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Abstract
In regression problems where covariates can be naturally grouped, the group Lasso is an attractive
method for variable selection since it respects the grouping structure in the data. We study the
selection and estimation properties of the group Lasso in high-dimensional settings when the
number of groups exceeds the sample size. We provide sufficient conditions under which the
group Lasso selects a model whose dimension is comparable with the underlying model with high
probability and is estimation consistent. However, the group Lasso is, in general, not selection
consistent and also tends to select groups that are not important in the model. To improve the
selection results, we propose an adaptive group Lasso method which is a generalization of the
adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is
consistent in group selection under certain conditions if the group Lasso is used as the initial
estimator.
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1. Introduction
Consider the linear regression model with p groups of covariates

where Yi is the response variable, εi is the error term, Xik is a dk × 1 covariate vector
representing the kth group and βk is the corresponding dk × 1 vector of regression
coefficients. For such a model, the group Lasso (Antoniadis and Fan (2001), Yuan and Lin
(2006)) is an attractive method for variable selection since it respects the grouping structure
in the covariates. This method is a natural extension of the Lasso (Tibshirani (1996)), in
which an ℓ2-norm of the coefficients associated with a group of variables is used as a
component in the penalty function. However, the group Lasso is, in general, not selection
consistent and tends to select more groups than there are in the model. To improve the
selection results, we consider an adaptive group Lasso method which is a generalization of
the adaptive Lasso (Zou (2006)). We provide sufficient conditions under which the adaptive
group Lasso is selection consistent if the group Lasso is used as the initial estimator.
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The need to select groups of variables arises in many statistical modeling problems and
applications. For example, in multifactor analysis of variance, a factor with multiple levels
can be represented by a group of dummy variables. In nonparametric additive regression,
each component can be expressed as a linear combination of a set of basis functions. In both
cases, the selection of important factors or nonparametric components amounts to the
selection of groups of variables. Several recent papers have considered group selection using
penalized methods. In addition to the group Lasso, Yuan and Lin (2006) have proposed the
group Lars and group non-negative garrote methods. Kim, Kim and Kim (2006) considered
the group Lasso in the context of generalized linear models. Zhao, Rocha and Yu (2008)
proposed a composite absolute penalty for group selection, which can be considered a
generalization of the group Lasso. Meier, van de Geer and Bühlmann (2008) studied the
group Lasso for logistic regression. Huang, Ma, Xie and Zhang (2008) proposed a group
bridge method that can be used for simultaneous group and individual variable selection.

There has been much work on the penalized methods for variable selection and estimation
with high-dimensional data. Several approaches have been proposed, including the least
absolute shrinkage and selection operator (Lasso, Tibshirani (1996)), the smoothly clipped
absolute deviation (SCAD) penalty (Fan and Li (2001), Fan and Peng (2004)), the elastic net
(Enet) penalty (Zou and Hastie (2006)) and the minimum concave penalty (Zhang (2007)).
Much progress has been made in understanding the statistical properties of these methods in
both fixed p and p ≫ n settings. In particular, several recent studies considered the Lasso
with regard to its variable selection, estimation and prediction properties; see, for example,
Knight and Fu (2001), Greenshtein and Ritov (2004), Meinshausen and Buhlmann (2006),
Zhao and Yu (2006), Huang, Ma and Zhang (2006), van de Geer (2008) and Zhang and
Huang (2008), among others. All of these studies are concerned with the Lasso for
individual variable selection.

In this article, we study the asymptotic properties of the group Lasso and the adaptive group
Lasso in high-dimensional settings when p ≫ n. We generalize the results concerning the
Lasso obtained in Zhang and Huang (2008) to the group Lasso. We show that, under a
generalized sparsity condition and the sparse Riesz condition, as well as certain regularity
conditions, the group Lasso selects a model whose dimension has the same order as the
underlying model, selects all groups whose ℓ2-norms are of greater order than the bias of the
selected model and is estimation consistent. In addition, under a narrow-sense sparsity
condition (see page 1371) and using the group Lasso as the initial estimator, the adaptive
group Lasso can correctly select important groups with high probability.

