
Mechanisms regulating chemokine receptor activity

Chemokine receptor function and regulation

Chemokine receptors belong to the G protein-coupled

receptor (GPCR) superfamily and are divided into four

classes, named according to the type of chemokine (CC,

CXC, CX3C or XC) with which they interact.1 Since the

cloning of the interleukin-8 (CXCL8) receptor,2 a total of

10 CC, seven CXC, one CX3C and one XC receptors have

been identified.1,3 There is apparent redundancy in the

system, as many chemokines bind multiple receptors of

one class and more than one receptor can interact with

each chemokine. However, some groups have found dif-

ferent receptor signalling and trafficking responses to

individual chemokines, suggesting that this redundancy

may not be as widespread as thought previously.4,5

Chemokine receptors have a wide range of biological

functions and can be grouped as constitutive or inflam-

matory receptors depending on whether they play a role

predominantly in development and homeostasis, or in

host response to inflammation and infection.6 They con-

trol the trafficking and positioning of leucocytes through-

out the body by inducing directed cell movement towards

the source of chemokine gradients (chemotaxis). In par-

ticular, inflammatory chemokine receptors have a signifi-

cant role in host defence due to their ability to trigger

leucocyte mobilization in response to chemokines secreted

at sites of injury. Many chemokine receptors have been

associated with various pathologies, including human

immunodeficiency virus/acquired immune deficiency syn-

drome (HIV/AIDS), cancer and inflammatory diseases.

However, with the exception of HIV/AIDS, for which it is

established that CXCR4 and CCR5 act as co-receptors for

virus entry,7–10 the molecular mechanisms by which

chemokine receptors contribute to diseases are poorly

understood. Work has been carried out in developing

drugs targeting at least 10 of the known chemokine recep-

tors. Although antagonists for several receptors are in

clinical trials,11–13 the only drug licensed to date is a

CCR5 antagonist (Maraviroc) used in HIV therapy.14 As

CCR5 antagonism has failed to show clinical benefit with

rheumatoid arthritis, it has been suggested that multiple

chemokine receptor blockade may be more effective.14,15

Consequently, much effort is currently put towards devel-

oping promiscuous antagonists to tackle the problem of

redundancy/compensation,12,13 but a greater understand-

ing of the mechanisms regulating chemokine receptor
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Summary

Co-ordinated movement and controlled positioning of leucocytes is key to

the development, maintenance and proper functioning of the immune

system. Chemokines and their receptors play an essential role in these

events by mediating directed cell migration, often referred to as chemo-

taxis. The chemotactic property of these molecules is also thought to con-

tribute to an array of pathologies where inappropriate recruitment of

specific chemokine receptor-expressing leucocytes is observed, including

cancer and inflammatory diseases. As a result, chemokine receptors have

become major targets for therapeutic intervention, and during the past

15 years much research has been devoted to understanding the regulation

of their biological activity. From these studies, processes which govern the

availability of functional chemokine receptors at the cell surface have

emerged as playing a central role. In this review, we summarize and dis-

cuss current knowledge on the molecular mechanisms contributing to the

regulation of chemokine receptor surface expression, from gene transcrip-

tion and protein degradation to post-translational modifications, multi-

merization, intracellular transport and cross-talk.

Keywords: chemokine receptors; chemokines; regulation; immunity and

infection

246 � 2011 The Authors. Immunology � 2011 Blackwell Publishing Ltd, Immunology, 134, 246–256

I M M U N O L O G Y R E V I E W A R T I C L E



activity might also be required for the development of

more efficient drugs.

The ability of cells to respond to chemokines can be

modulated by mechanisms affecting either the chemokine

or its receptor. Control can be exerted on the chemokine

receptors to modulate the cellular levels of receptor mole-

cules, or the presentation of functionally active receptors

at the cell surface. Regulation of protein expression can be

targeted at the level of gene regulation, mRNA and pro-

tein synthesis. However, these processes are too slow to be

solely responsible for the changes required by individual

cells to fine-tune their response according to the specific

composition of the local environment.16 Therefore, tight

control of the presence of functional chemokine receptors

at the cell surface is essential, and can be achieved by

affecting the activation state, signalling ability and/or cel-

lular localization of the receptor. This rapid control can

be mediated in response to ligand binding but also as a

consequence of cross-talk from other receptors.

