substrates available from breakdown of

plant biomass. That is, wild type S. cerevisiae can metabolize the

hexose sugars, but not the pentose sugars. To overcome this

problem, D-xylose and L-arabinose utilization pathways have

been incorporated into the host microorganism. For example, S.

cerevisiae was engineered to utilize D-xylose using both fungal and

bacterial D-xylose utilization pathways [15,16,17,19]. In the

bacterial D-xylose utilization pathway, xylose isomerase is used

to convert D-xylose to D-xylulose, whereas xylulose kinase is

responsible for phosphorylation of D-xylulose to xylulose-5-

phosphate [21]. In the fungal D-xylose utilization pathway, D-

xylose is converted into D-xylulose by sequential action of two

enzymes as found in the D-xylose fermenting fungus Pichia stipitis

[21]. Xylose reductase (XR) catalyzes the conversion of D-xylose

to xylitol and then xylitol is oxidized by xylitol dehydrogenase

(XDH) to D-xylulose. The fungal D-xylose utilization pathway was

considered to be advantageous for bioethanol production due to its

high ethanol productivity compared to the bacterial D-xylose

utilization pathway [21].

Similarly, S. cerevisiae was engineered to utilize L-arabinose using

the fungal reduction/oxidation-based and bacterial isomerization-

based pathways. In the bacterial pathway, enzymes L-arabinose

isomerase (AI), L-ribulokinase (RK), and L-ribulose-5-P 4-

epimerase (R5PE) are responsible for conversion from L-arabinose

to L-ribulose, L-ribulose-5-P, and finally D-xylulose-5-P, respec-

tively [22]. In the fungal pathway, aldose reductase catalyzes the

conversion of L-arabinose to L-arabinitol, which is converted into

L-xylulose by L-arabinitol dehydrogenase (LAD). Finally, L-

xylulose is reduced to xylitol by L-xylulose reductase (LXR)

[23]. Thus both the D-xylose and L-arabinose pathways converge

at xylitol. Low activity of the bacterial L-arabinose pathway and

inefficient production of ethanol are the main reasons for using the

fungal L-arabinose utilization pathway in S. cerevisiae [24].

Previous studies have shown that accumulation of xylitol is

ultimately responsible for inefficient production of ethanol in

engineered S. cerevisiae strains containing the fungal pentose

utilization pathways [25]. One possible explanation for the

inefficient ethanol production is cofactor imbalance in the

introduced pathways [26], as the cofactor specificity of the

corresponding enzymes is different, with XR preferring NADPH

and XDH preferring NAD+. Similarly, the cofactor specificity for

L-arabinitol and L-xylulose reductase are NADH and NADPH,

respectively. Thus, the operation of these pathways results in a

cofactor imbalance that places a demand on the rest of the

network to rebalance these cofactor pools. In order to eliminate

this cofactor imbalance within the engineered pathways, protein

engineering techniques are used to change the cofactor specificity

of XDH and LAD to NADP+. This change will have the effect of

making the pathways redox neutral, meaning that they will not

cause an imbalance in cofactor utilization that would then need to

be compensated for elsewhere in the network. Aerobically NADP+

dependent malic enzymes were used to increase the cystolic or

mitochondrial level of NADPH in S. cerevisiae [27].

We used a genome-scale constraint-based metabolic model to

study for the first time the effects on the global network that result

from cofactor balancing associated with the engineered fungal D-

xylose and L-arabinose utilization pathways. It was found that

cofactor balancing increased predicted pentose sugar utilization

efficiency while retaining the flexibility and flux correlation

structure of the wild type strain. In addition, the genome-scale

model predicts quantitatively an increase in ethanol production of

24.7% that would result from cofactor balancing the introduced

pentose utilization pathways – providing strong motivation for the

initiation of a laborious and time-consuming enzyme engineering

project to change cofactor specificity. Thus, this study provides an

example of prospective design of a labor-intensive synthetic

biology project using the tools of systems biology.

Results

(a) Modified genome-scale models of S. cerevisiae
For our simulations, we modified the most recently published

genome-scale metabolic model: S. cerevisiae iMM904 [28]. To

enable D-xylose and L-arabinose utilization, we introduced into

the model the same engineered pentose sugar utilizing pathways

that we are introducing experimentally into S. cerevisiae (Figure 1).

The resulting model consisted of 1579 reactions and 1229

metabolites. For better utilization of the substrates L-arabinose

and D-xylose, the cofactor specificity of LAD and XDH were

changed to NADP+ as shown in Figure 1. The carbon sources used

for ethanol production were glucose, D-xylose and L-arabinose.

Here we have analyzed three models: 1) wild type (genome-scale

model containing no pentose utilizing pathways); 2) engineered

cofactor imbalanced (engineered cofactor imbalanced D-xylose and L-

arabinose utilization model); and 3) engineered cofactor balanced

(engineered cofactor balanced D-xylose and L-arabinose utiliza-

tion model). Dynamic flux balance analysis (DFBA) calculations

were done on the engineered cofactor imbalanced model and

engineered cofactor balanced model. Flux variability analysis and

sampling of the flux space were done on all the three models.