Our theoretical and simulation results suggest the following one-step approach to group
selection in high-dimensional settings. First, we use the group Lasso to obtain an initial
estimator and reduce the dimension of the problem. We then use the adaptive group Lasso to
select the final set of groups of variables. Since the computation of the adaptive group Lasso
estimator can be carried out using the same algorithm and program for the group Lasso, the
computational cost of this one-step approach is approximately twice that of a single group
Lasso computation. This approach, iteratively using the group Lasso twice, follows the idea
of the adaptive Lasso (Zou (2006)) and a proposal by Bühlmann and Meier (2008) in the
context of individual variable selection.

The rest of the paper is organized as follows. In Section 2, we state the results on the
selection, bias of the selected model and convergent rate of the group Lasso estimator. In
Section 3, we describe the selection and estimation consistency results concerning the
adaptive group Lasso. In Section 4, we use simulation to compare the group Lasso and
adaptive group Lasso. Proofs are given in Section 5. Concluding remarks are given in
Section 6.
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2. The asymptotic properties of the group Lasso
Let Y = (Y1, …, Yn)′ and X = (X1, …, Xp), where Xk is the n × dk covariate submatrix
corresponding to the kth group. For a given penalty level λ ≥ 0, the group Lasso estimator of

 is

(2.1)

where .

We consider the model selection and estimation properties of β ̂ under a generalized sparsity
condition (GSC) of the model and a sparse Riesz condition (SRC) on the covariate matrix.
These two conditions were first formulated in the study of the Lasso estimator (Zhang and
Huang (2008)). The GSC assumes that for some η1 ≥ 0, there exists an A0 ⊂ {1, …, p} such
that Σk∈A0||βk||2 ≤ η1, where || · ||2 denotes the ℓ2-norm. Without loss of generality, let A0 =
{q + 1, …, p}. The GSC is then

(2.2)

The number of truly important groups is thus q. A more rigid way to describe sparsity is to
assume η1 = 0, that is,

(2.3)

This is a special case of the GSC and we call it the narrow-sense sparsity condition (NSC).
In practice, the GSC is a more realistic formulation of a sparse model. However, the NSC
can often be considered a reasonable approximation to the GSC, especially when η1 is
smaller than the noise level associated with model fitting.

The SRC controls the range of eigenvalues of the submatrix. For A ⊂ {1,…, p}, we define

XA = (Xk, k ∈ A) and . Note that XA is an n × Σk∈Adk matrix. The design matrix
XA satisfies the sparse Riesz condition (SRC) with rank q* and spectrum bounds 0 < c* < c*
< ∞ if

(2.4)

Let Â = {k: ||β ̂k||2 > 0, 1 ≤ k ≤ p}, which is the set of indices of the groups selected by the
group Lasso. An important quantity is the cardinality of Â, defined as
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(2.5)

which determines the dimension of the selected model. If q̂ = O(q), then the selected model
has dimension comparable to the underlying model. Following Zhang and Huang (2008), we
also consider two measures of the selected model. The first measures the error of the
selected model:

(2.6)

where P̂ is the projection matrix from Rn to the linear span of the set of selected groups and I
≡ In×n is the identity matrix. Thus, ω ̂2 is the sum of squares of the mean vector not
accounted for by the selected model. To measure the important groups missing in the
selected model, we define

(2.7)

We now describe several quantities that will be useful in describing the main results. Let da

= max1≤k≤p dk, db = min1≤k≤p dk, d = da/db and . Define

(2.8)

where η2 ≡ maxA ⊂A0 || Σk∈A Xkβk||2,

(2.9)

(2.10)

(2.11)

Let , where c0 ≥ 0 and an ≥ 0, satisfying pda/(Nd ∨
an)1+c0 ≈ 0, and λ0 = inf{λ: M1q +1 ≤ q*}, where inf Ø = ∞. We also consider the
constraint

(2.12)
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For large p, the lower bound here is allowed to be λn, p = 2σ[8(1+c0)dad2q*c̄nc* log(Nd)]1/2

with an = 0; for fixed p, an → ∞ is required.

