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Abstract

Background: It is known that bone mineral density (BMD) predicts the fracture’s risk only partially and the severity and
number of vertebral fractures are predictive of subsequent osteoporotic fractures (OF). Spinal deformity index (SDI)
integrates the severity and number of morphometric vertebral fractures. Nowadays, there is interest in developing
algorithms that use traditional statistics for predicting OF. Some studies suggest their poor sensitivity. Artificial Neural
Networks (ANNs) could represent an alternative. So far, no study investigated ANNs ability in predicting OF and SDI. The aim
of the present study is to compare ANNs and Logistic Regression (LR) in recognising, on the basis of osteoporotic risk-factors
and other clinical information, patients with SDI$1 and SDI$5 from those with SDI = 0.

Methodology: We compared ANNs prognostic performance with that of LR in identifying SDI$1/SDI$5 in 372 women with
postmenopausal-osteoporosis (SDI$1, n = 176; SDI = 0, n = 196; SDI$5, n = 51), using 45 variables (44 clinical parameters
plus BMD). ANNs were allowed to choose relevant input data automatically (TWIST-system-Semeion). Among 45 variables,
17 and 25 were selected by TWIST-system-Semeion, in SDI$1 vs SDI = 0 (first) and SDI$5 vs SDI = 0 (second) analysis. In the
first analysis sensitivity of LR and ANNs was 35.8% and 72.5%, specificity 76.5% and 78.5% and accuracy 56.2% and 75.5%,
respectively. In the second analysis, sensitivity of LR and ANNs was 37.3% and 74.8%, specificity 90.3% and 87.8%, and
accuracy 63.8% and 81.3%, respectively.

Conclusions: ANNs showed a better performance in identifying both SDI$1 and SDI$5, with a higher sensitivity,
suggesting its promising role in the development of algorithm for predicting OF.
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Introduction

Osteoporosis is a multi-factorial systemic skeletal disease,

characterised by low bone mass and microarchitectural deterio-

ration of bone tissue, with a consequent increase in bone fragility

and susceptibility to fracture [1]. The diagnosis of osteoporosis

relies on the measurement of bone mineral density (BMD),

measured by dual energy X-ray absorptiometry (DXA), or on the

presence of a fragility fracture. Nevertheless, the assessment of

fracture risk with BMD shows several limitations. The bone

microarchitecture, commonly named ‘‘bone quality’’, is difficult to

assess by clinical parameters [2,3]. Also for this reason, the BMD

detection rate for fragility fractures (sensitivity) is low, and the 96%

of fragility fractures seems to arise in women without a

densitometric diagnosis of osteoporosis [4]. The use of additional

risk factors that, independently of BMD, add information on

fracture risk, improves the BMD sensitivity in predicting fragility

fracture [4,5]. Thus, recent efforts by the World Health

Organization Metabolic Bone Disease Group have focused on

developing a risk assessment tool (FRAXTM) using clinical risk

factors with and without femoral neck BMD to enhance fracture

prediction [6].

Asymptomatic morphometric vertebral fractures (MVF) are

considered the ‘‘prima facies’’ of osteoporosis, and are much more

prevalent than clinical fractures [7]. Morphometric vertebral

fractures are often overlooked by radiologist [8], although they

represent one of the strongest clinical predictors of subsequent

fractures [9]. Indeed, the risk of subsequent fractures increases
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with both the number and the severity of prior vertebral fractures

[10–13]. Thus, it may be more relevant for an appropriate

assessment of future fracture risk to assess all the fractures rather

than to consider the spine as a whole, as a binary parameter

(fracture Yes/No), as in FRAXTM. The spinal deformity index

(SDI) described by Minne [14] and Genant [15] is an assessment

tool that integrates both the number and severity of fractures by

summing the vertebral fracture grades along the spine from T4 to

L4. Two studies suggested that SDI may be an accurate tool for

vertebral fracture prediction and that baseline SDI was predictive

of the 3-year incidence of subsequent vertebral fracture [16,17].

Recently, the SDI has been found to be negatively associated with

functional outcome in women with hip fracture admitted

consecutively to a rehabilitation hospital [18]. This is in line with

histological data showing that microarchitectural deterioration is

proportionally worse in women with increasing severity of

vertebral fractures [19].

Recent studies suggest that FRAXTM tool may have a poor

sensitivity for fracture prediction and does not significantly

improve the discriminatory value of hip BMD alone [20,21]. An

explanation is that osteoporosis is a multi-factorial systemic skeletal

disease, in which different factors and environments interact in

stochastic, nonlinear biological mechanisms. Therefore, the link

between bone mineral density, clinical risk factors and fragility

fractures probably needs a special kind of mathematics, such as

Artificial Neural Networks (ANNs), to be understood.