L-Arabinose and D-xylose utilization
DFBA simulation of batch fermentations for the engineered

cofactor imbalanced model was carried out using 20 g/L of

glucose in the presence of minimum oxygen for the maximization

of biomass production. Apart from glucose, D-xylose and L-

arabinose were mixed in 50 g/L and 30 g/L, respectively. The

initial concentration and uptake rates for glucose and D-xylose

were taken from reported data in literature [29]. The variation of

glucose, D-xylose, L-arabinose, ethanol, and cell biomass concen-

trations as a function of time are shown in Figure 2a. The glucose,

oxygen, D-xylose, and L-arabinose consumption rates were 6.06,

0.3, 1.2, and 1.73 mmol/gDCW/h, respectively. Oxygen-limited

fermentation of yeast on a mixture of glucose and D-xylose caused

a redox imbalance during different cofactor utilization of XR and

XDH in xylose metabolism [30]. The oxygen uptake rate was kept

very low to simulate the microaerobic environments that

maximize ethanol yield. Computationally setting the oxygen

uptake rate below 0.3 mmol/gDCW/h, we observed only D-

xylose consumption, while L-arabinose was never utilized by the

system. This observation argues for a microaerobic condition

being optimal for mixed-sugar fermentation. We have constrained

our system in such a way that utilization of D-xylose and L-

arabinose will start after complete utilization of glucose concen-

tration, to represent the experimentally observed catabolite

repression [24,29]. Glucose is fully utilized within 27 hours of

batch simulation, after which D-xylose starts to be utilized.

Utilization of D-xylose resulted in ethanol production but at the

same time we see significant production of L-arabinitol in the

model. Since the reactions in the engineered D-xylose and L-

arabinose pathways are reversible, the production of xylitol may

lead to L-arabinitol production forcing the reaction to go in the

Cofactor Balancing in Pentose Utilization Pathways
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reverse direction of the engineered L-arabinose utilization

pathway. Experimentally, pentose-fermenting S. cerevisiae strains

have shown significant amount of L-arabinitol accumulation [23].

The L-arabinitol production is maximal when D-xylose is

consumed completely. After complete consumption of D-xylose,

the system utilizes L-arabinitol for growth and not L-arabinose.

Since the NADPH load of converting L-arabinose to L-arabinitol

leads to a lower predicted growth rate, the L-arabinitol formed

during D-xylose consumption is utilized as the preferred carbon

source for cell growth. The utilization of L-arabinitol is slow and

the model simulated almost 86 hours for complete consumption.

The delay in utilization of L-arabinose after D-xylose depletion

was mainly due to cofactor imbalance created due to different

coenzyme specificity of XR and XDH. This cofactor imbalance

led to the built-up L-arabinitol being fully utilized before the L-

arabinose began to be utilized. The L-arabinose was then utilized

at a slower rate compared to D-xylose but at a similar rate to L-

arabinitol. Furthermore, L-arabinose utilization was computed to

be accompanied with small amount of acetate production. A

reduction in the consumption rate of pentose sugars from D-xylose

to L-arabinose may be related to cofactor utilization as mentioned

previously [31,32].

L-Arabinose and D-xylose utilization with a cofactor
balanced pathway

DFBA simulates extracellular L-arabinitol accumulation due to

the difference in cofactor specificity between XR with NADPH

and XDH with NAD+. The difference in cofactor specificity leads

to additional demands on the metabolic network to maintain

intracellular redox balance. Extracellular L-Arabinitol accumula-

tion in the simulations resulted in inefficient utilization of D-

xylose/L-arabinose and decreased ethanol yield. This cofactor

imbalance issue can be addressed by two different protein

engineering strategies. One of them is to change the cofactor

Figure 1. (a) Engineered cofactor imbalanced L-arabinose and D-xylose pathways, (b) Engineered cofactor balanced L-arabinose
and D-xylose pathways. XR: Xylose reductase; LAD: L-arabitol dehydrogenase; LXR: L-xylulose reductase; XDH: xylitol dehydrogenase; XK:
xylulokinase.
doi:10.1371/journal.pone.0027316.g001

Figure 2. Dynamic flux balance analysis. Glucose, D-xylose, L-
arabinose, L-arabinitol, acetate, ethanol and biomass are shown as a
function of time for microaerobic S. cerevisiae batch growth on glucose,
D-xylose, and L-arabinose. (a) engineered cofactor imbalanced (ECI)
model. (b) engineered cofactor balanced (ECB) model.
doi:10.1371/journal.pone.0027316.g002

Cofactor Balancing in Pentose Utilization Pathways
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specificity of LAD and XDH from NAD+ dependent to NADP+

dependent, whereas the other strategy involves the change of

cofactor specificity of XR and LXR from NADPH dependent to

NADH dependent. We simulated both strategies and found that

the results were equivalent. Thus, only the strategy of switching the

cofactor specificity of LAD and XDH from NAD+ dependent to

NADP+ to make the pathways redox neutral will be shown here

(Figure 1). Cofactor specificity of Pichia stipitis XDH (psXDH) has

been successfully changed experimentally through protein engi-

neering for efficient fermentation of D-xylose to ethanol using

recombinant S. cerevisiae [33].

