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Abstract
Proteins attain their function only after folding into a highly organized three-dimensional
structure. Much remains to be learned about the mechanisms of folding of large multidomain
proteins, which may populate metastable intermediate states on their energy landscapes. Here we
introduce a novel method, based on high-throughput single-molecule fluorescence experiments,
which is specifically geared towards tracing the dynamics of folding in the presence of a plethora
of intermediates. We employ this method to characterize the folding reaction of a three-domain
protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov
modelling, we identify six metastable states on adenylate kinase’s folding landscape. Remarkably,
the connectivity of the intermediates depends on denaturant concentration; at low concentration,
multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced
here will find broad applicability in the study of folding of large proteins, and will provide a more
realistic scenario of their conformational dynamics.

Understanding protein folding mechanisms has become a major challenge not only from the
viewpoint of basic biological research, but also from that of biomedical studies of diseases
caused by misfolding1. Analysis of the two-state folding behaviour of small, single-domain
proteins2–4 has led to the suggestion that their folding landscapes (or energy landscapes, that
is, the multidimensional surfaces that describe free energy as a function of conformation)
were optimized by evolution to be ‘smooth’, namely to minimize the number of
intermediates and/or kinetic traps on the way to the folded state5. This might not be the case
for larger proteins, especially those built of multiple domains, which constitute more than
70% of the eukaryotic proteome6. Past work has already pointed to the possibility that
folding of such proteins may involve stable or metastable intermediate states, and classical
thermodynamic and kinetic experiments have captured some of this complexity (see, for
example, refs 7–11). Further, spectroscopic methods such as native-state hydrogen exchange
have provided detailed structural information on intermediates12,13. Yet, a particularly
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daunting task for these experiments has been the characterization of the major kinetic
pathways connecting a set of intermediate states. Notably, recent theoretical studies point to
the importance of multiple kinetic pathways for folding reactions14, even in the case of
small proteins15. New experimental methods that can readily identify intermediate states and
determine their kinetic connectivity are thus much in need. In this work, we demonstrate that
single-molecule fluorescence resonance energy transfer spectroscopy (smFRET)16–18 is
well-poised to rise to this challenge.

Many smFRET protein folding experiments have been performed on freely diffusing
molecules, and have revealed fascinating details on phenomena such as the collapse
transition19 or the nanosecond chain reconfiguration dynamics in the denatured state20.
However, experiments on freely diffusing molecules are limited to short time scales, of the
order of a millisecond, and some form of immobilization is required to study dynamics on
longer time scales. Only a handful smFRET folding experiments have been performed on
immobilized molecules21–25. The promise of this type of experiment to identify
intermediates in the folding of large proteins and characterize the pathways connecting
them26 has yet to be fulfilled.

Here we show how a map of the folding landscape of the three-domain, 214 amino-acid
protein adenylate kinase (AK) can be obtained from the analysis of thousands of smFRET
trajectories of molecules immobilized within lipid vesicles. AK is a good model protein for
such studies. Observation of its structure (Fig. 1)27 suggests that its three domains interact
strongly with each other, and cannot be seen as independent folding units. This picture is
reinforced by studies of the intricate functional dynamics of this enzyme, which involve
domain closure-type motions28–30. Indeed, the complexity of the folding dynamics of AK
has been partially unveiled in previous experiments24,31–34. Yet, it hasn’t been known how
many intermediates are involved in AK folding, and what their connectivity is.

The concept of the experiment reported here is shown in Figure 1. AK molecules were
labelled at positions 73 and 203, which span the CORE domain of the protein27. Labelled
AK molecules were encapsulated within surface-tethered lipid vesicles (Fig. 1a), which
provide an excellent means to study single-molecule protein dynamics, as previously
shown24,25,35–39. Equilibrium experiments were performed in the presence of a series of
guanidinium chloride (GdmCl) concentrations, selected so as to lower the folding/unfolding
barrier and facilitate molecular dynamics that sample the whole folding landscape of the
protein. Thousands of short trajectories were obtained, which, because of the random initial
state of each molecule, sampled different regions of the folding landscape of the protein
(Fig. 1b). Statistical analysis, using hidden Markov modelling (HMM)40, then allowed us to
effectively ‘connect’ the trajectories and obtain a single multi-state map of the folding
landscape of AK.

