Phage Specificity of the Freshwater Fish Pathogen $Flavobacterium \ columnare^{\nabla}$

Elina Laanto, Lotta-Riina Sundberg, and Jaana K. H. Bamford*

Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

Received 23 May 2011/Accepted 14 August 2011

Flavobacteria and their phages were isolated from Finnish freshwaters and fish farms. Emphasis was placed on finding phages infecting the fish pathogen *Flavobacterium columnare* for use as phage therapy agents. The host ranges of the flavobacterial phages varied, phages infecting *F. columnare* being more host specific than the other phages.

Species of the genus *Flavobacterium* are widely distributed in nature, and they have been found in diverse habitats (3, 19, 30, 32, 36, 37, 38, 39). In general, flavobacteria are nonpathogenic, but some species are opportunistic pathogens (2). Columnaris, a disease caused by the fish pathogen *Flavobacterium columnare*, can cause up to 100% mortality among salmonid fingerlings (28). Antibiotic treatment must be applied to prevent mass mortalities at fish farms. Despite effective treatment, columnaris occurs repeatedly during the summer (18). Therefore, the number of antibiotic treatments and the amount of antibiotics used can be extremely high. Increased resistance of environmental bacteria to antibiotics in fish farms and their surroundings has been reported (10, 24, 26, 31), and antibiotic-

resistant fish-pathogenic flavobacteria have also emerged (7). To avoid risks related to antibiotic use, enrichment of bacteriophages could be used as an ecological method of decreasing the number of *F. columnare* infections. To our knowledge, this is the first study on European *F. columnare* phages.

In this study, a total of 53 flavobacterial isolates were received during the warm-water period (May to August) in 2008 and 2009 from water samples that included both open freshwater environments (rivers and lakes not connected to fish farming) and three inland land-based fish farms rearing mainly salmonid fingerlings in Finland (Fig. 1; Table 1). One bacterium (B67) was isolated from diseased fish in 2007. Water samples were cultured on Shieh agar (25) and $1/5 \times$ Luria

A		Location	Abbrevation	Longitude	Latitude	B a b
		Lake Konnevesi	Ko	E 26° 35.644'	N 62° 31.446'	
	Ts Ke	Lake Jyväsjärvi	Jy	E 25° 44.339'	N 62° 13.779'	
	In.5	River Vantaanjoki	Va	E 24° 58.072'	N 60° 15.948'	
		River Kevojoki	Ke	E 26° 59.429'	N 69° 45.337'	
	ξ.Äk)	River Tsarsjoki	Ts	E 26° 59.447'	N 69° 45.430'	
		Lake Kevojärvi	Kj	E 26° 59.608'	N 69° 45.430'	
		Lake Valtimojärvi	Vj	E 28° 51.000'	N 63° 40.688'	
		River Kymijoki	Ку	E 26° 49.926'	N 60° 41.391'	The second s
	/×" ζ	Lake Leppävesi	Le	E 25° 54.633'	N 62° 16.064'	
		Lake Äkässaivo	Äk	E 24° 8.640'	N 67° 41.840'	
	.Vi	River Äyskoski	Äy	E 26° 40.756'	N 63° 0.665'	c d e
	Ây	Lake Inari	In	E 27° 53.097'	N 68° 47.783'	
		Fishery L ¹⁾	L			
	Jy	Fishery V ¹⁾	V			
	·Ky	Fishery I ²⁾	I			
	.Va	1) Central Finland				
	0 50 100 200 Km	²⁾ Northern Finland				

FIG. 1. (A) Sites in Finland where flavobacteria and their phages were isolated. Sampling sites are marked on the free map obtained from the National Land Survey of Finland (Maanmittauslaitos, 2005). The sites and their abbreviations and coordinates are listed on the right. (B) Electron micrographs of purified and negatively stained tailed *Flavobacterium* phages. (a) FCV-1; (b) FCL-2; (c) FJy-3; (d) FKo-2; (e) FKy-1. Bar, 50 nm.

^{*} Corresponding author. Mailing address: Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland. Phone: 358 14 260 2272. Fax: 358 14 260 2221. E-mail: jaana.bamford@jyu.fi.

^v Published ahead of print on 2 September 2011.