Simulation of ethanol fermentation from mixed sugars was

performed with 20 g/L glucose, 50 g/L D-xylose, and 30 g/L L-

arabinose as carbon sources. The variation of glucose, D-xylose, L-

arabinose, ethanol, and cell biomass concentrations as a function

of time are shown in Figure 2b. We kept the oxygen consumption

rate to a low value of 0.01 mmol/gDCW/h. In all versions of the

model, we found lowering the oxygen uptake rate resulted in

increased ethanol production, as would be expected from

experimental behavior of S. cerevisiae. We simulated the batch

processes with both the cofactor imbalanced and cofactor

balanced pentose utilization pathways. Here we constrained our

model to utilize L-arabinose immediately after D-xylose. The

genome-scale model predicted that the strain with the engineered

cofactor balanced pathway would have significantly higher ethanol

production (46 g/L ethanol) than the strain with the cofactor

imbalanced pathway (36.9 g/L of ethanol). The engineered

cofactor balanced strain showed significant increase in biomass of

8.03 g/L compared to the cofactor imbalanced strain of 6.27 g/L

of biomass. This represents a 24.7% increase in ethanol

production from the same amount of substrate, which provides

strong motivation for experimental efforts to modify the cofactor

specificity – typically a long and laborious process. Interestingly,

extracellular L-arabinitol accumulation is not predicted when the

engineered cofactor balanced pathway is introduced, leading to

the immediate utilization of L-arabinose after complete consump-

tion of D-xylose. Furthermore, the L-arabinose consumption rate

is faster than is found with the cofactor imbalanced pathways. Also

of critical importance to overall performance, the total time

required to consume the mixed sugars glucose, D-xylose, and L-

arabinose is predicted to be just 94 hours for the strain with the

cofactor balanced pathways compared to 312 hours for the strain

with the cofactor imbalanced pathways. Thus by cofactor

balancing the metabolic network has improved ethanol production

from 36.9 g/L to 46 g/L and simultaneously reduces the

utilization time from 312 hours to 94 hours. The cofactor

balanced pathway thus has the potential to improve the

engineered S. cerevisiae strain for ethanol production.

(b) Comparison of in silico predictions and experimental
measurements

Of key importance in using the model to guide an experimental

program is to ascertain whether the predictions made from the

model are generally reliable. The genome-scale S. cerevisiae

metabolic model has been extensively validated [34,35], and we

will focus on specific predictions closest to our aims in the present

study. We also compared results with a S. cerevisiae strain [29] that

has previously been engineered to metabolize D-xylose, using a

modified genome-scale metabolic model with the engineered D-

xylose pathway introduced. Simulation of batch fermentations on

glucose and D-xylose were compared with experimental results

[29]. The consumption of glucose and D-xylose, as well as the

production of ethanol were compared over time in batch culture

and simulation (Figure 3a). Glucose is utilized first and then D-

xylose is consumed. The experimentally measured uptake rates for

glucose and D-xylose were used in batch simulation. The

concentration of glucose and D-xylose used for the culture are

20 g/L and 50 g/L, respectively. The ethanol yield was 0.29 g

ethanol (g consumed sugars)21. Experimental batch fermentation

under the same condition as with the wild type strain of S. cerevisiae

consumed 20 and 30.4 g/L of glucose and D-xylose, respectively

and produced 16.8 g/L of ethanol [29] (Table1). These

measurements agree well with our theoretical prediction of 17.6

g/L of ethanol for the same D-xylose consumption as the

experimental measurement (Table 1). Moreover, the time taken

to consume D-xylose was more than 75 hours for both the

prediction and experimental measurement. The xylose transport

affinity in S. cerevisiae is very low compared to glucose. Previous

studies have shown that transport may control xylose utilization in

recombinant S. cerevisiae [36]. However the rate at which transport

controls the xylose uptake rate is dependent on both the substrate

concentration and the downstream pathways. The overall xylose

transport in S. cerevisiae was kinetically modeled in silico as a

function of extracellular glucose concentration [37]. The xylose

utilization can be further improved at low glucose concentration

compared to xylose concentration. One main reason for the slow

rate of D-xylose consumption is presumably that the D-xylose and

L-arabinose pathways are not redox balanced. The redox

balanced pathways in the network perform much better, since

cofactor balancing in the rest of the network remains similar to

that of the wild type strain. The cofactor balanced network model

behaved much closer to the wild type model and is further verified

using flux variability analysis and by comparing the reaction

correlation patterns.

Figure 3. Dynamic flux balance analysis. The glucose, D-xylose
and ethanol are shown as a function of time for anaerobic S. cerevisiae
batch growth on glucose and D-xylose. (a) Without cofactor balance
with engineered D-xylose pathway. (b) With cofactor balanced D-xylose
pathway.
doi:10.1371/journal.pone.0027316.g003

Cofactor Balancing in Pentose Utilization Pathways
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NAD+ generated during the conversion of D-xylose to xylitol

can be utilized by NAD+ specific XDH. Recently, the batch

fermentations were done on a recombinant S. cerevisiae strain

containing the XR-XDH pathway from P. stipitis with engineered

NADH-specific XR (YPS270R) [29]. Simulations of batch

fermentation were carried out with the cofactor balanced D-

xylose pathway (Figure 3b) and compared with experimental

results. The simulation used 70 g/L sugar and produced 33 g/L

ethanol, whereas YPS270R was reported to consume 66.1 g/L

sugar and produced 25.3 g/L ethanol (Table 1). Experimental

results showed reduced xylitol accumulation which may be due to

the small difference in cofactor specificity. The ethanol production

is computed to be further improved to 33 g/L when a NADH-

specific XR is used.