Results
Single-molecule FRET trajectories of AK

An automated single-molecule spectrometer was constructed to facilitate the collection of
large sets of single-molecule trajectories, each corresponding to a particular denaturant
concentration. Each trajectory, consisting of the photon arrival times of both donor and
acceptor fluorophores, was binned in 50 ms time bins, and the FRET efficiency was
calculated bin by bin. The availability of a large number of trajectories allowed us to employ
rigorous criteria for data validation. These criteria, described in the Supplementary Methods
section, enabled a systematic removal of various artefacts in the data set, such as spurious
signal levels due to photophysics of one of the dyes. In addition, we explicitly verified that
spectral drifts similar to those found by Chung et al.23 were not observed in our data (see
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Supplementary Methods for details). After data selection, more than a thousand valid
trajectories remained in most data sets (Fig. 2a; Supplementary Fig. S5 for sample
trajectories, and Supplementary Table S1 for detailed statistics). To validate the quality of
these data sets, we calculated the mean FRET efficiency for each and compared these values
with the ensemble denaturation curve of AK, measured using FRET as a reporter. Very good
agreement was found between FRET efficiency values obtained from the single-molecule
data and bulk measurements (Fig. 2b). We further compared the probability distributions of
FRET efficiency values with FRET efficiency histograms obtained from a free-diffusion
single-molecule experiment (Fig. 2c), finding excellent agreement in peak positions and
widths.

Change-point analysis of trajectories
Using a change-point algorithm, we then analysed each individual trajectory to identify
points at which a transition between two FRET efficiency states occurred. The average
trajectory length and the average number of transitions per trajectory depended on the
GdmCl concentration (Supplementary Table S1), and were 4.3 s and 1.2, respectively, at
0.65 M (close to the denaturation midpoint, Fig. 2b). The average FRET efficiency change
in a transition was 0.18, much smaller than the difference between fully folded and fully
unfolded conformations, suggesting that jumps between these conformations are rare. To
obtain a global picture of the states visited during folding and unfolding transitions, we used
the change-point algorithm to generate a two-dimensional transition map, which plots the
transition density as a function of the initial and final FRET efficiency values24. Around the
denaturation midpoint, a two-state folding reaction should result in a transition map with
two peaks symmetrically positioned with respect to the diagonal. The map based on data
measured at 0.65 M GdmCl (Fig. 3a) deviates significantly from this picture. First, it is not
symmetric with respect to the diagonal. This is due to the larger photobleaching rate of the
donor probe compared with the acceptor probe, which shortens trajectories that start in more
unfolded states (that is, states with lower FRET efficiency). But more importantly, the map
shows multiple peaks, each corresponding to a pair of states visited by the molecules as they
diffuse on the folding landscape. This is an indication that several intermediate states exist
on this landscape. However, the transition map is too dense to resolve and accurately assign
all states of the denatured AK, and the situation becomes even more complex at higher
concentrations of denaturant, where transitions tend to cluster at lower FRET efficiency
values. Further, a transition map based on change-point analysis does not directly contain
information on state-to-state kinetics.

HMM reveals six states
To assign the molecular states, as well as the rates of interconversion between them, we
employed HMM analysis of the data40,41. An HMM parses a data set in terms of N discrete
states, each presenting a distribution of FRET efficiency values (we take this distribution to
be Gaussian). The dynamics of interconversion between these states are assumed to be
Markovian. Two important modifications of the standard HMM algorithm were introduced
here. First, we required that the dynamics obey detailed balance, so that the flux from any
equilibrium state i to any state j equals the inverse flux. Second, we added an extra state,
representing the photobleached molecules, and, therefore, connected by a one-way transition
to each of the equilibrium states. The introduction of this extra state allowed us to correct for
the state-dependent photobleaching rate in a natural way. We used the Baum–Welch
algorithm40, to obtain a maximum likelihood estimate of the HMM parameters. The analysis
was performed on each data set (that is, all trajectories taken at one denaturant
concentration) separately. Further details, including error analysis, are given in the Methods
section below and in the Supplementary Methods section.
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As is well known, HMM analysis does not provide an estimate for N. Although various
information criteria are sometimes useful for determining N (refs 41–43), we devised a
different method for this purpose. Focusing on the data set taken at 0.65 M GdmCl (in which
the states are expected to be populated most evenly), we repeated the HMM analysis for
different values of N, from 2 to 14. We then used the HMM parameters to generate a
transition map, and cross-correlated this map with the one obtained from the change-point
analysis. The cross-correlation showed that the optimal N is between 5 to 7 (Fig. 3b). We
therefore used six states for further analysis of all data sets. This method for selecting the
number of states was tested against an extensive set of simulations. As a further validation
for the number of states, we segmented the trajectories of the 0.65 M GdmCl data set using
the Viterbi algorithm, calculated the FRET efficiency value for each segment longer than 1
s, and generated a histogram from all values, shown as Supplementary Figure S6. Peaks
matching the FRET efficiency values of the six states are clearly observed. Since at high
GdmCl concentrations states with high FRET efficiencies are rarely visited, we fixed the
FRET efficiency value of each state in the analysis, based on the results of the 0.65 M data
set, but allowed all other parameters to be optimized by the analysis.