Artificial Neural Networks are artificial adaptive systems,

inspired by the functioning processes of the human brain [22].

These mathematical informatics’ systems are able to modify their

internal structure in relation to a function objective. So, they are

particularly suited for solving nonlinear problems, being able to

reconstruct the fuzzy logic rules [23] that govern the optimal

solution for these problems. The ability to learn through an

adaptive way (i.e. extracting from the available data the

information needed to gather a specific task and to generalise

the acquired knowledge) is a characteristic that make the ANN

models a very powerful tool for data analysis. The internal

structure and functional organisation of such systems can be

updated and modified with respect to the environmental changes

enabling the ANN to create its own representation of the

information. Moreover, these models are interesting also for their

noise tolerance that allows accurate performances in presence of

unreliability, wrong data or measurement errors.

Although ANNs offer promise for improving the predictive

value of traditional statistical data analysis and have been

successfully used in many areas of medicine [24], no reports have

so far investigated the ability of ANNs in predicting osteoporosis

fracture.

Methods

Objectives
The aim of the present study was to evaluate the capacity of

ANNs, compared with Logistic Regression (LR), to recognise: 1)

patients with or without morphometric vertebral fractures (SDI$1

and SDI = 0 respectively) and 2) patients with SDI$5 or without

morphometric vertebral fractures (SDI$5 and SDI = 0 respec-

tively), on the basis of classical bone osteoporotic risk factors and

other clinical information, routinely derived from the out-patient

visits.

Participants
The study population included 430 patients consequently

referred to 9 out-patient clinics for osteoporosis management

belonging to GISMO-Lombardia Group (North-West of Italy), from

1st January to 31st March 2010. The majority of the patients had

been referred from primary care. The inclusion criteria were: 1)

female post-menopausal patients with osteopenia or osteoporosis

defined by the presence of a T-score for spine BMD or hip BMD

#21.0.22.5 and #22.5 respectively. Exclusion criteria were: 1)

patients who have been treated with bisphosphonates or other

drugs for osteoporosis, or who have been taking these drugs for at

least 1 year; 2) secondary forms of osteoporosis; 3) malignancies; 4)

renal failure; 4) previous or present treatment with oral

corticosteroids or any other drug known to affect bone

metabolism. Eventually, data from 372 subjects were analyzed.

Information on menopausal age, number of pregnancies, breast

feeding, smoking habits, and alcohol consumption were collected.

In order to estimate this latter variable, all subjects were asked

about quantity and type of drinks consumed and data were

converted as Units per day (8 gr of pure alcohol) [25]. Patients

with alcohol consumption .100 gr per day were excluded, as

possibly affected by a secondary form of osteoporosis (see the

above-mentioned exclusion criteria). Moreover, family history of

osteoporosis and of all type of hip fractures was obtained from all

subjects at consultation. The patients were also asked about

previous clinical fragility fractures at spine, ribs, wrist and hip.

Fractures of skull, jaw, coccyx, phalanx, ankle, cervical and

thoracic vertebrae (C1 to T4), and of posterior arches of the

vertebra were not considered as osteoporosis-related fractures and

were excluded from the analysis. In all patients, the presence of

previous fragility fractures was ascertained by self report and no

additional validation of this information was conducted.

In all patients height and weight were measured and body mass

index (BMI) was calculated. Calcium intake, expressed as mg/day,

was assessed using a simplified questionnaire described in a

previous paper [26]. In particular, usual calcium intake coming

from some selected calcium-rich foods (milk and dairy products)

was estimated by a 7-day food frequency questionnaire. The foods

checked include milk, aged cheese, soft cheese, cottage cheese, and

yoghurt. Portion sizes were quantified by means of household

measures (slices, cups, glasses). To standardize the slice weight,

three cardboard samples of different size were used (about 100, 50

and 25 g). The number of standardized servings was assessed, each

containing approximately 300 mg of calcium (a glass of milk, a cup

of yoghurt, a portion of about 100 g of cottage cheese, a 50 g slice

of soft cheese and a 25 g slice of aged cheese [26]. Patients were

asked about co-morbidities (i.e. arterial hypertension, dyslipide-

mia, gastric/esophagus disease, anxiety, depression, chronic

obstructive pulmonary disease (COPD), osteoarthritis, kidney

stones, type 2 diabetes mellitus) (Table 1).

Since ANNs cannot analyze missing values, patients who missed

one or more information were excluded. Eventually, 372 post-

menopausal patients were considered for the analysis.