(c) Range of flux variability within the genome-scale
network of S. cerevisiae

Growth rate was chosen as the objective function for the

optimization of the S. cerevisiae genome-scale metabolic network. At

optimal growth, a range of variability exists in each flux in the

network in terms of the range of flux values it can achieve at

steady-state. First, the maximum value of the biomass objective

function was calculated and then the maximum value of biomass

was used as a constraint when calculating the feasible range of

reaction fluxes by subsequent maximization and minimization of

each reaction flux. We have applied this technique, known as Flux

Variability Analysis (FVA) [38], to determine the maximum and

minimum flux values for all the reactions in a given model while

satisfying FBA mass balance conditions and all other constraints

on the system. The glucose, oxygen, D-xylose, and L-arabinose

consumption rates were 6.06, 0.3, 1.2, and 1.73 mmol/gDCW/h,

respectively for all the three models. The flux range for each

reaction at optimal growth was computed for each of the three

above-mentioned models. The reactions affected due to cofactor

balancing are selected based on range of flux values, calculated

using maximum and minimum allowed fluxes for each reaction.

The difference of flux span between engineered cofactor

imbalanced (ECI) and engineered cofactor balanced (ECB) models

is given by SC = SpanECI -SpanECB. A difference flux span or span

change (SC) was calculated between engineered cofactor imbal-

anced and engineered cofactor balanced models reactions, and are

grouped into four categories, SC . 0.5, 0.01 , SC , 0.5, 0.0 ,

SC , 0.01 and SC = 0 with 4%, 42%, 19% and 35% of total

reactions respectively, in the entire metabolic network (Figure 4a,

Table S1). Almost 65% of the total reactions are affected due to

cofactor balancing of the metabolic network. A majority of the

reactions affected lie between 0.01-0.5 and only few of them

changed drastically (Figure 4b). Reactions that showed a reaction

flux span change of more than 2.8 mmol/gDCW/h were chosen

for further analysis. The ten selected reactions (PGK, GAPD,

PGM, ENO, GLYCDy, DHAK, G3PT, G3PD1ir, PYK,

PYRDC) were those whose flux variability was most changed

amongst the wild type model, engineered cofactor imbalanced

model, and engineered cofactor balanced model (Table 2). The

majority of the reactions most affected by cofactor balancing are

involved in glycolysis and phospholipid biosynthesis. The flux

variability for these selected reactions was less than 2.46 and 7.46

mmol/gDCW/h for the wild type model and the engineered

cofactor imbalanced model, respectively. Interestingly, the span of

selected reactions for the wild type model is less than the

engineered cofactor imbalanced model. The increase in variability

in reaction fluxes of the engineered cofactor imbalanced model is

associated with reduction in cell growth, which eventually affects

the overall ethanol production. The engineered cofactor balanced

model has a flux span for the selected reactions with less than or

equal to 3.38 mmol/gDCW/h and were much closer to those in

the wild type model. Thus, cofactor balancing was responsible for

the reduction in flux variability of the reactions.

(d) Sampling candidate flux distributions
The characterization of genome-scale metabolic networks based

on reaction flux distribution is an efficient way to differentiate

similar metabolic networks with perturbations to the original

system, such as the introduction of engineered metabolic

pathways. The range of metabolic fluxes that do not violate

imposed physico-chemical constraints have been characterized

through uniform random sampling of the steady-state flux space

[39,40,41]. Such analyses also enable studying the correlations

between pairs of reactions in the metabolic network to study

changes in the relationships between fluxes that are due to the

introduced pathways.

The correlation coefficient (rij) between any two fluxes (vi and vj)

in the network was evaluated using uniform random sampling of

the steady-state flux space. The glucose, oxygen, D-xylose, and L-

arabinose consumption rates were kept same for the wild type,

engineered cofactor imbalanced and cofactor balanced models.

The optimal growth rates for wild type, engineered cofactor

imbalanced model and engineered cofactor balanced model are

0.14, 0.15, 0.19 hr21 respectively. The correlation pattern

obtained from sampling provided an efficient way to distinguish

the effects of changes to the metabolic network. Here, the

metabolic network has been changed by adding new pathways and

changing the cofactor specificity for selected reactions. Pairwise

correlation coefficients were calculated between all fluxes

(Figure 5). Two scatter plots were made to compare the engineered

cofactor imbalanced and the cofactor balanced models with the

wild type model. Scatter plot shows the points close to the diagonal

are also similar to the reaction correlation present in the wild type

model. Interestingly, the scatter plot of the engineered cofactor

imbalanced model (Figure 5a) is more scattered compared to the

engineered cofactor balanced model (Figure 5b), indicating that

cofactor balanced correlation coefficients are close to the wild type

correlation coefficients. The correlation coefficients between

selected pairs of reactions selected based on the flux variability

analysis described above are varying with different models

(Table 3). The introduction of xylose and arabinose pathways

leads to higher correlation between the reactions in the entire

metabolic network. However cofactor balancing the network has

shown significant decrease in correlation between reactions.