We assume the following basic condition.

(C1) The errors ε1, …, εn are independent and identically distributed as N (0, σ2).

Theorem 2.1
Suppose that q ≥ 1 and that (C1), the GSC (2.2) and SRC (2.4) are satisfied. Let q̂, ω̃ and ζ2
be defined as in (2.5), (2.6) and (2.7), respectively, for the model Â selected by the group
Lasso from (2.1). Let M1, M2 and M3 be defined as in (2.9), (2.10) and (2.11), respectively.
If the constraint (2.12) is satisfied, then the following assertions hold with probability
converging to 1:

where .

Remark 2.1—The condition q ≥ 1 is not necessary since it is only used to express

quantities in terms of ratios in (2.8) and Theorem 2.1. If q = 0, we use 
and  to recover M1, M2 and M3 in (2.9), (2.10), (2.11), respectively, giving
the results  and .

Remark 2.2—If η1 = 0 in (2.2), then r1 = r2 = 0 and

all of which depend only on d and c̄. This suggests that the relative sizes of the groups affect
the selection results. Since d ≥ 1, the most favorable case is d = 1, that is, when the groups
have equal sizes.

Remark 2.3—If d1 = · · · = dp = 1, the group Lasso simplifies to the Lasso and Theorem
2.1 is a direct generalization of Theorem 1 on the selection properties of the Lasso obtained
by Zhang and Huang (2008). In particular, when d1 = · · · = dp = 1, r1, r2, M1, M2, M3 are the
same as the constants in Theorem 1 of Zhang and Huang (2008).

Remark 2.4—A more general definition of the group Lasso is

(2.13)
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where Rk is a dk × dk positive definite matrix. This is useful when certain relationships
among the coefficients need be specified. By the Cholesky decomposition, there exists a
matrix Qk such that . Let β* = Qkβ, and . Then, (2.13)becomes

The GSC for (2.13) is . The SRC can be assumed for X · Q−1,

where .

Immediately, from Theorem 2.1, we have the following corollary.

Corollary 2.1
Suppose that the conditions of Theorem 2.1 hold and λ satisfies the constraint (2.12). Then,

with probability converging to one, all groups with  are selected.

From Theorem 2.1 and Corollary 2.1, the group Lasso possesses similar properties to the
Lasso in terms of sparsity and bias (Zhang and Huang (2008)). In particular, the group Lasso
selects a model whose dimension has the same order as the underlying model. Furthermore,
all of the groups with coefficients whose ℓ2-norms are greater than the threshold given in
Corollary 2.1 are selected with high probability.

Theorem 2.2
Let {c̄, σ, r1, r2, c0, d} be fixed and 1 ≤ q ≤ n ≤ p → ∞. Suppose that the conditions in
Theorem 2.1 hold. Then, with probability converging to 1, we have

and

Theorem 2.2 is stated for a general λ that satisfies (2.12). The following result is an
immediate corollary of Theorem 2.2.

Corollary 2.2

Let  with a fixed . Suppose that all of the
conditions in Theorem 2.2 hold. We then have
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This corollary follows by substituting the given λ value into the expressions in the results of
Theorem 2.2.

3. Selection consistency of the adaptive group Lasso
As shown in the previous section, the group Lasso has excellent selection and estimation
properties. However, there is room for improvement, particularly with regard to selection.
Although the group Lasso selects a model whose dimension is comparable to that of the
underlying model, the simulation results reported in Yuan and Lin (2006) and those reported
below suggest that it tends to select more groups than there are in the underlying model. To
correct the tendency of overselection by the group Lasso, we generalize the idea of the
adaptive Lasso (Zou (2006)) for individual variable selection to the present problem of
group selection.