FIG. 2. Host ranges of the phages infecting different *Flavobacterium* sp. strains. Dark gray squares indicate infection; white indicates no infection, and light gray squares mark the strain which was originally used for isolation of the phage. The numbers at right and bottom are the total number of different host ranges of the phage and susceptibility of bacteria to phages, respectively. The approximate titer of each phage on the bacteria is marked with plus signs $(+, \le 10^5; ++, 10^6 \text{ to } 10^8; \text{ and } +++, \ge 10^9 \text{ PFU/ml})$. The titer (PFU/ml) of the phage on the isolation strain is marked on the light gray squares. In parentheses after the name of the bacterial strain is the abbreviation of the place of isolation, which is also included in the phage nomenclature (Fig. 1). *F. columnare* phages infected only one specific *F. columnare* RISA group, and they are listed in Table 2.

Bertani agar (22), and yellow- and orange-pigmented colonies were selected for analyses. The flavobacterial isolates were subjected to PCR with universal primers (UP-PCR) (for methods, see references 5, 6,, and 13), and the 16S rRNA genes of different groups were sequenced (Table 1). All *F. columnare* isolates fell into the same UP-PCR group, and thus they were further analyzed with ribosomal intergenic spacer analysis (RISA) (8, 29). According to RISA, the isolates were assigned to five groups (Table 1). Based on our data, the occurrence of *F. columnare* seems to be connected to the fish farming environment; this organism was not isolated from natural waters. However, it is likely that the initial source of *F. columnare* at the farms is nature, because there is evidence that it is also present outside fish farms (20, 21; H. Kunttu, L.-R. Sundberg, and E. T. Valtonen, unpublished data).

Previous reports describe phages infecting the genus *Flavobacterium* and their interaction with the bacterial host mostly in marine environments (4, 9, 12, 14), but the phage-host relationship of the fish pathogen *Flavobacterium psychrophilum* has also been studied (27). A total of 49 bacteriophages were isolated from water samples (Table 2). Phages were enriched using flavobacterial isolates from freshwaters, fish farms, and previously described *F. columnare* strains. Phage stocks were prepared, and selected phages were grown by infecting the host bacterium (multiplicity of infection, 5 to 10) at the proper cell density, concentrated, and purified (22). Many of the isolated

phages produced low-titer lysates, and they were used only for infection tests (see below for host range studies). Phage genomic DNA was extracted (for methods, see references 1 and 23) and digested with BamHI, EcoRI, HindIII, and PstI. For the genomes that were cut, the genome size was calculated from the resulting restriction profile (Table 2). For the phages that were sequenced (FKj-2, FL-1, FCL-2, and FCV-1), approximately 3,000 bp of each genome (except FCV-1, for which 1,600 bp was used) was subjected to BLAST searching (http: //blast.ncbi.nlm.nih.gov/Blast.cgi; May 2011), and no significant DNA sequence similarity was found in the database. Putative protein-coding genes were analyzed using Vector NTI 11.0.0 (Invitrogen). Best matches for FCL-2 were to a hypothetical protein of the Vibrio phage VP16T (score, 57.8) and to a hypothetical protein of the Vibrio phage VP16C (score, 55.1). For FCV-1, the best match was to a hypothetical protein, B40-8030, of the Bacteroides phage B40-8 (score, 53.9).

Transmission electron microscopy (TEM) was used to study phage morphology. All of the flavobacterial phages that were characterized were tailed phages of the families *Myoviridae*, *Podoviridae*, and *Siphoviridae* (Fig. 1 and Table 2). Most of these phages had an average head size of 50 to 70 nm, but some of the myovirus isolates had capsid sizes of about 100 nm or more (FJy-3, FKo-2, FKj-2, FKy-1, and FKy-3).

