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The early detection of microbial contamination is crucial to avoid process failure and costly delays in
fermentation industries. However, traditional detection methods such as plate counting and microscopy are
labor-intensive, insensitive, and time-consuming. Modern techniques that can detect microbial contamination
rapidly and cost-effectively are therefore sought. In the present study, we propose gas chromatography-mass
spectrometry (GC-MS)-based metabolic footprint analysis as a rapid and reliable method for the detection of
microbial contamination in fermentation processes. Our metabolic footprint analysis detected statistically
significant differences in metabolite profiles of axenic and contaminated batch cultures of microalgae as early
as 3 h after contamination was introduced, while classical detection methods could detect contamination only
after 24 h. The data were analyzed by discriminant function analysis and were validated by leave-one-out
cross-validation. We obtained a 97% success rate in correctly classifying samples coming from contaminated
or axenic cultures. Therefore, metabolic footprint analysis combined with discriminant function analysis
presents a rapid and cost-effective approach to monitor microbial contamination in industrial fermentation
processes.

Fermentation processes are an important technology in bio-
technological industries, contributing to the production of
high-value goods including food, beverages, bulk chemicals,
and pharmaceuticals (3). Industrial fermentations are typically
large-scale processes, requiring several scale-up steps over
time and consuming often expensive raw materials (3). A loss
of sterility of fermentation has serious consequences, impact-
ing production schedules, costs, and time and affecting product
quality and quantity (9). Contamination is a predominant
cause of process failure (9). It is therefore crucial that indus-
trial fermentations are carefully monitored to detect microbial
contamination as early as possible after it occurs.

While bioreactors are expensive to operate and maintain,
closed-batch or fed-batch bioreactor systems are favored for
industrial microbial growth due to their ability to control en-
vironmental parameters such as pH, temperature, and gas
transfer. Consequently, closed-system fermentations result in
higher productivity and improved product consistency and
quality. Microalgal biotechnology relies heavily upon fermen-
tation. Microalgae are rich sources of commercially valuable
products including amino acids, vitamins, lipids, and pigments
(2, 7, 15); hence, microalgal biotechnology is emerging as a
promising and exciting alternative for new natural products
and applications. The risk of contamination by fast-growing
microorganisms is increased in microalgal fermentations due
to the comparatively slow growth of microalgae and the nutri-

ent-rich nature of their industrial fermentation media. There-
fore, the industry is eager to develop a sensitive, rapid, and
cost-effective method for the detection of microbial contami-
nation in fermentation broth.

Traditional methods for the detection of microbial contam-
ination are generally insensitive, labor-intensive, and time-con-
suming, mainly because they require access to a reasonable
amount of contaminant cells via sampling. Plate counting and
fluorescence microscopy are the most commonly used meth-
ods, and these methods rely on the presence of contaminant
cells in the samples. Consequently, the detection of cells is
often delayed until the number of contaminant cells increases
above the detection limit, and it is often limited to particular
types of microorganisms. These traditional techniques usually
exclude viable but nonculturable (VBNC) contaminant cells,
slow-growing cells, as well as cells that cannot grow in the
selective media and/or under the incubation conditions applied
(13). On the other hand, DNA-based techniques are expensive
and also require access to a reasonable amount of contaminant
cells, which delays the time to detection. False-negative results
are not uncommon due to the poor representation of the cell
population usually caused by poor sampling procedures (8, 13).
Additionally, detection sensitivity is insufficient in early stages
of contamination, when the proportion of contaminant cells to
cultured cells is minimal (1). Delays required for plate incu-
bation and colony enumeration also result in the contamina-
tion being detected only several days after contamination
occurred, which often precludes the safe recovery of fermen-
tation products.

On the other hand, microorganisms are known to rapidly
adjust their metabolism in response to environmental changes
such as the presence of a contaminant organism (10, 11).
Changes in microbial metabolism are quickly detected through
changes in their metabolic footprint profile. The metabolic
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footprint is the profile of extracellular metabolites resulting
from nutrient uptake, extracellular biochemical reactions, and
the secretion of metabolic products performed by a population
of cells in the environment where they grew (10, 20). This
metabolic footprint is highly specific to the genetic background
of the cells and the environmental conditions under which they
grew (10, 20). Thus, through metabolic footprint analysis (exo-
metabolomics), we are able to distinguish different metabolic
states of the cells, different microbial species, and even differ-
ent strains or mutants from the same species (10, 19, 20).
Metabolic footprinting therefore has the potential to reveal
unique differences in the profiles of metabolites of fermenta-
tion broths that result from the presence of contaminant cells.