A considerable amount of our knowledge regarding

chemokine receptor biology comes from concepts uncov-

ered for other GPCRs. However, a few chemokine recep-

tors such as CXCR1, CXCR2, CXCR4, CCR2 and CCR5

have received much attention in the last two decades,

leading to the discovery that as part of the desensitization

process, chemokine-stimulated receptors are removed

from the plasma membrane by endocytosis and trans-

ported within the cell.5 Although the trafficking trend

appears conserved between chemokine receptors, the

mechanisms involved vary and thus cannot be considered

generic. Understanding these mechanisms at the molecu-

lar and cellular levels could lead to new approaches to

target chemokine receptors for disease therapy. In this

review we summarize current knowledge about the vari-

ous molecular mechanisms regulating the presence of

functional chemokine receptors at the surface of cells.

Regulation of protein expression

Long-term regulation of chemokine receptors is achieved

by controlling the cellular levels of receptor molecules

through changes in gene expression, mRNA stability and

protein degradation. This can lead to both up- and

down-regulation of a specific receptor, as reported for

CXCR4.17,18 With regard to leucocytes, the expression of

chemokine receptors is tightly regulated on the different

subtypes and changes through the processes of cell dif-

ferentiation, activation and polarization.19–24 This regula-

tion is particularly important for inducible chemokine

receptors such as CCR2 and CCR5 helping to recruit

blood neutrophils, monocytes and activated T cells to

sites of infection.15,25 Host–pathogen interactions can

also regulate chemokine receptor expression. For exam-

ple, it was shown that bacterial lipopolysaccharide (LPS)

