Table 5.
Procrustes ANOVA for the coral example, with a symmetry group consisting of reflection and rotation of order 2
| Source | Degrees of freedom | Sums of squares | Mean squares | F | P |
|---|---|---|---|---|---|
| Individual | 1127 | 4.9380 | 0.0043815 | 1.82 | < 0.000001 |
| Rotation | 23 | 0.096360 | 0.0041896 | 4.20 | < 0.000001 |
| Reflection | 23 | 0.16058 | 0.0069818 | 1.34 | 0.13 |
| Rotation × reflection | 23 | 0.072451 | 0.0031501 | 3.17 | < 0.000001 |
| Rotation × individual | 1127 | 1.1251 | 0.0009983 | 4.95 | < 0.000001 |
| Reflection × individual | 1127 | 5.8839 | 0.0052209 | 25.87 | < 0.000001 |
| Rotation × reflection × individual | 1127 | 1.1184 | 0.0009924 | 4.92 | < 0.000001 |
| [Total FA] | 3381 | 8.1274 | 0.0024039 | ||
| Imaging error | 4600 | 0.92842 | 0.0002018 | 1.26 | < 0.000001 |
| Digitizing error | 9200 | 1.4789 | 0.0001607 |
The main effect of individuals is tested against the mean square for the total fluctuating asymmetry ("Total FA": pooling sums of squares and degrees of freedom across all three subspaces with asymmetric variation: rotation × individual, reflection × individual and rotation × reflection × individual). This total asymmetry is not used otherwise in the analysis.