Skip to main content
. 2011 Sep 25;49(11):1337–1346. doi: 10.1007/s11517-011-0828-x

Table 2.

Results of parameter optimization for AR-based methods UAR, VAR, and BAR without the prediction error variance feature

 
 
UAR VAR BAR
p 0 p log(UC) p 0 p log(UC) p 0 p q log(UC)
A01 0.582 13 −2.8 0.612 4 −2.6 0.601 8 2, 2 −0.8
A02 0.446 6 −3.0 0.461 6 −2.8 0.461 14 1, 1 −0.6
A03 0.573 12 −2.6 0.625 2 −2.8 0.578 12 1, 3 −2.6
A04 0.418 10 −2.2 0.395 4 −2.2 0.421 12 2, 2 −2.6
A05 0.406 4 −2.6 0.410 2 −2.4 0.418 5 1, 2 −2.2
A06 0.429 15 −2.2 0.434 12 −2.2 0.457 15 1, 1 −2.6
A07 0.544 14 −2.6 0.533 13 −2.4 0.559 14 1, 3 −2.6
A08 0.635 15 −2.4 0.673 4 −2.4 0.639 5 1, 2 −2.4
A09 0.614 3 −2.2 0.640 3 −2.0 0.623 7 1, 2 −2.2
Global 0.494 13 −2.6 0.507 4 −2.6 0.499 13 1, 1 −2.4

All nine subjects (A01, A02, Inline graphic) are shown. Columns show the 0.9 quantile of the classification accuracy p 0, linear model order p, bilinear model order q, and update coefficient logUC. The last row shows the results of the global optimization