Description of investigations undertaken
Dual energy X-ray absorptiometry (DXA) scans were carried

out to measure BMD at the spine and hip with the instrument

available locally: Hologic Discovery (Watham MA, USA) in 73%

and Lunar GE (Lunar Pty Ltd., Madison, Wisconsin, USA) in

27% of the centres. All patients had at least one measurement

among hip or spine and were classified as having or not a low

BMD (T-score . or #22.5 at least at one site, respectively). No

cross-calibration was undertaken between the Hologic and Lunar

machines.

Conventional spinal radiographs in lateral (T5–L4) and

anterior-posterior (AP) projection (L1–L4) were obtained in all

subjects with standardised technique. The vertebrae were
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identified and evaluated by the clinicians of the osteoporosis

centres by using dedicated software for quantitative morphometry

(MorphoXpress, Optasia Medical, Warner Chilcott, Rockaway,

NJ, USA) [27]. In brief the MorphoXpress operates as follows:

original lateral vertebral radiographs are digitised using a TWAIN

scanner (UMAX Power Look 1000, Techville, Dallas, TX, USA).

Analysis is then initialised by the manual targeting of the centres of

the upper and lower vertebrae to be analysed. The software then

automatically finds the positions of landmarks for a standard 6-

point morphometry measurement. The software then allows these

points to be moved by the operator, if deemed necessary, before

the points are confirmed as being correct. The positions of the

confirmed points are then used by the software to calculate

anterior, middle and posterior vertebral heights, which may also

be used for the determination of deformity shape [27]. Before

beginning the study in each participating centre, adequate training

was given to a single operator in order to standardise the use of

quantitative morphometry. In each centre, the operator read at

least 15 radiographs more than once to assess how reliable within

himself he was. In order to assess the correct identification of

thoracic vertebral fractures, copies of the X-rays from 50 patients

randomly taken from centres were sent to an experienced

radiologist. Inter-reader reliability between results obtained in

various centres and central assessment by the experienced

radiologist, summarised by the kappa statistics (k) test, was 0.85.

The fractures were defined as intact (SQ grade 0) or as having

approximately mild (20–25% compression), moderate (25–40%

compression), or severe (.40% compression) deformity (SQ

grades 1, 2 and 3, respectively). Subsequently, for each subject

the spinal deformity index (SDI) was calculated by summing the

SQ grade for each of the 13 vertebrae from T5 to L4

(SDI = SQT4+…+SQT12+SQL1+…+SQL4) (17).

Ethics
Ethics Committee approval was not required since data were

collected as part of the standard care for the patients and the data

sets available to researchers were fully de-identified.

Statistical methods
The 9 out-patient clinics for osteoporosis management belong-

ing to GISMO-Lombardia Group have been working altogether

since September 2005 using the same protocols for data collection.

The homogeneity between the 9 centres has been checked by

specific investigators meetings twice yearly, but a Inter-rater

Cohen’s k of agreement was not obtained.

We performed the analysis, both the traditional and ANNs,

using two different end-points: 1) SDI$1 (This identifies eligibility

for full reimbursement for osteoporosis treatment according to the

Italian rules: ‘‘Nota 79’’) [28]; 2) SDI$5. This latter end-point was

chosen considering that there is an almost linear relationship

between SDI and fracture risk, not influenced by the particular

fracture configurations, till a SDI of 5 [16].

Logistic Regression Analysis
Statistical analysis was performed by SPSS version 12.0

statistical package (SPSS Inc., Chicago, IL, USA). The normality

of distribution was checked by Kolmogorov-Smirnov test. The

results are expressed as mean6SD if not differently specified.

Comparison of continuous variables between groups was

performed using Student’s t-test or Mann-Whitney test on the

basis of the normality of distribution. Categorical variables

between the two groups were compared by x2test. The bivariate

associations between SDI and all the variables were tested by

Pearson product moment association or Spearman correlation as

Table 1. Variables used in the analysis and variables selected
by TWIST system in the subsequent analysis: SDI = 0 vs SDI$1
(SDI$1) and SDI = 0 vs SDI$5 (SDI$5).