Phages infecting F. columnare were isolated only from fish

							-		
Bacterial strain ^a	UP-PCR or RISA group ^b	EMBL accession no. ^c	Sampling site	Source or reference	Bacterial strain ^a	UP-PCR or RISA group ^b	EMBL accession no. ^c	Sampling site	Source or reference
B67	А		Fishery L	This study	B244	ND		Fishery V	This study
B28	1	FR696328	Lake Konnevesi	This study	B245	С		Fishery V	This study
B80	2	FR696329	Lake Jyväsjärvi	This study	B247	С		Fishery V	This study
B105	3	FR696330	River Vantaanjoki	This study	B257	26	FR696355	Fishery V	This study
B110	4	FR696331	River Vantaanjoki	This study	B259	С		Fishery V	This study
B114	5	FR696332	River Kevojoki	This study	B260	ND	FR696356	Fishery V	This study
B121	6	FR696333	River Tsarsjoki	This study	B261	С		Fishery V	This study
B127	7	FR696334	Lake Kevojärvi	This study	B262	ND	FR696357	Fishery V	This study
B130	8	FR696335	Lake Kevojärvi	This study	B263	ND	FR696358	Fishery V	This study
B167	9	FR696336	Lake Jyväsjärvi	This study	B267	С		Fishery V	This study
B169	10	FR696337	Lake Jyväsjärvi	This study	B268	С		Fishery V	This study
B171	11	FR696338	Lake Valtimojärvi	This study	B269	ND		Fishery V	This study
B174	12	FR696339	River Kymijoki	This study	B270	С		Fishery V	This study
B176	13	FR696340	Lake Leppävesi	This study	B271	С		Fishery I	This study
B178	14	FR696341	Lake Äkässaivo	This study	B272	J		Fishery I	This study
B180	15	FR696342	River Äyskoski	This study	B273	С		Fishery I	This study
B183	16	FR696343	Fishery L	This study	B274	С		Fishery I	This study
B185	G	FR696344	Fishery L	This study	B275	С		Fishery I	This study
B187	17	FR696345	Fishery L	This study	Rz-A	А			29
B207	18	FR696346	Lake Inari	This study	R-B	В			29
B209	19	FR696347	Lake Inari	This study	Rz-C	С			29
B214	20	FR696348	Fishery V	This study	S-C	С			29
B218	21		Fishery V	This study	R-D	D			29
B222	22	FR696349	River Kymijoki	This study	S-D	D			29
B223	23	FR696350	River Kymijoki	This study	Rz-E	Е			29
B224	24		River Kymijoki	This study	R-E	Е			29
B225	24	FR696351	Fishery V	This study	S-E	Е			29
B226	25	FR696352	Fishery V	This study	S-F	F			F. columnare type
B230	Ι		Fishery V	This study					strain NCIMB
B234	С		Fishery V	This study					2248
B235	С		Fishery V	This study	Rz-G	G			29
B236	ND		Fishery V	This study	R-G	G			29
B237	С		Fishery V	This study	S-G	G			29
B241	26	FR696353	Fishery V	This study	R-H	Н			29
B243	27	FR696354	Fishery V	This study					
			-		11				

TABLE 1. Bacterial strains isolated and used in the study

^{*a*} The previously studied *F. columnare* strains (genomic groups A to H and colony morphologies 1 to 4) are referred to in this study by placing the colony morphology after the genomic group: Rz, rhizoid (previously 1); R, rough (previously 2 and 3); and S, smooth (previously 4). For example Rz-C corresponds to the previous designation C1.

^b UP-PCR group (numbers) for Flavobacterium sp. or RISA group (letters) for Flavobacterium columnare. ND, not determined.

^c For the partial 16S rRNA sequence.

farms during disease outbreaks. These phages might survive inside the host cell during the cold-water period and start a lytic cycle when nutrients become available for the host cell and enough energy is available.

Studies on aquatic phage-host interplay have been conducted extensively in marine environments (15), but less is known about this interplay in freshwaters (15, 34, 35). In our study, the host ranges differed greatly between the phage isolates (Fig. 2). In the initial screening for susceptibility of the bacteria for phages, each bacterium was infected with each phage isolate by spotting the phage lysate on top agar containing the host bacterium. Each bacterium was then infected with each phage using a plaque assay. Some of the isolated phages infecting Flavobacterium species were identified as having a broad host range. These phages infected bacteria isolated from both freshwater and fish farm samples, although it has been suggested that single-host enrichments select for phages with narrow host ranges from sewage and marine environments (11, 33). Some of the phages (especially all F. columnare phages) were more host specific,

as determined with our collection of *Flavobacterium* strains. *F. columnare* strains isolated from the same location as the phage were the only ones susceptible to that specific phage.