Therefore the reactions are much more flexible in wild type and

cofactor balanced models. The overall correlation coefficient

between wild type and engineered cofactor balanced models is as

Table 1. Comparison of model prediction with
experimentally measured ethanol production and consumed
substrates.

Substrates or Products

Cofactor
Imbalanced Cofactor Balanced

Expt (g/L)
Model
(g/L) Expt (g/L)

Model
(g/L)

Glucose Consumed 20 20 20 20

Xylose Consumed 30.4 50 46.1 50

Ethanol Produced 16.7 17.6 25.3 33

doi:10.1371/journal.pone.0027316.t001

Cofactor Balancing in Pentose Utilization Pathways
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high as 0.97, whereas for wild type and engineered cofactor

imbalanced models it is 0.72. Thus cofactor balancing the

engineered pathways largely restored the correlation relationships

of the wild type model based on in silico predictions. Furthermore,

uniform random samples were used to calculate the probability

distribution for fluxes in the metabolic networks of S. cerevisiae. The

probability distribution of fluxes and pairwise correlation is

calculated to show how interdependent these reactions are in the

network (Figure 6). The diagonal and off-diagonal represent the

flux distribution histograms and pairwise scatter plots, respectively

(Figure 6). The off-diagonal scatter plots represent the relation-

ships between two reaction fluxes. For example, the PDYRC and

PGK are fully correlated in the engineered cofactor imbalanced

model, whereas very low correlations were observed in the wild

type and engineered cofactor balanced models. These interde-

pendent reactions are involved in constraining the system to

operate at the suboptimal region. In Figure 6a, the red, blue and

magenta rectangular boxes were made to compare with the

patterns in the wild type model. In the engineered cofactor

imbalanced model, the probability distribution shows a decrease in

flexibility in reaction fluxes. However, the engineered cofactor

balanced model has considerably decreased the correlation among

the reaction fluxes (Figure 6c). The highlighted rectangular boxes

were marked with highly correlated reaction fluxes in the

engineered cofactor imbalanced model but less correlated in the

two other models. The shape of the probability distribution is

helpful in determining the level of independence between any two

fluxes and also identifying highly correlated reaction sets. Thus, by

introducing new D-xylose and L-arabinose pathways we see high

correlations among the reaction fluxes. The cofactor balancing of

the added pathways has diminished the correlations, and the

correlation patterns are now much more similar to those in the

wild type model.

(g) Flux coupling analysis
The functionally related coupled reaction sets are identified

using flux coupling analysis [42] on a genome-scale metabolic

network of S. cerevisiae. This procedure relies on minimization and

Figure 4. The flux span is obtained using maximum and minimum allowable flux values for all reactions. The difference of flux span
between engineered cofactor imbalanced (ECI) and engineered cofactor balanced (ECB) models is given by SC = SpanECI -SpanECB. The relative change
in flux span between ECI and ECB models are (a) grouped into SC . 0.5, 0.01 , SC , 0.5, 0.0 , SC , 0.01 and SC = 0 with 4%, 42%, 19% and 35% of
total reactions respectively, in the entire metabolic network, and (b) plotted as histogram with span change on x-axis and number of reactions on the
y-axis.
doi:10.1371/journal.pone.0027316.g004

Table 2. The minimum and maximum allowable flux values for each reaction in the wild type, engineered cofactor imbalanced,
and engineered cofactor balanced models were obtained using Flux Variability Analysis (FVA).

Reaction Wild type model Engineered cofactor imbalanced model Engineered cofactor balanced model

Min Flux* Max Flux Span Min Flux Max Flux Span Min Flux Max Flux Span

PGK -11.40 -10.14 1.26 -16.21 -10.43 5.78 -16.00 -14.27 1.73

GAPD 10.14 11.40 1.26 10.43 16.21 5.78 14.27 16.00 1.73

PGM -11.40 -10.07 1.33 -16.21 -10.34 5.86 -16.00 -14.17 1.83

ENO 10.07 11.40 1.33 10.35 16.21 5.86 14.17 16.00 1.83

GLYCDy 0.00 1.86 1.86 0.00 5.64 5.64 0.00 2.76 2.76

DHAK 0.00 1.86 1.86 0.00 5.64 5.64 0.00 2.76 2.76

G3PT 0.00 1.86 1.86 0.00 5.64 5.64 0.00 2.76 2.76

G3PD1ir 0.00 2.41 2.41 0.00 6.19 6.19 0.00 3.33 3.33

PYK 10.01 12.46 2.45 10.28 16.79 6.51 14.08 17.54 3.46

PYRDC 7.69 10.89 3.2 8.14 15.6 7.46 10.64 15.26 4.62

*mmol/gDCW/h.
doi:10.1371/journal.pone.0027316.t002
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maximization of flux ratios to determine the degree of dependency

between any two reactions within the network obeying mass

balance and boundary constraints. The metabolic reaction pairs

can be categorized into the following three groups: i) fully coupled:

the activity of one reaction fixes the activity for other reaction and

vice versa, ii) directionally coupled: the activity of one reaction implies

the activity of the other but not necessarily the reverse. iii) partially

coupled: the activity of one reaction implies the activity of the other

and vice versa, iv) uncoupled: the activity of one reaction does not

implies the activity for other reaction and vice versa. These

reactions can have any flux ratio and can operate independently.