Gas chromatography coupled to mass spectrometry (GC-
MS) is the most commonly used analytical approach to
obtain comprehensive metabolite profiles of biological sam-
ples (10, 21). GC-MS is a sensitive analytical instrument that
presents the best chromatographic resolution in metabolite
analysis (21). In addition, it is one of the most cost-effective
mass spectrometry-based instruments available today and is
easy to operate. GC-MS produces reproducible results and
has been shown to present less than 6% variability in bio-
logical samples (18). However, GC-MS analyses depend on
the analytes being volatile. Most metabolites are not suffi-
ciently volatile to be analyzed directly by GC-MS, so chem-
ical derivatization is a crucial step in sample preparation
(18). Our platform for metabolite analysis using GC-MS is
based on an alkylation reaction of amino and non-amino
organic acids and makes use of a rapid and efficient de-
rivatization procedure targeting important metabolic inter-
mediates from the central carbon metabolism (14). This
procedure is ideal for the routine analysis of metabolites in
fermentation broths, as the derivatization reagents are cost-
effective, and the reaction is rapid (�1 min), is carried out
at room temperature and in aqueous medium, and results in
stable volatile derivatives with high reproducibility (21).
Also, the derivatization reactions can be automated by using
robotic autosamplers for GC-MS systems (e.g., the CTC
Combi PAL or Gerstel MultiPurpose sampler instrument).

In this study, we applied metabolic footprint analysis using
GC-MS to detect microbial contamination in microalgal fer-
mentation broths. Microalgal fermentation broths were inoc-
ulated with contaminant microbial cells and were monitored to
determine when significant changes in the metabolic footprint
profile of the broth could be observed.

MATERIALS AND METHODS

Chemicals. Methanol, sodium hydroxide, chloroform, and sodium sulfate used
for chemical derivatization were all of analytical grade and purchased from
different suppliers. The derivatization reagent methyl chloroformate (MCF),
pyridine, and the isotope-labeled internal standard L-alanine-2,3,3,3-d4 were
obtained from Sigma-Aldrich (St. Louis, MO).

Microbial strains. The UTEX 2047 strain of the pennate diatom Nitzschia
laevis (University of Texas Microalgal Collection) was used in all microalgal
fermentations, and a strain of Pseudomonas aeruginosa (School of Biological
Sciences collection) and a strain of Bacillus subtilis (School of Biological Sciences
collection) were used to mimic bacterial contamination in microalgal cultures by
deliberate contamination experiments.

Microalgal fermentation. A total of 55 batch fermentations were carried out
under aerobic conditions (not concomitantly) in 500-ml shake flasks and incu-
bated at 20°C under continuous agitation (200 rpm). Each flask contained 200 ml
of defined culture medium (pH 8.0), prepared in several separated batches

according to Photonz’ specifications, supplemented with glucose (20 g/liter),
vitamins, and trace metals.

Microbial contamination experiments. A flow chart summarizing all contam-
ination experiments carried out in this work can be found in Fig. S1 in the
supplemental material. We carried out three independent contamination exper-
iments as a proof of concept that metabolic footprint analysis is able to detect
early microbial contamination in microalgal fermentation broth. First, 1-day-old
N. laevis culture flasks (n � 3) were opened on the laboratory bench for 2 h to
allow naturally occurring airborne microorganisms to contaminate the liquid
cultures. Two-milliliter samples were harvested when the flasks were opened
(time zero) and every 24 h for 4 days. Samples were filtered using 0.2-�m filter
membranes to remove microbial biomass. Filtrates were stored at �20°C until
chemical derivatization and metabolite analysis were performed.