Consider a general group Lasso criterion with a weighted penalty term,

(3.1)

where wk is the weight associated with the kth group. The λk ≡ λ ̂wk can be regarded as the
penalty level corresponding to the kth group. For different groups, the penalty level λk can be
different. If we can have lower penalty for groups with large coefficients and higher penalty
for groups with small coefficients (in the ℓ2 sense), then we expect to be able to improve
variable selection accuracy and reduce estimation bias. One way to obtain the information
about whether a group has large or small coefficients is by using a consistent initial
estimator.

Suppose that an initial estimate β̃ is available. A simple approach to determining the weight
is to use the initial estimator. Consider

(3.2)

Thus, for each group, its penalty is proportional to the inverse of the norm of β̃k. This choice
of the penalty level for each group is a natural generalization of the adaptive Lasso (Zou
(2006)). In particular, when each group only contains a single variable, (3.2) simplifies to
the adaptive Lasso penalty.

Let  and . We say that an initial estimator β̃ is consistent at
zero with rate rn if rn maxk∈A0 ||βk||2 = Op(1), where rn → ∞ as n → ∞, and there exists a

constant ξb > 0 such that for any ε > 0,  for n sufficiently large.

In addition to (C1), we assume the following conditions:

(C2) the initial estimator β̃ is consistent at zero with rate rn → ∞;

(C3)
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(C4)
all of the eigenvalues of  are bounded away from zero and infinity.

Condition (C2) assumes that an initial zero-consistent estimator exists. It is the most critical
one and is generally difficult to establish. It assumes that we can consistently differentiate
between important and non-important groups. For fixed p and dk, the ordinary least-squares
estimator can be used as the initial estimator. However, when p > n, the least-squares
estimator is no longer feasible. By Theorems 2.1 and 2.2, the group Lasso estimator β ̂ is
consistent at zero with rate . Condition (C3) restricts the numbers of important
and non-important groups, as well as variables within the groups. It also places constraints
on the penalty parameter and the ℓ2-norm of the smallest important group. Condition (C4)

assumes that the eigenvalues of  are finite and bounded away from zero. This is
reasonable since the number of important groups is small in a sparse model. This condition
ensures that the true model is identifiable.

Define

(3.3)

Theorem 3.1
If (C1)–(C4) and NSC (2.3) are satisfied, then

Therefore, the adaptive group Lasso is selection consistent if the conditions stated in
Theorem 2.1 hold.

If we use β ̂ as the initial estimator, then (C3) can be changed to (C3)*

We often have λ̃ = nα for some 0 < α < 1/2. In this case, the number of non-important groups
can be as large as exp(n2α/(q log q)) with the number of important groups satisfying q5 log
q/n → 0, assuming that θb and the number of variables within the groups are finite.

Corollary 3.1
Let the initial estimator β̃ = β ̂, where β ̂ is the group Lasso estimator. Suppose that the NSC
(2.3) holds and that (C1), (C2), (C3)* and (C4) are satisfied. We then have
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This corollary follows directly from Theorem 3.1. It shows that the iterated group Lasso
procedure that uses a combination of the group Lasso and the adaptive group Lasso is
selection consistent.

Theorem 3.2
Suppose that the conditions in Theorem 2.2 hold and that θb > tb for some constant tb > 0. If
λ̃~ O(nα) for some 0 < α < 1/2, then

Theorem 3.2 implies that for the adaptive group Lasso, given a zero-consistent initial
estimator, we can reduce a high-dimensional problem to a lower-dimensional one. The
convergence rate is improved, compared with that of the group Lasso, by choosing an
appropriate penalty parameter λ̃.

4. Simulation studies
In this section, we use simulation to evaluate the finite sample performance of the group
Lasso and the adaptive group Lasso. Let λk = λ̃/||β ̂k||2, if ||β ̂k||2 > 0; if ||β ̂k||2 = 0, then λk = ∞,

. We can thus drop the corresponding covariates Xk from the model and only consider

the groups with . After a scale transformation, we can directly apply the group least
angle regression algorithm (Yuan and Lin (2006)) to compute the adaptive group Lasso
estimator β ̂*. The penalty parameters for the group Lasso and the adaptive group Lasso are
selected using the BIC criterion (Schwarz (1978)).