interfered with CCL2-mediated recruitment of blood

neutrophils and monocytes in vivo by down-regulating

CCR2 expression.26,27 LPS was found to act in vitro by

affecting CCR2 mRNA stability,28,29 as did the inflamma-

tory cytokines interleukin-1 (IL-1), tumour necrosis

factor (TNF-a) and interferon-c (IFN-c),29,30 but with

no major effect on CCR5 transcripts. In contrast, reac-

tive oxygen intermediates produced by phagocytes for

killing pathogens increased CCR2, CCR5 and CXCR4

mRNA expression and opposed the down-regulation

induced by LPS.31 Interestingly, chemokine receptor

switch and modulation of mRNA expression has also

been reported with Mycobacterium tuberculosis antigens

and proposed to be part of a normal programme of cell

co-ordination needed to contain infection.32 Enhancing

protein degradation independently of, or in combination

with, a transcriptional control is also an efficient way to

down-regulate chemokine receptor expression, as

described for CXCR1 and CXCR2 on activated neutroph-

ils or CCR2 during monocyte differentiation.20,33 Signifi-

cantly, changes in the regulation of chemokine receptor

expression can contribute to pathological conditions such

as Alzheimer’s disease, where there is evidence for bind-

ing of the amyloid b protein to the receptor for

advanced glycation end-products (RAGE) up-regulating

CCR5 expression on brain endothelial cells causing T cell

infiltration in the brain.34

Control of chemokine receptor functional activity

To be functionally active, cell surface chemokine receptors

have to be coupled to a heterotrimeric G protein, pre-

sented in a conformation compatible with agonist bind-

ing, and ready to transmit intracellular signals. Other

GPCRs are thought to reside in the plasma membrane in

equilibrium between active and inactive states, depending

on complex allosteric interactions and conformational

changes affected by ligands as well as cell-specific parame-

ters.35–37 This is still relatively uncharted territory for

chemokine receptors but, as will be discussed in detail

later, experimental findings suggest that they may be sub-

ject to similar regulation. There is evidence for conforma-

tional heterogeneity in cell surface CXCR4 and CCR5

receptor populations sometimes related, but not always,

to post-translational modifications of the proteins.38–40

Indeed, sulphation and glycosylation have both been

shown to influence ligand binding and signalling by

CXCR4 and CCR5.39,41 The membrane environment is

another factor influencing the activation state of CXCR4

and CCR5, which require cholesterol and lipid rafts for

chemokine binding and signalling.42–44 However, if these

parameters are important to maintain receptor integrity,

whether or not they are accounting for their regulation

remains unknown. One feature confirmed to impact on

the functional regulation of many chemokine receptors is

multimerization.
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Receptor multimerization

It is now accepted that GPCRs not only operate as single

entities (monomers), but can also function as multimers

regulated by allosteric mechanisms.45,46 Chemokine recep-

tors have been shown to form homomers as well as heter-

omers with other chemokine receptors, GPCRs or distinct

types of cell surface receptors (Tables 1 and 2). Tech-

niques commonly used to ascertain receptor–receptor

interactions and demonstrate the presence of multimers

in living cells include co-immunoprecipitation and fluo-

rescence or bioluminescence resonance energy transfer

(FRET or BRET; Tables 1 and 2). Note that many of the

studies describing chemokine receptor multimers have

been carried out on transfected cells where at least one of

the interacting partners is over-expressed, and features of

endogenous receptor complexes as well as their biological

significance in vivo remain largely to be explored.