State connectivity changes with denaturant concentration
Figure 4 shows the FRET efficiency distributions obtained from the HMM analysis. The
states are enumerated from 1 to 6 according to their FRET efficiency. At the lowest GdmCl
concentration studied, 0.5 M, the distribution is dominated by the population of states with
high FRET efficiency. As the GdmCl concentration is increased, states with low FRET
efficiency become more and more populated. Observation of transition maps generated from
the smFRET trajectories using the HMM parameters (Fig. 5a–c) shows that the dynamics of
folding and unfolding involve both sequential transitions of the type i→i ± 1, and larger,
non-sequential transitions of the type i→j, where j > i + 1 or j < i − 1. Qualitatively, the
maps show that with an increasing concentration of GdmCl, the sequential transitions
become more dominant. Intriguingly, the most populated state at 0.5 M GdmCl is state 5
rather than state 6. Analysis of the transition maps suggests that state 6 is poorly connected
kinetically to state 5, and might be tentatively designated as a misfolded state.

1D projections of the folding landscape of AK at three GdmCl concentrations, based on the
HMM parameters, are shown in Figure 5d–f. The relative free energies of states 1–5 are
plotted. In addition, the figures also present the heights of the free energy barriers for
transitions between pairs of states. For clarity, we show only transitions that carry more than
10% of the unfolding (or folding) flux. These were calculated using either the transition-path
theory of Noé et al.44 or a stochastic simulation, with similar results (Supplementary Table
S2). The widths of the lines in Figure 5d–f depict the relative productive flux flowing
between each pair of states, and their colours represent the transition rates. At 0.5 M GdmCl,
many transitions, both of the sequential and of the non-sequential type, have low enough
free energy barriers to participate significantly in unfolding pathways. The unfolding flux
thus goes through many parallel pathways. However, when the denaturant concentration is
increased to 1 M, most non-sequential transitions have high free energy barriers, and
therefore do not contribute significantly to the productive flux. Indeed, ~50% of the
unfolding flux is now carried through the fully sequential pathway 5→4→3→2→1
(Supplementary Table S2). Nevertheless, even under these conditions a considerable
fraction of the trajectories include larger jumps.

Discussion
The results presented here show that single-molecule FRET spectroscopy can provide a
comprehensive description of the folding landscape of a large, multidomain protein like AK
in terms of the metastable states involved and the rates of transitions between them. The
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picture arising is dramatically different and more complex than the usual two-state folding
behaviour seen in small proteins, where a single transition state dominates the reaction.
Indeed, it is found that the dynamics involve a large set of possible pathways on the
landscape. An important feature of the folding landscape of AK is the increasingly more
sequential nature of the dynamics with increased denaturant concentration, with a larger and
larger share of the flux going through the fully sequential pathway.

What is the structural nature of the intermediates identified in our experiment? At this point
of time, we refrain from attempting an answer to this question, as only projections of these
structures on a single distance were measured in the current work. It is possible that part of
the complexity in AK folding can be attributed to proline cis-trans isomerization45. Our
results are consistent with the work of Haas and co-workers, who demonstrated the complex
nature of AK folding in a series of kinetic FRET experiments33,34,46. In particular, these
authors found that the distance 73–203 contracts in 2 ms and then presents with a broad
distribution that slowly narrows down to that of the native state46. This broad distribution
may hide the intermediate states seen in our experiment.

More generally, the current work is consistent with the foldon picture13,47, and provides the
experimental means to characterize foldon dynamics. However, the dynamics observed here
are considerably richer than the simple sequential dynamics suggested by Englander and co-
workers12, and may vary significantly with experimental conditions. In the future, it will be
interesting to combine the results from our smFRET experiment with those obtained from a
method like native-state hydrogen exchange, which affords detailed structural information
on foldons more readily, but might be lacking in its ability to trace their connectivity and
dynamics. Our analysis and results are also likely to offer an important link to simulations
that describe protein folding in terms of Markov models15,44. Indeed, in future work, we
plan to combine computer simulations and measurements of further intramolecular distances
to obtain more information on the structure of the intermediate states of AK.