SDI$1 SDI$5

Age x

Age,68 years x x

Age$68 years x

Body Mass Index (BMI) Kg/m2 x

BMI#21 x x

BMI.21,30

BMI$30 x x

Years since menopause (YSM) x x

YSM,18 x

YSM$18 x

Number of pregnancies x

Months of breast feeding

Current smoking yes x x

Current smoking no x

Previous smoking yes x

Previous smoking no

Alcohol yes x

Alcohol no x

Bone mineral density T-score #22.5 yes

Bone mineral density T-score #22.5 no

Previous fragility fracture yes x x

Previous fragility fracture no x

Familiar history of femoral fracture yes x

Familiar history of femoral fracture no

Calcium intake mg/day x x

Calcium intake #300 mg/day yes x

Calcium intake #300 mg/day no x x

Arterial hypertension yes x

Arterial hypertension no x

Dyslipidemia yes

Dyslipidemia no x x

Gastric/oesophagus disease yes x

Gastric/oesophagus disease no x

Anxiety/depression yes x x

Anxiety/depression no x

Chronic pulmonary obstructive disease (COPD) yes

Chronic pulmonary obstructive disease (COPD) no x

Osteoarthritis yes

Osteoarthritis no

History of kidney stones yes x

History of kidney stones no

Type 2 Diabetes Mellitus (T2D) yes x x

Type 2 Diabetes Mellitus (T2D) no

SDI = 0

SDI$1

SDI$5

SDI$1: Variables selected by TWIST system in the analysis aimed to differentiate
patients with SDI$1 from those with SDI = 0 (the number 17, reported in
Table 4a, refers to a maximisation of these variables); SDI$5: Variables selected
by TWIST system in the analysis aimed to differentiate patients with SDI$5 from
those with SDI = 0 (the number 25, reported in Table 4b, refers to a
maximisation of these variables).
Twist system can easily select just one of the two binary forms of the variables
since that choosing one option implies also the information of its complement.
doi:10.1371/journal.pone.0027277.t001
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appropriate. In all patients, logistic regression analysis assessed

the association between the presence of SDI$1 or SDI$5 as

dependent variables (expressed as categorical variables) and the

presence of previous fragility fracture, arterial hypertension,

chronic obstructive pulmonary disease, low BMD (T-score

#22.5) and dyslipidemia (independent variables, expressed as

categorical variables) and years since menopause and daily

calcium intake (independent variables, expressed as continuous

variables). We decided to include in the logistic regression model

those variables, which were found to be different between

fractured and not fractured subjects.

Bone mineral density data were categorized on the basis of a T-

score . or #2.5, which is the commonly used threshold to define

osteoporosis [1,2], to avoid the possible influence of having used

two different instruments for determining BMD.

The alcohol consumption was collected as a categorical variable

(presence of alcohol consumption , or $3 alcohol units/day), as

persons consuming more than 3 alcohol units per day have been

demonstrated to have an higher risk of fractures compared to

abstainers, while a precise range of beneficial alcohol consumption

has not been determined so far, although available evidence

suggest a favourable effect of 0.9–1.8 alcohol units per day [29].

We employed a classical multivariable logistic regression

including all variables and then building the final model using

forward stepwise logistic regression. A significance level of 0.3 was

required to allow a variable into the model, and a significance level

of 0.35 was required for a variable to stay in the model. In

addition, the data set has been re-analyzed also building a multiple

model including in the logistic regression analysis only the

variables with p,0.25 in bivariate analysis. P values of #0.05

were considered significant.

Artificial neural networks analysis
Advanced intelligent systems based on novel coupling of

artificial neural networks and evolutionary algorithms have been

applied. In this study we applied TWIST system and supervised

ANNs in order to develop a model able to predict with a high

degree of accuracy the diagnostic class starting from available

data. Supervised ANNs are networks which learn by examples,

calculating an error function during the training phase and

adjusting the connection strengths in order to minimize the error

function. [30]. The learning constraint of the supervised ANNs

makes their own output coincide with the predefined target. The

general form of these ANNs is: y = f(x,w*), where w* constitutes the

set of parameters which best approximate the function.

The trained ANN generates a single output which is a

continuous variable that can range between 0 and 1. However,

as our ‘real’ dependent variables are binary (0 or 1), the ANN

output needs to be reduced to 0 or 1 using a specific threshold. If

the ANN gives as output values from 0 to 0.5 then the output is

considered as 0 (e.g SD 5 absent therefore SD 1); while is the

output is comprised from 0.51 to 1 then the output is considered as

1(e.g SD 5 present therefore SD 5). The ROC curve, which

measures sensitivity and 1-specificity (the false positive rate) across

different cutoffs, is then generated varying the threshold for binary

classification.