Early work has indicated that chemokine receptor

dimerization was ligand-induced, as described for CXCR4

homodimers and CXCR4/CCR5 or CCR2/CCR5 heterodi-

mers.47–51 However, the current view is that chemokine

receptor dimers are constitutively formed (Tables 1 and

2), and ligand binding stabilizes or reorganizes pre-exist-

ing complexes.52–54 CXCR1 and CXCR2 exemplify this: a

recent study revealed that CXCL8 binding stabilizes

homodimers but alters heterodimers.55 In fact, dimers are

thought to assemble during biosynthesis prior to arriving

at the cell surface, as shown for CXCR1/CXCR2 heterodi-

mers56 or for CCR5 homomers.57 Other factors, such as

the type of molecules complexed with the chemokine

receptor or the cellular background, could affect where

and how dimers form. For example, CXCR4 and the

T cell receptor (TCR) only dimerize at the surface of T

cells following CXCL12 stimulation,50 while CXCR4

interacts with the tetraspannin CD63 in the biosynthetic

pathway of B cells.58–60 For CCR5, there are reports of

constitutive intracellular interactions with CD4 in a

monocytic cell-line61 and stable cell surface CCR5/CD4

heteromers complexed with or without CXCR4 on trans-

fected cells or blood-derived dendritic cells.62–64 Another

study described co-localized but independent monomeric

CCR5 and CD4 molecules interacting upon binding of

HIV-gp120 at the surface of transfected cells.65–67 Patho-

gen-induced interaction has also been established for

CXCR4 and the Toll-like receptor 2 (TLR-2).68

Importantly, multimerization impacts on the cell’s bio-

logical response to chemokine exposure. Cross-talk within

homomers or heteromers enables regulation of chemokine

receptors in response to stimuli other than their own

ligands. This process, called receptor or ligand-binding

co-operativity, is known to occur within all types of

GPCR dimers.69 Positive binding co-operativity has been

shown for the constitutive CXCR4/CXCR7 dimer in

which CXCR7, a chemokine receptor unable to trigger G

protein signalling,70 enhances CXCR4-mediated signals

following CXCL12 stimulation.71 Positive co-operativity

has also been described for the CXCR2/d-opioid receptor

(DOR) heterodimer, but in that case it is antagonism of

CXCR2 that enhances the DOR response to ligand.72

Nevertheless, dimers of chemokine receptors have been

shown more often to exhibit negative binding co-oper-

Table 1. Identified chemokine receptor homomers

Receptor Formation Methods

Cells

ReferencesOverexp. Endogenous

CCR2 Constitutive BRET HEK-293 133,134

48,135Inducible IP HEK-293 MM-1

CCR5 Constitutive IP, Y2H, FLIM, BRET, FRET HeLa, HEK-293, RBLs 57,76,78,133,136

Inducible IP HEK-293

L1.2

136–138

CXCR1 Constitutive Co-IP

FRET

BRET

HEK-293 56

CXCR2 Constitutive IP

FRET

BRET

WB

HEK-293 Neurons 56,139

CXCR4 Constitutive IP

FRET

BRET

HEK-293, HEK-tsA201 49,65,134,140

Inducible IP MOLT4 47

DARC Constitutive BRET HEK-293 141

BRET: bioluminescence resonance energy transfer; CO-IP: co-immunoprecipitation; DARC: duffy antigen receptor for chemokines; FLIM: fluo-

rescence lifetime imaging; FRET: fluorescence resonance energy transfer; IP: immunoprecipitation; WB: Western blot; Y2H: yeast-2-hybrid.
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ativity, where binding of an agonist to one receptor

inhibits ligand binding to the other.53 Antagonist binding

to one chemokine receptor has also been shown to cross-

inhibit the other chemokine receptor in the pair, both

in vitro and in vivo.73,74 Although a few publications have

shown that binding co-operativity within a dimer can

involve co-internalization of receptors,75,76 it is not con-

sidered to be the rule. As for other GPCRs, it is thought

that both negative and positive co-operativity are medi-

ated through allosteric changes in receptor conformation

following ligand binding.45,53,77 A ‘cigar bundle’ model

has been proposed recently for chemokine receptors

Table 2. Identified chemokine receptor heteromers and their functional outcomes

Receptors Formation Methods

Cells

Co-operativity (assays) ReferencesOverexp. Endogenous

Chemokine receptors

CXCR1/CXCR2 Constitutive Co-IP, FRET

BRET

HEK-293 No 55,56

CXCR4/CXCR7 Constitutive Co-IP, FRET HEK-293 IM-9 Positive

(Ca2+ flux)

71

CXCR4/CCR2 Constitutive BRET CHO-K1 HEK-293 Negative

(binding, chemotaxis)

74

CXCR4/CCR5 Constitutive Co-IP NIH 3T3 Positive

(chemotaxis)

63,130

CXCR4/CCR2/CCR5 Constitutive BRET HEK-293 Negative

(binding, chemotaxis)

73

CCR2/CCR5 Inducible Co-IP HEK-293 PBMCs Positive

(Ca2+ flux)

48

Constitutive Co-IP, BRET CHO-K1 HEK-293 CD4+ T cells Negative

(binding)

133

DARC/CCR5 Constitutive Co-IP, BRET HEK-293 Negative

(chemotaxis, Ca2+ flux)

141

GPCRs

CCR5/C5aR Constitutive Co-IP, BRET RBLs HEK-293 Negative

(co-internalization)

76

CXCR2/DOP Constitutive Co-IP, FRET

BRET

HEK-293 Positive

(G protein activation)

72

CXCR4/DOP Constitutive Co-IP, FRET HEK-293 MM-1

Monocytes

Negative

(chemotaxis, adhesion,

Ca2+ flux)

142

CCR5/opioid receptors Constitutive Co-IP CHO CEMx174 Negative

(chemotaxis)

132,143

Others

CXCR2/AMPA GluR1 Constitutive Co-IP HEK-293 Neurons Negative

(chemotaxis)

144

CXCR4/CD4 Inducible (HIV) Co-IP PBMCs N.D. 145,146

CXCR4/TCR Inducible Co-IP, FRET Jurkat T PBMCs

T cells

Positive

(Ca2+ flux)

50

CXCR4/IGF-R1 Constitutive Co-IP MCF-7

MDA-MB-231

Positive

(chemotaxis)