In a second experiment, liquid cultures of specific microbial contaminants
were prepared by inoculating single colonies of either P. aeruginosa or B.
subtilis in 100 ml nutrient broth containing yeast extract (3 g/liter), peptone
(5 g/liter), and dextrose (1 g/liter) at pH 6.5. Cultures were incubated in
250-ml shake flasks at 25°C and 200 rpm. Bacterial cells were harvested by
centrifugation after approximately 19 h of growth (while the cells were still at
the exponential growth phase). The concentration of bacterial biomass was
estimated by determining the optical density at 600 nm, and the cells were
diluted in the microalgal medium to obtain approximately 1 CFU per �l of
cell suspension. One microliter of the diluted bacterial cell suspension was
then used to inoculate 5-day-old N. laevis cultures (n � 3) with either B.
subtilis or P. aeruginosa. Two-milliliter broth samples were harvested every
6 h, starting from time zero (at the moment of contaminant inoculation) until
12 h after contamination. A further sample was taken 24 h after contamina-
tion. The samples were filtered to remove microbial biomass (pore size, 0.2
�m), and the filtrates were stored at �20°C until chemical derivatization and
metabolite analysis were performed.

Lastly, to build a discriminant model for the automatic prediction of microbial
contamination based on the metabolic footprint profile of microalgal cultures,
the second experiment described above was repeated using 40 culture replicates.
Twenty flasks were maintained axenic (control), and the other 20 were contam-
inated with 1 CFU of P. aeruginosa as described above. The 40 cultures were
incubated on different days as well as using medium prepared in different batches
in an attempt to include the natural variation in the extracellular metabolite
composition of axenic cultures that might occur due to technical variation.
Two-milliliter broth samples were harvested every 3 h, starting from time zero (at
the moment of contaminant inoculation) until 9 h after contamination. The
samples were filtered to remove microbial biomass (pore size, 0.2 �m), and the
filtrates were stored at �20°C until chemical derivatization and metabolite anal-
ysis were performed.

Biomass quantification. An 8-ml broth sample was harvested at every sam-
pling time point for the quantification of total microbial biomass (dry weight).

Traditional methods for controlling contamination. Before membrane filtra-
tion, all samples harvested for metabolic footprint analysis were examined by
light microscopy (wet mount), and 1 ml was spread over plate count agar (PCA)
plates for the counting of CFU of contaminants present in the samples. The PCA
plates were incubated at 30°C for 48 h.

Sample derivatization. The MCF derivatization was performed according to
a method described previously by Smart et al. (14). In summary, 150 �l of
filtered broth in triplicate was mixed with 30 �l of sodium hydroxide solution
(3 M) and 20 �l of internal standard (L-alanine-2,3,3,3-d4 [10 mM]). Two
hundred microliters of the alkalinized broth sample was then mixed with 34
�l of pyridine and 167 �l of methanol. Twenty microliters of MCF was added
to the reagent mixture, followed by vigorous mixing for 30 s using a vortex.
Another 20 �l of MCF was added to the reactive mixture, followed again by
vigorous mixing for another 30s. To separate the MCF derivatives from the
reactive mixture, 400 �l of chloroform was added to the mixture and then
mixed vigorously for 10 s, followed by the addition of 400 �l of sodium
bicarbonate solution (50 mM) and vigorous mixing for an additional 10 s. The
upper aqueous layer was discarded, and the chloroform phase was subjected
to GC-MS analysis.

GC-MS analysis. GC-MS analysis was performed with an Agilent GC7890 gas
chromatograph coupled to an MSD5975 mass selective detector. The column
used for all analyses was a ZB1701 column (Zebron; Phenomenex), with a 30-m
by 250-�m internal diameter (i.d.) and a 0.15-�m film thickness with a 5-m guard
column. The mass spectrometer was operated in scan mode (start after 4.5 min,
with a mass range of 40 to 650 atomic mass units [amu] at a rate of 0.15 s/scan).
The parameters for the separation and analysis of MCF derivatives were de-
scribed previously by Smart et al. (14).
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Data analysis. Data were analyzed according to methods described previously
by Smart et al. (14). Metabolites were identified by using our in-house MCF-MS
library of metabolite standards and Automated Mass Spectral Deconvolution
and Identification System (AMDIS) software, which relies on both the chro-
matographic retention times of the analytes and their respective mass spectra.
Metabolite levels were determined by the intensity of the base peak normalized
by the internal standard and the biomass concentration in the respective sample.
Data mining was performed by using an in-house R script using R software
(version 2.10.0; r-project) loaded with the following packages: xcms, KEGG.db,
gplots, reshape, plotrix, KEGGSOAP, and keggorth.