Data analysis was performed using a re-sampling system

named TWIST developed by Semeion Research Centre. The

TWIST system consists in an ensemble of two previously

described systems: Training & Testing (T&T) and Input Selection

(I.S) [31]. The T&T system is a robust data re-sampling

technique that is able to arrange the source sample into sub-

samples that all possess a similar probability density function. In

this way, the data is split into two or more sub-samples in order to

train, test and validate the ANN models more effectively. The IS

system is an evolutionary wrapper system able to reduce the

amount of data while conserving the largest amount of

information available in the dataset. The combined action of

these two systems allow us to solve two frequent problems in

managing Artificial Neural Networks, i.e. the optimal splitting of

the data set in training and testing subsets containing a balanced

distribution of outliers and the optimal selection of variables with

maximal amount of information relevant to the problem under

investigation. Both systems are based on a Genetic Algorithm, the

Genetic Doping Algorithm (GenD) developed at Semeion

Research Centre [32,33]. After this processing, the features that

were most significant for the classification were selected and at

the same time the training set and the testing set were created

with a function of probability distribution similar to the one that

provided the best results in the classification. Twin supervised

Multi Layer Perceptron, with four hidden units, were then used

for the classification task employing a crossover training-testing

procedure (named a–b; b–a, where the a-subset first function as

training data and b-subset as testing data, then they are reversed)

The twin ANNs which were trained and tested on the new data

set generated by TWIST systems are ‘‘virgin’’ and operate

independently and blindly from each other and from TWIST

system.

The validation protocol is a procedure to verify the models’

ability to generalize the results reached in the testing phase.

Among the different protocols reported in literature, the selected

model is the protocol with the greatest generalization ability on

data unknown to the model itself. The procedural steps in

developing the validation protocol are: 1) subdividing the dataset

randomly into two sub-samples: the first called Training Set, and

the second, called Testing Set; 2) choosing a fixed ANNs (and/or

Organism) which is trained on the Training Set. In this phase, the

ANNs learns to associate the input variables with those that are

indicated as targets; 3) saving the weight matrix produced by the

ANNs at the end of the training phase, and freezing it with all of

the parameters used for the training; 4) showing the Testing Set

to the ANNs, so that in each case, the ANNs can express an

evaluation based on the training just performed. This procedure

takes place for each input vector but every result (output vector) is

not communicated to the ANNs; in this way, the ANNs is

evaluated only in reference to the generalization ability that it has

acquired during the Training phase; 5) constructing a new ANNs

with identical architecture to the previous one and repeating the

procedure from point 1. This protocol is applied once starting

from the first subsample and once starting from the second

subsample taken as training set obtaining in this way 2

independent classification experiments. This procedure was

repeated 10 times according to 562 cross-validation protocol

[34]. In this procedure the study sample is five-time randomly

divided into two sub-samples, always different but containing

similar distribution of cases and controls. Training and testing

sets are then reversed and consequently 10 independent models

carried out [34].

We estimated for each strategy sensitivity, specificity, and

overall accuracy. We also calculated the areas under the receiver

operating curve (ROC) in an empirical (non-parametric) ap-

proach, which were used for comparison among the different

strategies [35]. The statistical comparison among ROC curves was

performed as described elsewhere [36]. The ROC represents the

relationship between sensitivity and specificity for the prediction of

each of the considered outcomes.

Differences were considered significant at a 5% probability

level.

Recognition of Vertebral Fractures by ANNs
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Results

Clinical characteristics of patients (all, SDI 0, SDI$1 and

SDI$5) are reported in Table 2. The patients with SDI$1 were

older and farer from menopause than patients with SDI = 0.

Moreover, they showed a higher prevalence of arterial hyperten-

sion and a lower prevalence of anxiety/depression in respect with

SDI = 0 patients. Similarly, as compared with SDI = 0 patients,

SDI$5 subjects were older, farer from menopause, and had a

higher prevalence of calcium intake #300 mg/day, arterial

hypertension, previous fragility fractures and COPD and a lower

prevalence of dyslipidemia.

The linear correlation index between the input variables and

the Spinal Deformity Index was generally very low (range R:

0.000–0.384). The SDI was significantly and positively associated

with age (R = 0.374, p = 0.0001), and with years since menopause

(YSM) (R = 0.384, p = 0.0001). Logistic regression analysis showed

that YSM and the absence of dyslipidemia were independently

associated with SDI$1, regardless for the presence of low BMD

(Table 3A). Moreover, this analysis showed that YSM, COPD and

the absence of dyslipidemia were independently associated (and

the presence of a previous fragility fracture borderline associated)

with the presence of SDI$5, regardless of low BMD (Table 3B).

The variables selected by TWIST system, at the end of its

evolution, for the analysis aimed to identify patients with a SDI$1

and a SDI$5, are reported in Table 1.

The sensitivity, specificity and accuracy of ANNs and LR (by

Forward Stepwise method) in discriminating patients with SDI = 0

from those with SDI$1 and from those with SDI.5 are reported

in table 4A and 4B, respectively. The sensitivity, specificity and

accuracy of ANNs represent the mean of the ten experiments for

each target prediction according to five per two cross-validation

protocol (tables 5A and 5B) [34]. In both the analysis the overall

accuracy of ANNs as evaluated with ROC AUC was significantly

superior to that of LR (table 4A and 4B and figures 1a and 1b).