No infection of F. columnare strains by Flavobacterium sp. phages was observed, and vice versa. However, 11 Flavobacterium sp. phage lysates (FTs-1, FKo-2, FL-1, FV-1, FKy-1, FKy-2, FKy-3, FV-3, FV-4, FV-5, FV-6, and FV-8) inhibited the growth or lysed the underlying bacterial culture on all F. columnare strains tested but produced no individual plaques (data not shown). It could be that the phages were able to bind to the bacteria and cause death but were not able to produce progeny, or the clear spots could be an indication of bacteriocin activity. The causative agent of this strong inhibition or lysis should be studied further for the possibility of developing antimicrobial agents. One of the phages (FCL-1) was isolated from a fish suffering from columnaris. The presence of the F. columnare phages in the fish indicates the possibility of controlling a fish disease by enrichment of these phages. A number of successful reports on phage

Phage ^b	Sampling site	Isolation strain	Phage family	Approximate genome size (kbp) ^c	RISA group ^d
FJy-1	Lake Jyväsjärvi	B80	Myoviridae	30	
FJy-2	Lake Jyväsjärvi	B167	ND^a	>48	
FJy-3	Lake Jyväsjärvi	B169	Myoviridae	L	
FKo-1	Lake Konnevesi	B28	Myoviridae	25-48	
FKo-2	Lake Konnevesi	B28	Myoviridae	20-30	
FKe-1	River Kevojoki	B114	Myoviridae	ND	
FTs-1	River Tsarsjoki	B121	ND	25-48	
FKj-1	Lake Kevojärvi	B127	ND	>48	
FKj-2	Lake Kevojärvi	B130	Myoviridae	25-48	
FKy-1	River Kymijoki	B222	Myoviridae	20-48	
FKy-2	River Kymijoki	B223	Podoviridae?	25-48	
FKy-3	River Kymijoki	B224	Myoviridae?	L	
FLe-1	Lake Leppävesi	B176	Siphoviridae?	20-30	
FL-1	Fishery L	B183	<i>Myoviridae</i>	55	
FV-1	Fishery V	B214	Myoviridae	28	
FV-2	Fishery V	B218	ND	25-48	
FV-3	Fishery V	B225	Mvoviridae	ND	
FV-4	Fishery V	B226	Podoviridae	25-48	
FV-5	Fishery V	B241	ND	L	
FV-6	Fishery V	B243	ND	30-40	
FV-8	Fishery V	B257	ND	L	
FV-9	Fishery V	B260	Podoviridae?	Ē	
FV-10	Fishery V	B262	ND	Ē	
FV-11	Fishery V	B263	ND		
FV-12	Fishery V	B278	Podoviridae?	60	
FCL-1	Fishery L	B67	Myoviridae/Podoviridae	50	А
FCL-2	Fishery L	B185	Myoviridae	30	G
FCL-3	Fishery L	R-G	ND	30	G
FCL-4	Fishery L	R-G	ND	ND	G
FCV-1	Fishery V	Rz-C	Mvoviridae	50	C
FCV-2	Fishery V	B235	ND	ND	Č
FCV-3	Fishery V	B235 B236	ND	ND	Č
FCV-4	Fishery V	B250 Bz-C	ND	ND	Č
FCV-5	Fishery V	Rz-C	ND	ND	Č
FCV-6	Fishery V	Rz-C	ND	ND	Č
FCV-7	Fishery V	Rz-C	ND	ND	Č
FCV-8	Fishery V	Rz-C	ND	ND	C
FCV-9	Fishery V	B245	ND	ND	C
FCV-10	Fishery V	B245 B247	ND	ND	C
FCV-11	Fishery V	B2-77	ND	ND	C
FCV 12	Fishery V	Rz-C	ND	ND	C
FCV 13	Fishery V	B261	ND	ND	C
FCV 14	Fishery V	B201	ND	ND	C
FCV 15	Fishery V	Rz-C	ND	ND	C
FCV-16	Fishery V	R ₇ C	ND	ND	
FCV 17	Fishery V	Rz-C	ND	ND	C
FCV = 17	Fishery V	RZ-C	ND		
FCV = 10	Fishery V	RZ-C	ND		
FCV-19	Fishery V	RZ-U Dz C			C
1°C v -20	TISHELY V	KZ-U	ND	ND	U

TABLE 2. Bacteriophages isolated and characterized in this study

^a ND, not determined.