To measure and compare the extent of coupling of reactions

within the metabolic network the upper and lower limit of the flux

ratios, Rmax = max(n1/n2) & Rmin = min(n1/n2) were calculated

(Table S2). In most of the reaction sets the partially, directionally

and fully coupled reaction pairs have not changed their coupling

state in wild type, engineered cofactor imbalanced and cofactor

balanced (ECB) models. However the magnitude of the flux ratios

Rmax and Rmin showed a significant change for the three models.

Interestingly the flux ratios for fully coupled reaction pairs PGM-

DHAK, PGM-ENO, PGM-G3PT, PGM-GLYCDy, PGM-PGK

and PGM-PYK are exactly the same for the wild type and cofactor

balanced models. Moreover the flux ratios for partially/direction-

ally coupled reaction pairs PYK-DHAK, PYK-ENO, PYK-

G3PT, PYK-GAPD, PYK-GLYCDy, PYK-PGK, PYK-PGM,

PYK-PYRDC are similar in magnitudes for wild type and cofactor

balanced models, whereas the same flux ratios for engineered

cofactor imbalanced model are not matching with other two

models. Therefore the flux ratios are shifted with the introduction

of new D-xylose and L-arabinose pathways. The cofactor

balancing of the added pathways have shown a shift in flux ratios

and are much more similar to those in the wild type model.

Discussion

Computer simulations of GEMs allow the prediction of system

behaviors in response to various conditions and can help in strain

design for improved biochemical production. We have used a

GEM of S. cerevisiae to study for the first time the effects on the

global network that result from cofactor balancing engineered

pathways. In particular, here we focused on the introduction of

engineered fungal D-xylose and L-arabinose utilization pathways.

The difference in cofactor preference in engineered pathways

leads to intracellular redox imbalance. Our studies indicate that

cofactor balanced pentose utilization pathways will substantially

increase ethanol production. We also observed efficient utilization

of the pentose sugars by making the pathways redox balanced –

thus reducing the burden placed on the rest of the metabolic

network to compensate for the introduction of cofactor imbal-

anced pathways.

To build a GEM of S. cerevisiae that is capable of utilizing

pentose sugars, the L-arabinose and D-xylose utilization pathways

were introduced into a recently updated genome-scale metabolic

model for S. cerevisiae (iMM904). The different cofactor specificity,

NAD+ for LAD and XDH, NADPH for XR and LXR, in

engineered D-xylose and L-arabinose utilization pathways has

contributed to intercellular redox imbalance, which results in

reduced pentose sugar consumption rates and ethanol productivity

– which the model predicts as a consequence of the demands

placed on the metabolic network to re-balance these co-factors. To

address the cofactor imbalance issue, the cofactor specificity was

changed computationally from NAD+ to NADP+ for two enzymes

in the D-xylose and L-arabinose utilization pathway including

LAD and XDH. The GEM predicts that engineering cofactor

balanced pathways will greatly enhance utilization of pentose

sugars and increase ethanol production. To validate the model

predictions, the computational data were compared with reported

experimental data. The experimental ethanol production is 25.3

g/L with 66.1 g/L sugar consumption, while our DFBA

calculations have shown 33 g/L of ethanol with 70 g/L of sugar

consumption, indicating a very good agreement between model

predictions and experimental data.

Based on this revised GEM, flux variability analysis was carried

out to further investigate the variation of reaction fluxes in the

entire metabolic network. The increase in flexibility of the reaction

fluxes resulted in increases in the flux range of the engineered

cofactor imbalanced model. Cofactor balancing the engineered

pathways restored network flexibility to a state that was very

similar to that of the wild type strain. Furthermore, uniform

random sampling was carried out to calculate the probability

distribution for fluxes through all reactions. Variations in

correlation patterns among the reactions were observed with the

addition of the engineered cofactor imbalanced and engineered

cofactor balanced pathways. The added D-xylose and L-arabinose

pathways have increased the correlation among the reactions of

the entire metabolic network. Furthermore, pairwise correlation

coefficients were calculated for fluxes through all reactions of wild

type, engineered cofactor imbalanced, and engineered cofactor

balanced models. The wild type network correlation pattern was

lost when D-xylose and L-arabinose pathways were added to the

cell. Thus, by adding new pathways we have seen an increase in

solution space as evident from flux variability analysis. Sampling of

allowed flux space has shown an increase in correlations among

the reactions. The reactions are interdependent with each other

Figure 5. Scatter plots of pairwise correlation coefficients of all
fluxes in the metabolic network. (a) Between the wild type (WT)
model and the engineered cofactor imbalanced (ECI) model. (b)
Between the wild type model and the engineered cofactor balanced
(ECB) model.
doi:10.1371/journal.pone.0027316.g005
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with increase of correlations as evident from the pairwise

correlation map. Thus, increased correlation patterns in the

engineered cofactor imbalanced model are responsible for the

increase in rigidity of the reaction network compared to the wild

type network. The addition of new pathways to the cell affected

the solution space of the network and also the reaction correlation

patterns. The range of possible metabolic network states of the

model was much more similar to the wildtype when cofactor

balancing was performed on the engineered pathways, suggesting

that native regulation in the cell would be much more likely to

respond well to the additional carbon flux from the pentoses.