The analysis performed by a multiple model including in LR

only the variables with p,0.25 in bivariate analysis, showed less

satisfactory results than those obtained with the Forward Stepwise

method (data not shown).

Discussion

The present study showed that Artificial Neural Networks have

a better capacity of discriminating between patients without

morphometric vertebral fractures (SDI = 0) and patients with at

least 1 morphometric vertebral fractures (SDI$1) and patients

with a SDI$5, than logistic regression analysis. Moreover, in our

sample, the LR showed a low sensitivity in identifying SDI$1 and

SDI$5. This result is in keeping with some previous studies

suggesting that the algorithm using classical statistical approach,

like FRAXTM, have a low sensitivity [20,21], probably due to the

limitations of a linear analytical approach in explaining a complex

multifactorial disease, like osteoporosis.

To our knowledge, this is the first study which aimed to evaluate

the capacity of ANNs, compared with Logistic Regression (LR), to

recognise patients with fragility vertebral fractures. The present

Table 2. Clinical characteristics of all patients, patients without morphometric vertebral fractures, SDI$1 and SDI$5.

All (n = 372) SDI = 0 (n = 196) SDI$1 (n = 176) SDI$5 (n = 51) *P #P

Age (years) 68.068.5 65.368.1 71.167.8 75.266.1 0.0001 0.0001

YSM (years) 18 (1–50) 16 (1–44) 22.5 (3–50) 27 (8–50) 0.0001 0.0001

BMI (Kg/m2) 23.0 (16–41) 23 (16–41) 23 (16–36) 24 (16–36) 0.374 0.160

Calcium intake (mg/day) 6366404 6406382 6326429 5966458 0.861 0.486

n. of pts with calcium intake#300 mg/day (%) 73 (19.6) 32 (16.3) 41 (23.3) 16 (31.4) 0.116 0.027

n. of pregnancies 2 (0–5) 2 (0–5) 2 (0–4) 2 (0–4) 0.795 0.383

BF months 3 (0–72) 3 (0–60) 3 (0–72) 3 (0–72) 0.255 0.352

n. of smokers (%) 57 (15.3) 28 (14.3) 29 (16.5) 5 (9.8) 0.568 0.494

n. of ex-smokers (%) 38 (10.2) 22 (11.2) 16 (9.1) 4 (7.8) 0.608 0.613

n. of patients consuming alcohol $3 units/day (%) 124 (33.3) 63 (32.1) 61 (34.7) 19 (37.3) 0.660 0.507

n. of patients with previous clinical fracture (%) 33 (8.9) 14 (7.1) 19 (10.8) 10 (19.6) 0.273 0.014

n. of patients with familiar history of hip fracture (%) 64 (17.2) 35 (17.9) 29 (16.5) 9 (17.6) 0.784 1.000

n. of patients with kidney stones (%) 17 (4.6) 10 (5.1) 7 (4.0) 1 (2.0) 0.630 0.468

n. of patients with arterial hypertension (%) 110 (29.6) 47 (24.0) 63 (35.8) 20 (39.2) 0.017 0.035

n. of patients with dyslipidemia (%) 55 (14.8) 35 (17.9) 20 (11.4) 2 (3.9) 0.081 0.014

n. of patients with gastric/esophagus disease (%) 84 (22.6) 47 (24.0) 37 (21.0) 8 (15.7) 0.536 0.258

n. of patients with anxiety/depression (%) 50 (13.4) 33 (16.8) 17 (9.7) 9 (17.6) 0.048 0.837

n. of patients with COPD (%) 14 (3.8) 4 (2.0) 10 (5.7) 5 (9.8) 0.099 0.020

n. of patients with Osteoarthritis (%) 80 (21.5) 46 (23.5) 34 (19.3) 11 (21.6) 0.377 0.854

n. of patients with T2D (%) 14 (3.8) 8 (4.3) 6 (3.4) 1 (2.0) 0.791 0.690

n. of patients with Low BMD (T-score #22.5) (%) 242 (65.1) 127 (64.8) 115 (65.3) 35 (68.6) 1.000 0.741

SDI 0 (0–24) 0 (0–0) 2 (1–24) 8 (5–24)

Data are expressed as mean6SD, and median (range) for not normally distributed variables, if not differently specified.
*SDI = 0 vs SDI$1; #SDI = 0 vs SDI$5; SDI: Spinal Deformity Index; YSM: Years since menopause; BMI: Body Mass Index: weight (Kg)/height 2 (m2); BF: breast feeding
expressed in months; COPD: chronic obstructive pulmonary disease; T2D: Type 2 diabetes mellitus; SDI: Spinal Deformity Index calculated according to the method
described by Crans (see Methods);
doi:10.1371/journal.pone.0027277.t002
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results are similar to those obtained in previous studies in other

medicine fields [37–42], suggesting that this kind of statistical

approach may be better than the traditional one, to understand

complex topics like human diseases.