We consider two scenarios of simulation models. In the first scenario, the group sizes are
equal; in the second, the group sizes vary. For every scenario, we consider the cases p < n
and p > n. In all of the examples, the sample size is n = 200.

Example 1
In this example, there are 10 groups, each consisting of 5 covariates. The covariate vector is
X = (X1,…, X10), where Xj = (X5(j−1)+1, …, X5(j−1)+5), 1 ≤ j ≤ 10. To generate X, we first
simulate 50 random variables, R1, …, R50, independently from N(0,1). Then, Zj, j = 1,…, 10,
are simulated from a multivariate normal distribution with with mean zero and cov(Zj1, Zj2)
= 0.6|j1 − j2|. The covariates X1, …, X50 are generated as

The random error ε ~ N(0,32). The response variable Y is generated from ,
where β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2), β3 = · · · = β10 = (0, 0, 0, 0, 0).

Example 2
In this example, the number of groups is p = 10. Each group consists of 5 covariates. The
covariates are generated the same way as in Example 1. However, the regression coefficients
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β1 = (0.5, 1, 1.5, 1, 0.5), β2 = (1, 1, 1, 1, 1), β3 = (−1, 0, 1, 2, 1.5), β4 = (−1.5,1,0.5,0.5,0.5),
β5 = · · · = β10 = (0, 0, 0, 0, 0).

Example 3
In this example, the number of groups p = 210 is bigger than the sample size n. Each group
consists of 5 covariates. The covariates are generated the same way as in Example 1.
However, the regression coefficients β1 = (0.5, 1, 1.5, 1, 0.5), β2 = (1,1,1,1,1), β3 = (−1, 0, 1,
2, 1.5), β4 = (−1.5, 1, 0.5, 0.5, 0.5), β5 = · · · = β210 = (0, 0, 0, 0, 0).

Example 4
In this example, the group sizes differ across groups. There are 5 groups with size 5 and 5
groups with size 3. The covariate vector is X = (X1, …, X10), where Xj = (X5(j−1)+1, …,
X5(j−1)+5), 1 ≤ j ≤ 5, and Xj = (X3(j−6)+26, …, X3(j−6)+28), 6 ≤ j ≤ 10. In order to generate X,
we first simulate 40 random variables R1, …, R40, independently from N(0,1). Then, Zj, j =
1, …, 10 are simulated with a normal distribution with mean zero and cov(Zj1, Zj2) =
0.6|j1 − j2|. The covariates X1, …, X40 are generated as

The random error ε ~ N(0,32). The response variable Y is generated from ,
where β1 = (0.5, 1, 1.5, 2, 2.5), β2 = (2, 0, 0, 2, 2), β3 = · · · = β5 = (0,0,0,0,0), β6 = (−1, −2,
−3), β7 = · · · = β10 = (0, 0, 0).

Example 5
In this example, the number of groups is p = 10 and the group sizes differ across groups. The
data are generated the same way as in Example 4. However, the regression coefficients β1 =
(0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2), β3 = (−1, 0, 1, 2, 3), β4 = (−1.5,2,0,0,0), β5 = (0, 0, 0,
0, 0), β6 = (2, −2, 1), β7 = (0, −3, 1.5), β8 = (−1.5, 1.5, 2), β9 = (−2, −2, −2), β10 = (0, 0, 0).

Example 6
In this example, the number of groups p = 210 and the group sizes differ across groups. The
data are generated the same way as in Example 4. However, the regression coefficients β1 =
(0.5, 1, 1.5, 2, 2.5), β2 = (2, 2, 2, 2, 2), β3 = (−1, 0, 1, 2, 3), β4 = (−1.5, 2, 0, 0, 0), β5 = · · · =
β100 = (0, 0, 0, 0, 0), β101 = (2, −2, 1), β102 = (0, −3, 1.5), β103 = (−1.5, 1.5, 2), β104 = (−2,
−2, −2), β105 = · · · = β210 = (0, 0, 0).