Taken together, cofactor balancing increased pentose sugar

utilization efficiency while retaining the flexibility and flux

correlation structure of the wild type strain. Moreover, model

guided cofactor balancing has emerged to help the metabolic

engineering of microorganisms to fuels production.

We used a modified genome-scale metabolic model of S.

cerevisiae to investigate the global effect of cofactor imbalance in

engineered pentose sugar utilization pathways. The insights gained

from the computational studies will enable the strain design for

improved ethanol production in a rational and systematic way.

This approach of cellular design promises solutions to some of

today’s most difficult problems in metabolic engineering of

microbes and opens up an alternative perspective to analyze

biological systems. Our future goals include the experimental

implementation of the strain design proposed herein and the

continued development of strategies for model guided biofuel

production.

Table 3. Correlation coefficients for reaction pairs were obtained for simulated wild type, engineered cofactor imbalanced and
engineered cofactor balanced models.

Reactions Reactions Wild type model
Engineered cofactor
imbalanced model

Engineered cofactor balanced
model

PGK PYRDC -0.50 -0.93 -0.32

PGK GLYCDy -0.07 -0.53 -0.13

PGK G3PT -0.06 -0.53 -0.12

PGK G3PD1ir -0.01 -0.39 -0.09

PGK ENO -0.92 -1.00 -0.92

PGK DHAK -0.07 -0.53 -0.13

PGK PYK -0.85 -0.99 -0.87

PGM PYRDC -0.45 -0.93 -0.34

PGM GLYCDy -0.09 -0.53 -0.06

PGM G3PT -0.08 -0.53 -0.05

PGM G3PD1ir -0.01 -0.39 -0.03

PGM DHAK -0.09 -0.53 -0.06

PYRDC GAPD 0.50 0.93 0.32

PYRDC GLYCDy 0.04 0.51 0.22

PYRDC G3PT 0.04 0.51 0.22

PYRDC G3PD1ir -0.05 0.35 0.17

PYRDC ENO 0.45 0.93 0.34

PYRDC DHAK 0.04 0.51 0.22

PYRDC PYK 0.43 0.93 0.31

GAPD GLYCDy 0.07 0.53 0.13

GAPD G3PT 0.06 0.53 0.12

GAPD G3PD1ir 0.01 0.39 0.09

GAPD DHAK 0.07 0.53 0.13

GLYCDy G3PD1ir 0.89 0.47 0.89

GLYCDy ENO 0.09 0.53 0.06

GLYCDy PYK 0.13 0.53 0.06

G3PT G3PD1ir 0.89 0.46 0.89

G3PT ENO 0.08 0.53 0.05

G3PT PYK 0.12 0.52 0.06

G3PD1ir ENO 0.01 0.39 0.03

G3PD1ir DHAK 0.89 0.47 0.89

G3PD1ir PYK 0.08 0.39 0.03

ENO DHAK 0.09 0.53 0.06

DHAK PYK 0.13 0.53 0.06

Engineered cofactor imbalanced model has shown higher correlation coefficient between reaction pairs compared to wild type and cofactor balanced models.
doi:10.1371/journal.pone.0027316.t003
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Materials and Methods

All studies described below were done using the Constraint-

Based Reconstruction and Analysis (COBRA) Matlab Toolbox

[43]. Functions that were extensively used in our analysis (e.g.

dynamic flux balance analysis, flux variability analysis, and flux

correlations using sampling) were run in the Matlab environment.

(a) Flux balance analysis (FBA)
We used the publicly available genome-scale metabolic network

S. cerevisiae iMM904 [28], with 1577 reactions and 1228

metabolites, as the base model for FBA analysis. FBA was carried

out on this model using the biomass as the objective function. The

LP problem that is solved is summarized below

max cT v

subject to Sij :vj~0

vmin
j ƒvjƒvmax

j

where c is the objective function vector, and vmax and vmin are the

vectors containing the maximum and minimum capabilities of the

fluxes.

(b) Dynamic flux balance analysis (DFBA)
Dynamic flux balance analysis was used to simulate the batch

growth of S. cerevisiae on glucose, D-xylose and L-arabinose using the

COBRA toolbox [43]. DFBA is an approach that simulates batch

cultures by incorporating quasi-steady state flux balance calcula-

tions at a series of discrete time steps [44]. The batch time was

divided into 1000 intervals, solving the optimization problem in an

iterative approach based on steady state approximation. At each

step, linear optimization was done to predict growth, nutrient

uptake, and by-product secretion rates. Furthermore, the concen-

tration was used to calculate the maximum uptake rates of substrates

for the next time step. The concentrations for the next time step are

calculated from the differential equation given below [44].

dX

dt
~m:X?X (tzDt)~X(t):emDt

dS

dt
~VS ex

:X?S(tzDt)~S(t){VS ex
:X (t):

(1{emDt)

m

dP

dt
~VP ex

:X?P(tzDt)~P(t){VP ex
:X (t):

(1{emDt)

m

X(t), S(t), P(t) are the biomass, substrate and product

concentrations, respectively, at a given time point. VS_ex and

VP_ex are the exchange fluxes for the substrate and the product,

respectively. During each small time step, Dt, we assume that

uptake and secretion rates and m are constant. The concentration

of each external metabolite was computed at each time step,

including for glucose, D-xylose, and L-arabinose. The glucose

and D-xylose uptake rates were taken from batch experiments

[29].