The comparison of results obtained with two different analytical

approaches (logistic regression and TWIST system), points out the

need to employ systems that are really able to handle the disease

complexity instead of treating the data with reductionist

approaches that are unable to detect multiple contribution of

smaller effect in predisposing to the disease. Moreover, ANNs are

able to identify variables combinations that are likely to produce

accurate predictions of outcomes for a single individual, a very

important property for the clinician facing every day with decision

to be taken in a specific patient. The superiority of ANNs vs LR

may be also due to the fact that ANNs build up models with higher

number of variables, since they can manage also variables with a

very poor linear correlation index. Another novelty of this study is

the possibility of identifying the presence of a morphometric

vertebral fracture (SDI$1) as a binary parameter (fracture Yes/

No), but also the presence of a high SDI (SDI$5), that is known to

be associated with a higher risk of new vertebral fractures [16],

regardless for BMD. This is an important point since it has been

demonstrated that also the risks of hip and any non vertebral

fractures increase with SDI [43]. Thus, the use of SDI combined

with other risk factors, particularly if with an ANNs algorithm,

may consent to better identify patients at high risk of fractures. It

must be considered that an histomorphometric study showed that

the SDI is inversely associated with bone volume, therefore

suggesting SDI as a surrogate marker of bone quality [19].

The presence of a fragility fracture was found to be associated

with hypertension by the ANNs analyses (tending to the statistical

significance also by LR analysis) and with the absence of

dyslipidemia by both the LR and ANNs analyses (Table 3A).

This result, although not a declared end-point deserves particular

interest. Indeed, the link between arterial hypertension, BMD and

fractures is debated and may be possibly explained by the use of

antihypertensive drugs. Several studies showed an association

between the use of antihypertensive drugs, such as diuretic loops,

and BMD loss, probably due to an increase in urinary calcium

excretion, but the effect on fracture risk is still controversial

[44,45]. On the other hand, another study suggested that there

was no association between BMD and hypertension after

correction for several confounding factors [46]. Recently, the

sensitivity to glucocorticoids has been suggested as a possible link

between hypertension and osteoporosis. Indeed, the combination

of hypertension and vertebral fractures has been shown to be

associated with the sensitizing polymorphisms of the glucocorticoid

receptor in patients with a subtle cortisol excess [47].

Similarly, the association between the dyslipidemia and

fractures risk probably has a reference to the use of statins. Statins

inhibits cholesterol synthesis by blocking the initial part of the

mevalonate metabolic pathway, which is the same metabolic

pathway inhibited, more downstream, by bisphosphonates.

Moreover, lipophilic statins seem to influence bone formation

influencing the expression of bone morphogenetic protein 2 (BMP-

2) [48]. Finally, in several clinical trials the use of statins had been

associated with a reduction in the risk of fracture [49,50].

The relatively small sample size is a limitation of the present

study. However, as the prevalence of morphometric vertebral

fractures is higher than that of clinical fractures, the use of the

formers as end point, allows reducing the sample size saving the

statistic power of the study. It is well known that ANNs, at

Table 3. OR for detecting morphometric vertebral fracture
(SDI$: A and SDI$5: B) for Potential Risk Factors using the
multivariable Logistic Regression Model.

OR 95% CI p

A

Years since menopause 1.07 1.04–1.09 0.0001

Previous fragility fracture 1.28 0.60–2.75 0.522

Arterial Hypertension 1.54 0.93–2.55 0.093

COPD 2.63 0.74–9.31 0.134

Daily calcium intake (mg/day) 1.00 1.00–1.00 0.664

Low BMD (T-score #22.5) 1.06 0.67–1.67 0.811

Dyslipidemia (absence) 2.21 1.15–4.24 0.017

B

Years since menopause 1.13 1.08–1.19 0.0001

Previous fragility fracture 2.93 0.98–8.75 0.054

Arterial Hypertension 1.81 0.80–4.11 0.154

COPD 7.11 1.12–45.19 0.038

Daily calcium intake (mg/day) 1.00 1.00–1.00 0.134

Low BMD (T-score #22.5) 1.22 0.55–2.73 0.629

Dyslipidemia (absence) 12.5 2.21–71.43 0.004

doi:10.1371/journal.pone.0027277.t003

Table 4. Sensitivity, Specificity and overall accuracy in identifying patients with a SDI$1 (A) and SDI$5 (B) by artificial neural
networks analysis and traditional statistics.