^b The first letter(s) of the phage name indicates the isolation host (F, *Flavobacterium* sp.; FC, *F. columnare*); subsequent letters refer to the sampling site.

^c L, much larger than the typical tailed phage genome (50 kb). ^d The *F. columnare* RISA group that the phage is specific to.

therapy against fish diseases have been published; in these studies, the phages were applied directly to the water (16, 17). Another possible benefit related to phages is that they could be developed for use as diagnostic tools. In the present study, we show that bacteriophages and flavobacteria are widespread in northern freshwaters. We found phages of F. columnare to be host specific, making them good candidates for phage therapy.

Nucleotide sequence accession numbers. All sequences have been submitted to the EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) under the accession numbers given in Table 1 and FR714876 (FCL-2), FR714877 (FL-1), FR714878 (FKj-2), and FR865436 (FCV-1).

Petri Papponen, Katja Ryymin, and Irene Helkala are thanked for their excellent technical assistance. Some bacterial strains used in this study were kindly donated by Päivi Rintamäki and Finnish food safety authority EVIRA. Station manager Kari Saikkonen and field master Esa Karpoff from The Kevo Research Station (University of Turku) are acknowledged for providing water samples.

This work was supported by Finnish Centre of Excellence Program of the Academy of Finland (2006–2011) grant 1129648 (J.K.H.B.), Academy of Finland grant 127500 (L.-R.S.), and a grant from the Maj and Tor Nessling Foundation (J.K.H.B.).

REFERENCES

- Bamford, J. K., and D. H. Bamford. 1991. Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles. Virology 181:348–352.
- Bernardet, J. F., and J. P. Bowman. 2006. The genus *Flavobacterium*, p. 481–531. *In* M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes: a handbook on the biology of bacteria, 3rd ed., vol. 7. Springer-Verlag, New York, NY.
- Bernardet, J. F., et al. 1996. Cutting a Gordian knot: emended classification and description of the genus *Flavobacterium*, emended description of the family *Flavobacteriaceae*, and proposal of *Flavobacterium hydatis* nom. nov. (basonym, *Cytophaga aquatilis* Strohl and Tait 1978). Int. J. Syst. Evol. Microbiol. 46:128.
- Borriss, M., E. Helmke, R. Hanschke, and T. Schweder. 2003. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7:377–384.
- Brandt, K. K., A. Petersen, P. E. Holm, and O. Nybroe. 2006. Decreased abundance and diversity of culturable *Pseudomonas* spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol. Ecol. 56:281–291.
- 6. Bulat, S., N. Mironenko, M. Lapteva, and P. Strelchenko. 1994. Polymerase chain reaction with universal primers (UP-PCR) and its application to plant genome analysis, p. 113–129. *In* R. P. Adams, J. S. Mille, E. M. Golenberg, and J. E. Adams (ed.), Conservation of plant genes II: utilization of ancient and modern DNA. Missouri Botanical Garden Press, St. Louis, MO.
- Ekman, E. 2003. Natural and experimental infections with *Flavobacterium* psychrophilum in salmonid fish. Ph.D. dissertation. Swedish University, Uppsala, Sweden.
- Hartmann, M., B. Frey, R. Kolliker, and F. Widmer. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349–360.
- Holmfeldt, K., M. Middelboe, O. Nybroe, and L. Riemann. 2007. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their *Flavobacterium* hosts. Appl. Environ. Microbiol. 73:6730–6739.
- Huys, G., et al. 2000. Characterization of oxytetracycline-resistant heterotrophic bacteria originating from hospital and freshwater fishfarm environments in England and Ireland. Syst. Appl. Microbiol. 23:599–606.
- Jensen, E. C., et al. 1998. Prevalence of broad-host-range lytic bacteriophages of *Sphaerotilus natans*, *Escherichia coli*, and *Pseudomonas aeruginosa*. Appl. Environ. Microbiol. 64:575.
- Jiang, S. C., C. A. Kellogg, and J. H. Paul. 1998. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl. Environ. Microbiol. 64:535.
- Lübeck, M., I. A. Alekhina, P. S. Lübeck, D. F. Jensen, and S. A. Bulat. 1999. Delineation of *Trichoderma harzianum* into two different genotypic groups by a highly robust fingerprinting method, UP-PCR, and UP-PCR product cross-hybridization. Mycol. Res. 103:289–298.
- Middelboe, M., K. Holmfeldt, L. Riemann, O. Nybroe, and J. Haaber. 2009. Bacteriophages drive strain diversification in a marine *Flavobacterium*: implications for phage resistance and physiological properties. Environ. Microbiol. 11:1971–1982.
- Middelboe, M., S. Jacquet, and M. Weinbauer. 2008. Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshw. Biol. 53:1069–1075.
- Nakai, T., and S. C. Park. 2002. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 153:13–18.
- Park, S. C., and T. Nakai. 2003. Bacteriophage control of *Pseudomonas plecoglossicida* infection in ayu *Plecoglossus altivelis*. Dis. Aquat. Organ. 53:33–39.