The results are given in Table 1, based on 400 replications. The columns in the table include
the average number of groups selected with standard error in parentheses, the median
number (‘med’) of groups selected with the 25% and 75% quantiles of the number of
selected groups in parentheses, model error (‘ME’), percentage of occasion on which correct
groups are included in the selected model (‘% incl’) and percentage of occasions on which
the exactly correct groups are selected (‘% sel’), with standard error in parentheses.

Several observations can be made from Table 1. First, in all six examples, the adaptive
group Lasso performs better than the group Lasso in terms of model error and the percentage
of correctly selected models. The group Lasso which gives the initial estimator for the
adaptive group Lasso includes the correct groups with high probability. And the
improvement is considerable for models with different group sizes. Second, the results from
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models with equal group sizes (Examples 1, 2 and 3) are better than those from models with
different group sizes (Examples 4, 5 and 6). Finally, when the dimension of the model
increases, the performance of both methods becomes worse. This is to be expected since
selection in models with a larger number of groups is more difficult.

5. Concluding remarks
We have studied the asymptotic selection and estimation properties of the group Lasso and
adaptive group Lasso in ‘large p, small n’ linear regression models. For the adaptive group
Lasso to be selection consistent, the initial estimator should possess two properties: (a) it
does not miss important groups and variables; (b) it is estimation consistent, although it may
not be group-selection or variable-selection consistent. Under the conditions stated in
Theorem 2.1, the group Lasso is shown to satisfy these two requirements. Thus, the iterated
group Lasso procedure, which uses the group Lasso to achieve dimension reduction and
generate the initial estimates and then uses the adaptive group Lasso to achieve selection
consistency, is an appealing approach to group selection in high-dimensional settings.

6. Proofs
We first introduce some notation which will be used in proofs. Let

. Set A2 = {1, …, p}\A1,
A3 = A1\A0, A4 = A1 ∩ A0, A5 = A2\A0 and A6 = A2 ∩ A0. Thus, we have A1 = A3 ∪ A4, A3 ∩
A4 = Ø, A2 = A5∪A6 and A5∩A6 = Ø. Let |Ai| = Σk∈Ai dk, N(Ai) = #{k: k ∈ Ai}, i = 1, …, 6
and q1 = N(A1).

Proof of Theorem 2.1
The basic idea used in this proof follows the proof of the rate consistency of the Lasso in
Zhang and Huang (2008). However, there are many differences in technical details, for
example, in the characterization of the solution via the Karush–Kuhn–Tucker (KKT)
conditions, in the constraint needed for the penalty level and in the use of maximal
inequalities.

The proof consists of three steps. Step 1 proves some inequalities related to q1, ω̃ and ζ2.
Step 2 translates the results of Step 1 into upper bounds for q̂, ω̃ and ζ2. Step 3 completes the
proof by showing the probability of the event in Step 2 converging to 1. The details of the
complete proof are available from the website www.stat.uiowa.edu/techrep. We will sketch
the proof in the following.

If β ̂ is a solution of (2.1), then, by the KKT condition, 

and . We then have

(6.1)

(6.2)
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where

, all the elements of matrix edki×1 equal 1, ki ∈ Ai and .

Step 1—Define

where QAkj is the matrix representing the selection of variables in Ak from Aj. Define

. From (6.1) and (6.2), we have

 and

. Then, under GSC,

(6.3)

Step 2—Define  and . In this step, we

consider the event . Suppose that the set A1 contains all large βk

≠ 0. From (6.3), , so we have

(6.4)

For general A1, let C5 = c*(|A5|)/c*(|A1| ∪ |A5|). From (6.3),

(6.5)

From Zhang and Huang (2008),  and ||XA2βA2||2 η 2 + ||
XA5βA5||2 ≤ η2 + (nc*(|A5|))1/2||βA5||2. By the Cauchy–Schwarz inequality, then, we have