147

CXCR4/CD63 Inducible Co-IP HEK-293 N.D. 60

CCR5/CD4 Constitutive FRET

BRET, Co-IP

HEK-293

CHO K1

N.D. 61,64,148

Inducible (HIV) FRET HEK-293 DCs N.D. 66

AMPA GluR1: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor 1; BRET: bioluminescence resonance energy transfer;

C5aR: complement component 5a receptor; CO-IP: co-immunoprecipitation; DARC: duffy antigen receptor for chemokines; DCs: dendritic cells;

DOP: d-opioid receptor; FRET: fluorescence resonance energy transfer; IGF-R1: insulin-like growth factor-1 receptor; N.D.: not determined;

PBMCs: peripheral blood mononuclear cells.
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whereby clusters of dimers are packed at the cell surface,

with the potential for allosteric cross-talk between neigh-

bouring dimers to affect more distant receptors in a dom-

ino effect.54

The physiological relevance of chemokine receptor olig-

omerization was highlighted initially with CCR5, when a

naturally occurring truncation (D32) of this receptor lead-

ing to retention of wild-type CCR5/CCR5D32 heterodi-

mers in the endoplasmic reticulum was found to confer

resistance to HIV-1 infection.78,79 More recently, it was

shown using blood cells from CCR5D32-expressing indi-

viduals that CCR2/CXCR4/CCR5 heteromers accounted

for a negative ligand-binding co-operativity, which inhib-

ited leucocyte recruitment in vitro and in vivo.73 Overall,

multimerization is emerging as an additional level of reg-

ulation providing cell and tissue specificity to fine-tune

chemokine receptor activity in vivo.

Chemokine receptor desensitization

Chemokine receptors are coupled to heterotrimeric G

proteins and undergo conformational changes following

ligand binding. The G protein dissociates into guanosine

triphosphate (GTP)-bound Ga and the Gb/c complex,

which activate second messengers and stimulate effector

proteins leading to intracellular signalling.80 It has

emerged that GPCRs can also elicit G protein-indepen-

dent signals through interaction with the scaffolding pro-

teins b-arrestins, linking activated receptors to various

signalling pathways that act independently of, in synergy

with or in opposition to, G protein-mediated signals.81

However, b-arrestins are best known for their pivotal role

in the regulation of GPCR signals via the process of

desensitization, a feedback mechanism protecting cells

from overstimulation. In this section we consider what is

called homologous desensitization only affecting agonist-

activated receptors (Fig. 1).82 Briefly, following agonist

binding, signalling receptors become rapidly phophorylat-

ed on their cytoplasmic tail, usually by one member of

the G protein receptor kinase (GRK) family, which

uncouples the G protein from the receptor and prevents

further activation. Phosphorylated receptors interact with

one of the b-arrestins acting as a scaffold targeting recep-

tors for internalization, leading to a permanent or tran-

sient loss of cell surface receptors due to degradation or

subsequent recycling of internalized molecules, respec-

tively.5 The ability of a chemokine receptor to interact

with b-arrestins can influence its fate in multiple ways.

First, the strength and stability of receptor/b-arrestins

interactions seem critical in determining whether or not

an agonist-activated chemokine receptor is internalized,

as described for CCR7 and CCR2.83–85 Secondly, the

affinity of these interactions can influence the destiny of

receptors once internalized. Indeed, GPCRs that rapidly

recycle (Class A) preferentially bind b-arrestin 2 with low

affinity and dissociate from it upon internalization,

whereas those that slowly recycle or are degraded (Class

B) bind both b-arrestins with high affinity and remain b-

arrestin-bound inside the cell.86 To date, only class B

chemokine receptors have been described, with evidence

for b-arrestins binding to agonist-treated CXCR4, CCR2

and CCR5 in internal compartments87–89 (see Fig. 2).