- Pulkkinen, K., et al. 2010. Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc. Biol. Sci. 277:593–600.
- Qu, J. H., H. L. Yuan, H. F. Li, and C. P. Deng. 2009. Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. Int. J. Syst. Evol. Microbiol. 59:2666–2669.
- Revetta, R. P., M. R. Rodgers, and B. K. Kinkle. 2005. Isolation and identification of freshwater bacteria antagonistic to *Giardia intestinalis* cysts. J. Water Health 3:83–85.
- Rickard, A., A. McBain, R. Ledder, P. Handley, and P. Gilbert. 2003. Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol. Lett. 220:133–140.
- Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Santos, M. A. 1991. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res. 19:5442.
- Schmidt, A. S., M. S. Bruun, I. Dalsgaard, and J. L. Larsen. 2001. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl. Environ. Microbiol. 67:5675–5682.
- Shieh, H. Studies on the nutrition of a fish pathogen, *Flexibacter columnaris*. Microbios Lett. 13:129–133.
- Sorum, H. 2006. Antimicrobial drug resistance in fish pathogens, p. 213–238. *In* F. M. Aarestrup (ed.), Antimicrobial resistance in bacteria of animal origin. ASM Press, Washington, DC.
- Stenholm, A. R., I. Dalsgaard, and M. Middelboe. 2008. Isolation and characterization of bacteriophages infecting the fish pathogen *Flavobacterium psychrophilum*. Appl. Environ. Microbiol. 74:4070–4078.
- Suomalainen, L., M. Tiirola, and E. Valtonen. 2005. Effect of *Pseudomonas* sp. MT 5 baths on *Flavobacterium columnare* infection of rainbow trout and on microbial diversity on fish skin and gills. Dis. Aquat. Organ. 63:61–68.
- Suomalainen, L. R., H. Kunttu, E. T. Valtonen, V. Hirvela-Koski, and M. Tiirola. 2006. Molecular diversity and growth features of *Flavobacterium columnare* strains isolated in Finland. Dis. Aquat. Organ. 70:55–61.
- Tamaki, H., et al. 2003. *Flavobacterium limicola* sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int. J. Syst. Evol. Microbiol. 53:519–526.
- Tamminen, M., et al. 2011. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ. Sci. Technol. 45: 386–391.
- Van Trappen, S., J. Mergaert, and J. Swings. 2003. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol. 53:1241–1245.
- Wichels, A., G. Gerdts, and C. Schütt. 2002. Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat. Microb. Ecol. 27:233–239.
- Wilhelm, S. W., and A. R. Matteson. 2008. Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshw. Biol. 53:1076–1089.
- Wommack, K. E., and R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114.
- Yi, H., H. M. Oh, J. H. Lee, S. J. Kim, and J. Chun. 2005. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 55:637–641.
- Yoon, J. H., S. J. Kang, J. S. Lee, and T. K. Oh. 2007. Flavobacterium terrigena sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57:947–950.
- Zhang, D. C., H. X. Wang, H. C. Liu, X. Z. Dong, and P. J. Zhou. 2006. *Flavobacterium glaciei* sp. nov., a novel psychrophilic bacterium isolated from the China no. 1 glacier. Int. J. Syst. Evol. Microbiol. 56:2921– 2925.
- Zhu, F., S. Wang, and P. Zhou. 2003. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China no. 1 glacier. Int. J. Syst. Evol. Microbiol. 53:853–857.