(c) Flux variability analysis
Flux variability analysis was used to calculate the minimum and

maximum allowable flux values for each reaction of the genome-

scale metabolic network of S. cerevisiae. The range of fluxes is useful

for understanding the redundancies in the system. First, the

maximum value of the objective function was calculated and this

value was used to calculate the feasible range of reaction fluxes by

subsequent maximization and minimization of each reaction flux

[38]. These were calculated through a series of LP problems. The

mathematical formulations for maximization and minimization

problems are shown in case 1 and case 2, respectively.

Case 1 max vj

subject to Sij
:vj~0

cT v~Zbiomass

vmin
j ƒvjƒvmax

j

Case 2 min vj

subject to Sij
:vj~0

cT v~Zbiomass

vmin
j ƒvjƒvmax

j

where Zbiomass is the value of the biomass objective function. If n is

the number of fluxes then the 2n LP problems are to be solved for

flux variability analysis. The above method was applied to

determine the maximum and minimum flux values for all the

reactions in the model while satisfying FBA mass balance

conditions and all other constraints on the system [38].

(d) Flux correlations using sampling
Flux distributions in the genome-scale model corresponding to

maximal cell growth were computed using FBA. Uniform random

sampling was done to characterize the space of all flux

distributions [39]. The genome-scale metabolic networks with

small perturbations were differentiated based on the character-

ization of the solution space using random samplers [45]. The

sampling has been done using hit and run samplers with a total of

10 million steps [41]. The correlation coefficient (rij) between any

two fluxes (vi and vj) in the network was evaluated using random

sampling of the steady-state flux space [40]. The correlations

between pairs of reactions in the metabolic network were

compared with engineered and cofactor balanced models.

(e) Flux Coupling Analysis
We have applied the previously developed Flux coupling finder

for finding coupled reactions sets in constraint-based genome-scale

metabolic models [42]. All coupled reactions are identified by

calculating the minimum and maximum flux ratio given by Rmax

(max v1/v2) and Rmin (min v1/v2) respectively between two fluxes

v1 and v2.

Figure 6. Flux distribution for S. cerevisiae obtained using artificial hit and run sampling. Individual flux distribution histograms are along
the diagonal and pairwise scatter plots are off-diagonal. The off-diagonal scatter plots show the relationships between fluxes through two reactions.
The red, blue and magenta rectangular boxes were made to compare the correlation patterns in wild type model, engineered cofactor imbalanced
model and the engineered cofactor balanced model.
doi:10.1371/journal.pone.0027316.g006
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max Rmax~ v
_

1 or ( min Rmin~v
_

1)

subject to Sij :v
_

j~0

v
_

2~1

v
_uptake

j ~v
uptake max
j :t

v
_

j§0

t§0

The flux ratios for every pair of fluxes are used to determine

different types of coupling shared between the two fluxes v1 and v2.

(a) If Rmin = 0 and Rmax . 0, then reactions are directionally

coupled

(b) If (Rmax - Rmin) . 0, then reactions are partially coupled.

(c) If (Rmax - Rmin) = 0, then reactions are fully coupled.

The reaction pairs not coming into these three categories are

termed as uncoupled reactions.
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Table S1 The minimum and maximum allowable flux values

obtained for reactions with different values of span change (SC), (a)
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20. Hahn-Hägerdal B, Wahlbom C, Gárdonyi M, van Zyl W, Otero R, et al. (2001)

Metabolic Engineering of Saccharomyces cerevisiae for Xylose Utilization. Adv

Biochem Eng Biotechnol 73: 53–84.

21. Karhumaa K, Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF (2007)

Comparison of the xylose reductase-xylitol dehydrogenase and the xylose
isomerase pathways for xylose fermentation by recombinant Saccharomyces

cerevisiae. Microb Cell Fact 6: 5.

22. Becker J, Boles E (2003) A Modified Saccharomyces cerevisiae Strain That Consumes
L-Arabinose and Produces Ethanol. Appl Environ Microbiol 69: 4144–4150.

23. Bettiga M, Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund M (2009)
Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae

expressing a fungal pentose utilization pathway. Microb Cell Fact 8: 40.

24. Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund M (2008) Comparing the
xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in

arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol
Biofuels 1: 16.

25. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008)

Bioethanol production from xylose by recombinant Saccharomyces cerevisiae

expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and

xylulokinase. J Biosci Bioeng 105: 296–299.

26. Bruinenberg PM, Bot PHM, Dijken JP, Scheffers WA (1983) The role of redox

balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol

Biotechnol 18: 287–292.

27. Moreira dos Santos M, Raghevendran V, Kötter P, Olsson L, Nielsen J (2004)

Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing
NADPH production capacity aerobically in different cellular compartments.

Metabolic Engineering 6: 352–363.
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