n6 of variables SN (%) SP (%) Accuracy (%) ROC AUC

(95% CI) (95% CI) (95% CI) (95%CI)

A

ANNs 17 72.5 (65.91–79.09) 78.5 (72.75–84.00) 75.5 (71.13–79.87) 0.714** (0.673–0.755)

LR 45 35.8 (30.22–44.38) 76.5 (70.40–83.61) 56.2 (51.78–60.62) 0.616 (0.576–0.656)

B

ANNs 25 74.8 (62.89–80.72) 87.8 (83.22–92.38) 81.3 (76.44–86.16) 0.823** (0.780–0.866)

LR 45 37.3 (25.14–49.46) 90.3 (86.16–94.44) 63.8 (57.88–69.72) 0.699 (0.657–0.741)

ANNs: artificial neural networks; LR: logistic regression analysis; SN: sensitivity; SP: specificity; ROC: receiver operating characteristic; AUC: area under the curve.
**: p,0.01.
doi:10.1371/journal.pone.0027277.t004
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variance with the classical statistical tests, can manage complexity

even with relatively small samples and the subsequent unbalanced

ratio between variables and records. Indeed, it is important to note

that adaptive learning algorithms of inference, based on the

principle of a functional estimation like artificial neural networks,

can partially overcome the problem of dimensionality. Moreover,

the cross-sectional design of the study does not consent to look at

the incidence of fractures and to compare, head to head, this

approach with FRAX. Another limit of the study may be related to

the lack of a cross-calibration of different devices for measuring

BMD. However, this possible error should have been corrected, at

least in part, by the use of the T-score for expressing bone mineral

density data and by having dichotomized the variable on the basis

of a T-score . or #2.5. Similarly, it must be note that a inter-rater

Cohen’s k of agreement was not obtained between results obtained

in various centers. However, the 9 out-patient clinics for

osteoporosis management belonging to GISMO-Lombardia

Group have been working altogether since September 2005 using

the same protocols for data collection, and the homogeneity

between the 9 centers has been checked by specific investigators

meetings twice yearly. Finally, we do not have information about

pharmacological history other than anti-osteoporotic drugs. It

must be also considered that the study was conducted in female

osteoporosis clinic patients, and, therefore, the extrapolation of the

results to other groups should be done with caution. In the future,

wider longitudinal studies could help to confirm our data and to

better understand causal relationship between variables.

Notwithstanding these limitations, the present study shows, for

the first time, that ANNs have a better capacity, in respect with

LR, in identifying the presence of morphometric vertebral

fractures and the presence of a high risk SDI. The use of ANNs

in developing algorithms for predicting the fracture risk in the

individual subject may be an important advance in assessing the

most cost-effective therapeutic threshold in the field of osteopo-

rosis.

Table 5. Goodness of fit test for ANNs in identifying patients
with a SDI$1 (A) and SDI$5 (B).

Testing on
subset

Sensitivity
(%)

Specificity
(%)

Overall accuracy
(%)

A 1a 73.4 78.9 76.2

1b 71.7 79.2 75.5

2a 72.0 77.5 74.8

2b 73.2 77.9 75.6

3a 74.0 78.0 76.0

3b 71.2 79.2 75.2

4a 72.3 77.9 75.1

4b 72.9 78.7 75.8

5a 72.2 78.8 75.5

5b 72.1 78.9 75.5

Average 72.5 78.5 75.5

B 1a 77.3 87.9 82.6

1b 72.4 87.6 80.0

2a 73.2 88.4 80.8

2b 74.5 88.2 81.4

3a 74.5 87.6 81.1

3b 74.2 87.5 80.9

4a 76.6 87.8 82.2

4b 78.0 88.2 83.1

5a 75.4 87.3 81.4

5b 72.3 87.3 79.8

Average 74.8 87.8 81.3

562 cross validation protocol.
A: Chi square = 0.10; N.S.; B: Chi square = 0.23; N.S.
doi:10.1371/journal.pone.0027277.t005

Figure 1. ROC curve for artificial neural networks and logistic regression analysis in identifying SDI$1 and SDI$5. The ANN AUC is
significantly superior to LR AUC both in identifying SDI$1 (p,0.01) (A) and SDI$5 (p,0.001) (B). ROC: Receiver operating characteristic, SN:
sensitivity, SP: specificity. ANNs: artificial neural networks; AUC: area under the curve; LR: logistic regression analysis.
doi:10.1371/journal.pone.0027277.g001
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