Chemokine receptors can be internalized via clathrin-

or caveolin-dependent endocytosis, although other inde-

pendent pathways have also been reported.5 Interestingly,

CCR2 and CCR5 have been shown to follow both clath-

rin-dependent and caveolin-mediated pathways and the

route of endocytosis could be cell-type dependent.42,90–93

The intracellular path followed by a chemokine receptor

determines the fate of this receptor, i.e. being sent for

degradation (down-regulation) or being sequestered intra-

cellularly before returning to the cell surface (resensitiza-

tion). Receptors can follow one path exclusively, such as

Internalization

(a)

(b)

Internalization

Degradation

Degradation

Cross-
phosphorylation

Px

P
P P

P P

P P

PP

PPPP

GRK

?

Recycling

Recycling

a

agb
a

gb

b

b
g

b-arr

b-arr

b-arr

b-arr

g

Figure 1. Agonist-dependent (a) and independent (b, heterologous)

chemokine receptor desensitization. (a) Following agonist binding

and G protein mediated signalling, the chemokine receptor cytoplas-

mic tail is rapidly phosphorylated, usually by a G protein receptor

kinase (GRK); this uncouples the G protein, which dissociates into

guanosine triphosphate (GTP)-bound Ga and the Gbc complex, and

enables interaction with a b-arrestin, which acts as a scaffold target-

ing the receptor for internalization. Once internalized, the receptor

follows recycling or degradation pathways. (b) Receptor X mediates

cross-phosphorylation of the chemokine receptor, which may involve

protein kinase C (PKC), leading to inhibition of chemokine-induced

signalling and in some cases internalization of the receptor.

250 � 2011 The Authors. Immunology � 2011 Blackwell Publishing Ltd, Immunology, 134, 246–256

L. D. Bennett et al.



CCR5 or CXCR3 sent for recycling or degradation,

respectively.94–98 Alternatively, they can enter either path-

way depending on the cell-type and duration of ligand

treatment, as reported for CXCR2 and CXCR4.99–101 Note

that the agonist itself can impact upon the fate of a recep-

tor. For instance, with CCR5, any agonist-stimulated

receptors seem to follow the recycling route but the dis-

tribution of receptors along the pathway could be ago-

nist-specific (Fig. 3). Following internalization, CCR5

receptors treated with the natural chemokine CCL5 [regu-

lated upon activation normal T cell expressed and

secreted (RANTES)] are located in recycling endosomes

(RE) before re-accumulating in the plasma membrane.95

In contrast, they keep cycling back from the cell surface

to the RE after exposure to the chemically modified

aminooxypentane (AOP)-RANTES,95 become trapped in

the trans-Golgi network (TGN) after passage through RE

with Na-(n-nonanoyl)-des-Ser1-[l-thioproline2, l-a-cyclo-

hexyl-glycine3] PSC-RANTES,102 and appear to bypass

the RE to accumulate in the TGN with methionine MET-

RANTES.103

Sorting of internalized chemokine receptors to the recy-

cling or degradative pathways requires complex interac-

tions with the machinery mediating movement of

molecules between intracellular compartments. Endocytic

adaptors recognize specific determinants in the cytoplas-

mic domains of the receptors, mainly small sorting motifs

and post-translational modifications.5,104 Two of these

determinants, the PDZ ligand motif and ubiquitination,

have received much interest recently, and were shown to

support recycling or degradation of chemokine receptors,

respectively. At least 12 chemokine receptors have been

identified as containing potential PDZ ligand motifs in

their extreme C-terminal cytoplasmic tail.5 The PDZ

ligand motifs are presumed to interact with PDZ domain

containing proteins of the sorting machinery, but only a

few of these interactions have been unveiled. CCR5 post-

endocytic sorting to the recycling pathway is dependent

on its PDZ ligand motif,94 which has been shown to

interact with a protein implicated in receptor recycling

called EBP50/NHERF-1.105 For CXCR2 that can be both

recycled following short ligand exposure and degraded

following more prolonged ligand treatment,99 the PDZ

ligand motif serves to delay degradation by preventing

lysosomal sorting, due probably to interaction with an as

yet unknown PDZ-containing protein.106 Ubiquitination

has emerged as an important modification for sending

the chemokine receptor CXCR4107 and other GPCRs104 to

degradation. For CXCR4, CXCL12 stimulation leads to

ubiquitination of cell surface receptors as well as ubiqu-

itin-dependent endocytosis and trafficking of ubiquitinat-

ed CXCR4 to lysosomes.108,109 However, ubiquitination

does not seem to be required for the degradation of all

chemokine receptors.98,106

Cross-talk and heterologous regulation

In addition to co-operativity within chemokine receptor

multimers, various examples for regulation by indirect

T0 3’