The difference in the metabolite profiles of the different samples was assessed
by discriminant function analysis (DFA). First, we listed the relative normalized
level of each identified metabolite under all conditions (see Table S1 in the
supplemental material). Conditions for which the level of a metabolite was below
the detection limit of the method were assigned a value of zero. To avoid
violating the independent-sample assumption, three separate paired-sample
DFAs were implemented for each time point. Therefore, it was not the actual
expression level of metabolites (relative abundance) at all time points but the
change compared to the baseline at time zero that was used. In other words,
the metabolite abundances at time zero were subtracted from the abundances of
the same metabolites at a time of 3 h. The difference in metabolite abundance
was used as the input for DFA for prediction.

Using a stepwise procedure (12), we selected 19 metabolites that contribute
the most to the discrimination between the two conditions (Table 1). From the
list of all metabolites, variables were added one by one to the model until the
classification result did not increase more than 0.5%. Following this, two vari-
ables were fitted into the model, one previously selected and another that gave
the best classification, and 3 variables were then fitted, two of those used before
and a third one that gave the best classification, and so on.

The projections of samples on three dimensions were computed by the dicrco-
ord function of the fpc package (http://www.homepages.ucl.ac.uk/�ucakche/).
Visual clustering was achieved by plotting the first three DFA projections. The
lda function of the MASS package was used to classify samples into two exper-
imental categories. The results were validated by using a leave-one-out cross-
validation technique, using a single observation as the testing data for the DFA
and the remaining data as the training set. The procedure was repeated until all
observations were used as the testing sample. The data were log transformed to
fit the normal distribution criteria.

RESULTS

Metabolic footprint analysis of axenic versus contaminated
microalgal cultures. Approximately 53 different metabolites
that play important metabolic roles in the central carbon me-
tabolism and lipid and amino acid biosynthesis were identified
among hundreds of detected compounds (see Table S1 in the
supplemental material). To distinguish samples among classes,
we projected the identified metabolite level data from each
sample to a lower-dimensional space. Two often-used data
projection methods are PCA (principal component analysis)
and DFA (discriminant function analysis). PCA maximizes
variation in the reduced dimensions, whereas DFA maximizes
separation between classes (19). For this reason, we applied
DFA to visualize samples in an attempt to distinguish them
among classes, which revealed a very clear separation, as
shown in Fig. 1 and 2. Our metabolomics data successfully
demonstrated that each data class (axenic and contaminated
samples) presents distinct metabolite profiles, with samples
from the same data class clustering closer to each other despite
being sampled at different time points. This proves that the
changes in the metabolic footprint profiles of contaminated
cultures exceed natural changes in metabolite profiles of axenic
cultures over time.

Cultures exposed to uncontrolled contamination presented
completely different metabolite profiles 24 h after the flasks
were opened to induce contamination compared with their
profiles at time zero or with the profile of noncontaminated
flasks (Fig. 1). This shows that metabolic footprint profiling is

FIG. 1. Discriminant function analysis (DFA) for sample visualization
(uncontrolled contamination). GC-MS metabolite data successfully dis-
tinguished samples from contaminated versus noncontaminated microal-
gal flasks. Projections of the log-transformed intracellular metabolite data
from 36 samples into three-dimensional (3D) space show two very distinct
clusters of the two data classes (contaminated versus noncontaminated).
For each sample, the projection values were calculated as the linear
combination of metabolite values determined by DFA. Only metabolites
that were detected in more than 25% of the samples for each data class
were used for the analysis. Black, samples from contaminated flasks
(time [t] � 24 to t � 96 h); dark gray, samples from noncontaminated flaks
(t � 24 to t � 96 h); light gray, samples from contaminated flasks at time
zero.

TABLE 1. List of identified extracellular metabolites analyzed by
GC-MS and used as variables for DFA

Metabolite

Amino acids
Valine
Leucine
tert-Leucine
4-Aminobutyrate
Proline
Asparagine
Phenylalanine
Lysine

Simple organic acids
2-Oxoglutarate
Citrate
Malate
Succinate
Lactate
Nicotinate

Fatty acids
10,13-Dimethyltetradecanoate
14-Methylpentadecanoate
Stearate
Caproate

Other
EDTA
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capable of detecting microbial contamination in microalgal
cultures within 24 h, while we could detect colonies of contam-
inant microbes only after 72 h (including incubation time).