(6.6)

where c*,5 = c*(|A1 ∪ A5|).
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Step 3—Letting c*(|Am|) = c*, c*(|Am|) = c* for N(Am) ≤ q*, we have

(6.7)

We have c̄ = C5 = c*(|A5|)/c*(|A1| ∨ |A5|) = c*/c* and c*,5 = c* (|A1 ∪ A5|) = c*. From (6.4),

(6.5) and (6.6), (q1 − q)+ + q ≤ M1q,  when (2.12) is
satisfied. Define

(6.8)

for |A| = q1 = m ≥ 0, , where , ||UAk||2 = 1. Let

, where . For a given A, let Vlj = (0,…, 0, 1, 0, …, 0) be the |A| ×
1 vector with the jth element in the lth group being 1. Then, by (6.8),

If we define , then

 for N(A1) ≥ m0 ≥ 0. By the definition

of , it is less than the maximum of  normal variables with mean 0 and

variance , plus the maximum of  normal variables with mean 0 and variance σ2. It
follows that P{(X, ε) ∈ Ωm0} → 1 when (6.7) holds. This completes the sketch of the proof
of Theorem 2.1.

Proof of Theorem 2.2
Consider the case when {c*, c*, r1, r2, c0,σ, d} are fixed. The required configurations in
Theorem 2.1 then become

(6.9)

Let A1 = {k: ||β ̂k||2 > 0 or k ∉ A0}. Define v1 = XA1 (β^A1 − βA1) and . We

then have  and
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. Therefore,

. Since  with probability
converging to 1 under the normality assumption,

. We then have

(6.10)

Since A2 ⊂ A0, by the second inequality in (6.9), . By
the SRC and the third inequality in (6.9),

 and

. From (6.10), we then have

This completes the proof of Theorem 2.2.

Proof of Theorem 3.1

Let  and

, where λk = λ/||β̃k||2. By the KKT
conditions, if there exists û such that

(6.11)

(6.12)

then ||β ̂k||2 ≠ 0 for k = 1,…, q and ||β ̂k||2 = 0 for k = q + 1, …, p.

From (6.11) and (6.12),  and

. Define the events
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where (·)k denotes the dk-dimensional subvector of the vector (·) corresponding to the kth
group. We then have P(||β ̂k||2 ≠ 0, k ∈ A0, and ||β ̂k||2 = 0, k ∉ A0) ≥ P (E1 ∩ E2) and

.

First, we consider . Define , where c1 is a constant.
. By (C2), P(Rc) → 0. Let

 be the eigenvalues of  and γ1, …, γNq be the associated

eigenvectors. The jth element in the lth group of vector  is

. By the Cauchy–Schwarz inequality,

. Therefore,

.

If we define

, then . By Lemmas 1 and 2 of Huang, Ma and Zhang (2008),

, where K is a constant,  from (C3). We then
have 

Next, we consider . Similarly as above, define .
 By (C2), P(Dc) → 0.

, where ul is the lth element of

vector . If we define , CA0 = {maxk∈A0 ||
ξk||2 > vA0}, then P(Qc) ≤ P(CA0), P(CA0 ≤ K (da log(p − q))1/2/vA0. K (da log(p − q))1/2/vA0
→ 0 from (C3). We then have . This completes the proof of
Theorem 3.1.

Proof of Theorem 3.2

If we let Â = {k: ||β ̂k||2 > 0, k = 1,…, p}, then , the dimension of our problem
(3.1) is reduced to q̂, q̂ ≤ q* and Âc A0. By the definition of β ̂*, we have

(6.13)
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(6.14)

If we let  and , then

. By (6.13) and (6.14),

, so . By the triangle inequality, ||

δÂ||2 ≤ ||δÂ − Dε||2 + ||Dε||2. Thus, .

Let Di be the ith column of D. . Then, with probability

converging to 1, 

Thus, for λ̃ = nα for some 0 < α < 1/2, with probability converging to 1,

and . This completes the proof of Theorem 3.2.
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