60’

Figure 2. Intracellular transport of b-arrestin-bound CCR5 receptors

following CCL5-treatment. Isolated human blood monocytes were

treated with 100 nm CCL5 for the indicated time-period. Cells were

fixed and permeabilized before labelling for CCR5 (red) and b-arres-

tins (green), as described previously.88 Scale bar 5 lm.

CCR5

All

Golgi

Late endosomes
& lysosomes

Nucleus

CCL5 (RANTES) 95

AOP-RANTES 95

PSC-RANTES 102

MET-RANTES 103

TGN

Recycling
endosomes endosomes

Early sorting

Figure 3. Different trafficking routes proposed for agonist-treated

CCR5. Following agonist-stimulation, internalized CCR5 receptors

are transported through the early endocytic pathway towards recy-

cling and avoiding degradation. However, there are suggestions that

the route followed by CCR5 may be ligand-dependent, as summa-

rized here for the chemokine CCL5 and three of its derivatives.
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cross-talk with other receptors, without evidence of physi-

cal interactions but occurring through interconnectivity

of cellular signalling networks, have been described.53

Note that such regulation can be bidirectional, although

here we consider only cases of cross-talk towards chemo-

kine receptors. The cross-talk can be targeted at the

receptor itself, the heterotrimeric G protein it is coupled

to or downstream signalling components, resulting in

trans-inhibition or -activation of chemokine receptor

activity.