In our second contamination experiment, we decided to
harvest samples within 24 h of contamination in order to de-
termine how early we could detect contamination in the
microalgal fermentation broths using metabolic footprint anal-
ysis. Culture flasks contaminated with a single CFU of con-
taminant bacteria (P. aeruginosa or B. subtilis) presented dis-
tinct metabolite profiles as early as 6 h after contamination
(Fig. 2). We could detect contaminating bacterial cells using
light microscopy only at 24 h after the contamination was
introduced, and we could detect bacterial CFU only in samples
obtained 9 h after contamination was introduced. Considering
that an additional 48 h of plate incubation is required to visu-
alize contaminant bacterial colonies, the plating technique
could detect bacterial contamination only after 57 h under the
conditions tested.

Our preliminary contamination experiments clearly show
that metabolic footprint profiling (extracellular metabolomics)
is capable of detecting microbial contamination of microalgal
batch fermentations and is certainly a more sensitive method
than traditional techniques used for the detection of contam-
ination in fermentation broth.

Classification model. In order to validate our preliminary
observations, a third contamination experiment using only P.
aeruginosa was repeated in order to obtain a large number of
replicate samples, which is necessary for creating a reliable
classification model using DFA. A total of 60 replicates under
each condition (20 biological replicates subdivided into three
technical replicates each) were used for DFA. Comparative
GC-MS chromatograms at different time points can be found
in Fig. S2 in the supplemental material. DFA revealed a clear
separation between all axenic and contaminated samples at
different time points, as shown in Fig. 3. Once again, our
metabolomics data successfully demonstrated that each data
class (axenic and contaminated) presents distinct metabolite
profiles, with samples from the same data class clustering very
close to each other despite being sampled at different time
points and coming from different fermentation batches. The
classification rate of correctly classified samples as contami-
nated after 3 h of 1 CFU of contaminant being introduced into
the flasks was 97%. A total of 0 out of 60 axenic samples was
false positive, giving a classification rate of 100% accuracy
(Table 2).

The monitoring of samples taken at 6 h and 9 h also showed
high levels of accuracy (95% and 98% accuracy, respectively).
This high success rate gives great statistical confidence that the
model was highly effective in classifying metabolic footprints of
unknown cultures as being axenic or contaminated.

From the total pool of samples, the rate of false-positive
results was minimal (3% of the total samples were incorrectly
classified). With an accuracy of 97%, the combination of met-
abolic footprinting and DFA was able to successfully detect
bacterial contamination in microalgal fermentation broth
within 3 h of a single CFU of a bacterium being introduced into
the medium, validating our preliminary finding using lower
numbers of replicates as well as emphasizing the greater sen-
sitivity and reliability than those of traditional methods for the
detection of microbial contamination in fermentation broths.

DISCUSSION

Metabolic footprint analysis examines low-molecular-weight
compounds dissolved in liquid medium and does not rely on
contaminant cells being present in a sample. This may explain
why metabolic footprint analysis effectively detected microbial
contamination in microalgal cultures as early as 3 h after con-
tamination, while we could visually detect bacterial cell using
light microscopy or bacterial CFU only after 24 and 57 h of the
contamination taking place, respectively. Additionally, compli-
cations arising from inconsistent cell size, cell damage, and
viability do not interfere with metabolite analysis.

The targeted analysis of signature metabolites is an ap-
proach that has been used in many studies for the detection of
microorganisms in complex samples (4–6, 16). Certain metab-
olites have been considered indicative of the presence of par-
ticular microorganisms. These include muramic acid for all
bacteria, myristic acid for Gram-negative bacteria, and glu-
cosamine for fungi (4–6). However, these metabolic markers
are not completely specific for a group of microorganisms, and
it is known that the quantities of these metabolites vary from
species to species, making it difficult to ascertain consistently
the level of contamination based on metabolite levels. For