Methods
Protein expression and labelling

The expression vector containing the Escherichia coli AK gene was a generous gift from
Professor Elisha Haas (Bar-Ilan University). Standard site-directed mutagenesis methods
were used to substitute alanines at positions 73 and 203 of the protein with cysteines. The
large variation in labelling rate between the two sites33 facilitated site-specific labelling with
Alexa 488 maleimide (Invitrogen) at position 73 and ATTO 590 maleimide (ATTO–TEC) at
position 203. More details can be found in the Supplementary Methods section.

Sample preparation for single-molecule studies
Vesicles made of egg phos-phatidylcholine and a fraction of 1:500 of biotynilated
phosphoethanolamine (both from Avanti Lipids) were prepared by extrusion34 in a buffer
containing the appropriate concentrations of labelled proteins and chemical denaturant. The
glass surfaces of the sample cell were initially coated with a supported bilayer, which
contained the same fraction of biotynilated lipids as above. Strepatividin was added,
followed by protein-loaded vesicles.

Single-molecule setup and data acquisition
The sample cell was mounted on top of a capacitance-feedback piezo stage and excited by
the focused 488 nm beam of an argon ion laser. The arrival times of fluorescent photons
were registered by two single-photon avalanche photo-diodes. Data acquisition was fully
automated using dedicated software. A 5 μm×5 μm region of the sample was scanned, and
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the position of vesicles loaded with molecules was identified with subpixel resolution. The
piezo stage was positioned on each of these in turn, to obtain a fluorescence time trace
(trajectory). After acquiring trajectories of all molecules in a field, the piezo stage was
moved to a new region, and the acquisition cycle was repeated. The laser power was set to
1,000 nW during the scan and 250 nW during time-trace acquisition. An auto-focus device
ensured that the laser beam was focused on the surface of the sample throughout data
collection. Further details on the experimental setup can be found in the Supplementary
Methods section.

Data analysis
As folding/unfolding transitions in AK are slow (of the order of 1 s), we first binned
fluorescence trajectories (accumulated as photon arrival times on the two detectors) in 50 ms
time bins. We used a series of computational filters to ensure that only trajectories generated
by individual molecules were included in the analysis, and to prevent the occurrence of
various artefacts (see Supplementary Methods). Trajectories that passed the filtration stage
were corrected for background and leakage of photons from donor to acceptor channel,
which amounted to ~7%. FRET efficiency was calculated for each bin using E = IA(t)/[γ ·
ID(t)+IA (t)]. The factor γ corrects for different quantum efficiencies of the donor and
acceptor, as well as different detection efficiencies in the two detection channels. We
evaluated γ directly from single-molecule trajectories and found it to be ~1 for our setup.

To identify transitions between FRET efficiency levels in a model-independent manner,
single-molecule trajectories were subjected to a change-point analysis (see the
Supplementary Methods section). Bootstrapped trajectories were used to estimate the
statistical significance of identified transitions. More than 90% of the identified transitions
involved anti-correlated changes in donor and acceptor channels. The FRET efficiency
values of the data segments before and after each transition served as coordinates for a point
on a two-dimensional map. Each such point was then dressed with a 2D normalized
Gaussian function, which facilitated the construction of transition density maps.

HMM analysis of the data assumed a model of Markovian dynamics involving N discrete
states, the FRET efficiency of each being normally distributed. For this analysis, we
modified a freely-distributed MATLAB toolkit
(http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html). A ‘photobleached’ state was
added to the N states of the basic model, to account for the irreversible signal loss at the end
of each trajectory. In practice, this was done by appending a short termination sequence to
each trajectory, with an artificially large FRET value. This value made the transition into the
termination state effectively irreversible. Multiple random initial conditions were used to
start the iterative HMM analysis, to ensure convergence to the global minimum. The Baum–
Welch algorithm was used to re-estimate the parameters at the end of each iteration40.
Detailed balance was enforced on the re-estimated parameters in each iteration based on the
condition πiaij = πjaji, where aij is the transition probability from state i to state j per time
bin, and πi is the equilibrium probability of state i. In particular, the transition probabilities
estimated by the Baum–Welch algorithm were then corrected according to