Trans-inhibition results from a negative pathway of

cross-talk leading to desensitization of chemokine

receptors or the down-regulation of their expression, as

discussed in an earlier section. Here we are con-

sidering agonist-independent (heterologous) desensitiza-

tion involving inactivation and/or down-modulation of

cell surface chemokine receptors. As for the other mecha-

nisms of regulation presented in this review, the pathways

of heterologous desensitization are undoubtedly receptor-

and cell-type dependent. Heterologous desensitization

often implies rapid signalling inactivation of surface

chemokine receptors, inhibiting chemokine-induced intra-

cellular calcium mobilization. It happens whether the

cross-talk comes from another chemokine receptor such

as for CXCR1 and CXCR2 with CCR5 in transfected

cells,110 or CXCR4 with CCR5 in human pre-B and -T

cells,111,112 another GPCR as for CXCR1 with the N-for-

myl peptide (FPR) and C5a receptors,113 or an unrelated

surface receptor such as the TcR with CXCR4 in immor-

talized cell lines.114 In many reports, the inactivation has

been linked to rapid cross-phosphorylation of the chemo-

kine receptor, with some studies identifying protein

kinase C (PKC) as the point of convergence between the

different receptor pathways.110,113,115,116 Alternatively,

receptor inactivation can result from indirect effects as

reported for CXCR4 either in pre-B cells, where CD24

altered its distribution in membrane lipid rafts by chang-

ing cholesterol levels,117 or in leukaemia cells, where an

oncoprotein has been shown to highjack kinases of the

CXCR4-dependent calcium pathway.118 Signalling inacti-

vation can be, but is not always, followed by the down-

modulation of cell surface chemokine receptors.116,119,120

Conversely, heterologous down-modulation can occur

without prior desensitization of chemokine-mediated sig-

nalling, as we uncovered with the cross-regulation of CC

chemokine receptors 1, 2 and 5 by TLR-2 on human

blood monocytes.88 In this instance, we found that activa-

tion of TLR-2 triggered relatively slow phosphorylation

and removal of cell surface CCR5 molecules by activating

the machinery used to support chemokine-dependent

endocytosis.88

Cross-talk can also lead to trans-activation of chemo-

kine receptors and a potentiation of their functional

activity, but few studies have been able to identify the

mechanisms involved.53 Potentiation of calcium signal-

ling has been reported for CXCR2 upon co-stimulation

of another GPCR, the PY2 nucleotide receptor, and sug-

gested ligand-induced synergy between the two recep-

tors.121 Activation of the neurokinin 1 receptor has also

been shown to potentiate the effect of CXCL8 on

human neutrophils and was proposed to have a priming

effect on CXCR1 and CXCR2.122 The chemokinetic

effect of cytokines is thought to prime cells to increase

their migratory response to chemokines, as found with

IL-5-enhancing eosinophil chemotaxis in response to

CCL11.123 Furthermore, potentiation and synergy

between different chemokine receptors has been involved

in the migration of primary cells. For example, CXCL8

has been shown to increase monocyte migration towards

CCL2 and CCL7,124 while CCL2 and CCL7 can stimulate

neutrophil chemotaxis towards CXCL8.125 An intriguing

finding came from the study of cross-talk between

CCR1 and the high-affinity IgE receptor FceRI in trans-

fected cells, whereby engagement of FceRI inhibited

CCL3-mediated chemotaxis but engagement of both

CCR1 and FceRI had a synergistic effect on cell degran-

ulation.126 This would suggest that receptor cross-talk

can take place at multiple levels and could have a rela-

tively complex bearing on cell response to chemokine

stimulation.

The impact of receptor cross-talk on how immune

cells adapt their behaviour to specific situations is unde-

niable. Combinations of chemokines, cytokines and

growth factors act synergistically to amplify inflammatory

responses, and this is thought to be due to integration

of multiple signalling pathways.123,124 Cross-talk initiated

from non-chemokine receptors is also emerging as an

important and complex phenomenon used to enhance or

modulate innate immune responses to pathogens. Syn-

ergy between CCR2 and FPR agonists has recently been

shown to co-operate with TLR-4 for production of the

inflammatory chemokine CXCL8 upon LPS stimulation,

which in turn synergizes with CCL2 to mediate CXCR1/

CXCR2-dependent chemotaxis of human monocytic

cells.127 In addition, heterologous desensitization between

TLR-2 and the CC chemokine receptors 1, 2 and 5 or

CXCR2 has been shown to take place in vivo, affecting

the migration and homing of mouse monocytes and

neutrophils.128,129 Furthermore, synergy and cross-talk

may have therapeutic implications, as illustrated with

some HIV-related studies. Synergy between CXCR4 and

CCR5 was recently shown to enhance human monocyte

and T cell chemotaxis and to completely block infection

by a dual tropic HIV-1 strain,130 while cross-desensitiza-

tion of CCR5 by the opioid receptor specifically

decreased the susceptibility of peripheral blood mononu-

clear cells (PBMCs) and macrophages to HIV-1 R5

viruses.131 However, it remains to be ascertained whether

these are pure cross-talk situations or involve receptor

multimerization.63,132
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Conclusion

Advances in our understanding of chemokine receptor

biology have highlighted the fact that a controlled regula-

tion of their activity is probably more important than

their activation per se, certainly in the context of the

immune system for both homeostasis and inflammatory

responses. It is becoming apparent that individual recep-

tors are subject to different mechanisms of regulation

depending upon the type of cells on which they are

expressed, the cell differentiation and activation status, as

well as the microenvironment. We have learnt that some

of the molecular mechanisms involved in the regulation

are shared among chemokine receptors while others are

purely receptor-specific, with either transient or perma-

nent consequences on cell responsiveness to chemokine

stimulation. Overall, we can conclude that the complexity

of the regulation process confers specificity to what is an

apparently redundant chemokine/chemokine receptor sys-

tem. Nevertheless, much more research is needed to

appreciate the ins and outs of this regulation, evaluate the

true relevance of individual mechanisms in vivo and

establish how the chemokine system integrates with the

rest of the immunoregulatory machinery.
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