FIG. 2. DFA for sample visualization (controlled contamination).
GC-MS metabolite data successfully distinguished samples from con-
taminated versus noncontaminated microalgal flasks. Projections of
the log-transformed intracellular metabolite data from 56 samples into
3D space show three distinct clusters of the three data classes. For each
sample, the projection values were calculated as the linear combina-
tion of metabolite values determined by DFA. Only metabolites that
were detected in more than 25% of the samples for each data class
were used for the analysis. Black, samples from flasks contaminated by
P. aeruginosa (t � 6 h to t � 24 h); red, samples from flasks contam-
inated by B. subtilis (t � 6 h to t � 24 h); dark green, samples from
noncontaminated microalgal flasks; light green, samples collected from
contaminated flasks at time zero.
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example, myristic acid, proposed previously to be indicative of
Gram-negative bacteria, is also synthesized by some Gram-
positive bacteria (17) as well as fungi (17, 19). Therefore, it is
safer to use the profile of metabolites instead of relying on
single molecules as indicators.

Very few studies have examined the entire metabolite profile
of contaminated cultures. Elmroth et al. (5, 6) previously com-
pared the metabolite profiles of axenic cultures against those
of contaminated cultures. Those authors detected changes in
the metabolite profiles caused by the presence of microbial
contaminants. However, their profiles were generated using
only data representing targeted groups of intracellular metab-
olites. Intracellular metabolite analysis requires access to a
considerably large number of contaminant cells, which is not
ideal for the early detection of contamination. This approach
makes use of spent culture media, which does not depend on
having access to contaminant cells. Thus, to the best of our
knowledge, this is the first time that metabolic footprinting
analysis of extracellular metabolites has been proposed for the
detection of microbial contamination.

Our proof-of-concept study clearly shows that metabolic
footprint analysis provides rapid and conclusive detection of
contaminated microalgal cultures. Although we have not
tested other fermentation setups (e.g., bacterial or yeast fer-

FIG. 3. DFA for sample visualization of a large data set used for
construction of the classification model (controlled contamination).
GC-MS metabolite data successfully distinguished samples from con-
taminated versus noncontaminated microalgal flasks at different time
points. Projections of the log-transformed intracellular metabolite data
from 120 samples into 3D space show two distinct clusters of the two
data classes. For each sample, the projection values were calculated as
the linear combination of metabolite values determined by DFA. Only
metabolites that were detected in all samples for each data class were
used for the analysis. Black, samples from flasks contaminated by P.
aeruginosa; red, samples from noncontaminated microalgal flasks.
(A) Three hours after contamination; (B) 6 h after contamination;
(C) 9 h after contamination.

TABLE 2. Classification of contaminated culture samples (n � 60)
and control samples for all time pointsa

Contamination
status

Time point (h)
(no. of samples)

No. of
incorrect

classifications

Classification
rate

Axenic 0, control �
contaminated (120)

3 0.95

3, control (60) 0 1.00
6, control (60) 8 0.86
9, control (60) 2 0.97

Overall 13 0.96

Contaminated 3 (60) 2 0.97
6 (60) 3 0.95
9 (60) 1 0.98

Overall 6 0.97

Total overall 0.96

a Classification rate refers to the percentage of samples correctly classified by
the DFA prediction model.
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mentation), this approach has great potential to be used in
industrial settings as a means of detecting microbial contami-
nation in fermentations. As shown in Fig. 2, the metabolite
profile of microalgal cultures contaminated by Pseudomonas
was significantly different from that of microalgal cultures con-
taminated by Bacillus. It is already common for well-estab-
lished fermentation companies to monitor the levels of some
metabolites to ensure that production remains consistent over
time. For example, beer production industries monitor the
level of ethanol as a measure of consistency and quality. Our
approach could therefore be easily adapted to an industrial
routine. Since our approach uses the collective group of me-
tabolites identified from metabolic footprints to generate me-
tabolite profiles, it can be easily optimized and subsequently
applied to a range of fermentation systems as long as a classi-
fication model (e.g., DFA) is trained with enough numbers of
axenic samples covering the normal variability found in the
fermentation culture media, such as batch-to-batch variations
in medium compositions. In addition, raw GC-MS data can be
used potentially to increase the data analysis throughput, and
more samples would certainly increase the accuracy of the
classification model, decreasing the error rate to below 3%.
Nonetheless, our current GC-MS platform for metabolite anal-
ysis (14) would take no more than 1 h to classify a fermentation
sample as being contaminated or axenic after a robust DFA
model is built.
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