for i≠j, and . Obviously, only parameters related to
the original N states were corrected in this manner. We verified that the enforcement of
detailed balance in this fashion did not significantly modify the convergence pattern of the
algorithm. In fact, we found that the resulting estimators outperformed the original, non-
constrained Baum–Welch estimators when used to analyse simulated data obeying detailed
balance. A sample transition probability matrix obtained from the HMM analysis of the 0.65
M GdmCl data set is shown in Supplementary Table S3.
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Transition density maps were constructed based on the experimental data and the optimal
HMM parameters. In brief, the likelihood of each possible segmentation of each trajectory
was computed, and the total likelihood for transition between pairs of FRET efficiency
values was calculated by summation over all trajectories. Each such likelihood value was
then dressed with a 2D normalized Gaussian function, as in the construction of change-point
maps.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Principle of the single-molecule folding experiment
(a) Individual AK molecules, double-labelled for FRET, are encapsulated in vesicles
tethered to a glass-supported bilayer using biotin-streptavidin chemistry. The protein
molecule is not drawn to scale with the vesicle, which is 100 nm across. (b) In lack of a very
long single-molecule temporal trajectory that maps the whole landscape, multiple short
trajectories are collected in our experiment. However, the availability of a large number of
equilibrium trajectories facilitates reconstruction of the folding landscape using statistical
analysis based on HMM.
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Figure 2. Single-molecule FRET trajectories
(a) Three examples of fluorescence trajectories of individual AK molecules, each showing
one or more transitions between different FRET efficiency levels. In each example, the left
panel shows the experimental traces from the donor and acceptor channels, whereas the right
panel shows the FRET efficiency trace, calculated till the photobleaching point. The orange
lines in the right panels are state assignments based on the HMM analysis, and obtained with
the Viterbi algorithm. The transitions between different FRET states seen in the trajectories
are anti-correlated, as were > 90% of the transitions seen in our data. See further examples
of trajectories in Supplementary Figure S5. (b) Comparison of single-molecule results to the
bulk denaturation curve. For the bulk curve, fluorescence spectra of a sample of double-
labelled protein molecules were measured at increasing concentrations of GdmCl, and FRET
efficiency values were then calculated from them (green points). Single-molecule mean
FRET efficiency values (red points) were calculated from the trajectories taken at each
GdmCl concentration. These values were obtained by averaging over the initial half a
second of each trajectory, so as to avoid the effect of photobleaching. (c) Comparison of the
probability distribution of FRET efficiency values obtained from single-molecule
trajectories at 0.65 M GdmCl (green squares) to a histogram obtained from a free-diffusion
single-molecule experiment performed at the same concentration (red bars). The peak at
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zero FRET efficiency in the free-diffusion histogram is due to molecules labelled with donor
only. Extra FRET efficiency probability distributions appear in Figure 4.
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Figure 3. Transitions between multiple states in single-molecule trajectories
(a) Transition density map constructed from the 0.65 M GdmCl data set. The map is a two-
dimensional density plot of transitions identified by the change-point algorithm, as a
function of initial and final FRET efficiencies for each transition. Note the strong deviation
of the transition map from that expected for a two-state folder, which should include only
two major peaks. (b) Correlation between the transition density map based on change-point
analysis and maps based on the HMM analysis with an increasing number of states. The
optimal number of states is found to be 5–7.
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Figure 4. State probability distribution histograms, as a function of GdmCl concentration
The probability distributions are based on the parameters extracted from each data set by the
HMM analysis. The mean FRET efficiency value of each state was obtained from the
analysis of the 0.65 M GdmCl data set, then fixed for analysis of the other data sets. The
black lines show the total area-normalized probability distributions, which match very well
the distributions calculated directly from the experimental data (yellow symbols).
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Figure 5. The folding landscape of AK
(a–c) Transition maps at three indicated GdmCl concentrations, constructed from the
experimental data using HMM analysis results. As the concentration of denaturant increases,
more transitions tend to occur between states of lower FRET efficiency. In addition, the
fraction of sequential transitions of the type i→i ± 1 increases significantly. (d–f) One-
dimensional projections of the folding landscape of AK at the three indicated GdmCl
concentrations. State 6, which is poorly connected to state 5, is not shown. The relative free
energy of each state was extracted from the probability distributions of Figure 4. The heights
of the free energy barriers between pairs of states were calculated from the HMM transition
probability matrices (the value of the pre-exponential factor in the Arrhenius equation was
set to 1). Line widths depict the relative productive flux flowing between each pair of states,
whereas the colours depict the rate of each transition, according to the scale shown on the
right. Only transitions that carry at least 10% of the flux from state 5 to state 1 (or vice
versa) are shown.
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