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The precise functions of most of the B200 assembly

factors and 79 ribosomal proteins required to construct

yeast ribosomes in vivo remain largely unexplored. To

better understand the roles of these proteins and the

mechanisms driving ribosome biogenesis, we examined

in detail one step in 60S ribosomal subunit assembly—

processing of 27SA3 pre-rRNA. Six of seven assembly

factors required for this step (A3 factors) are mutually

interdependent for association with preribosomes. These

A3 factors are required to recruit Rrp17, one of three

exonucleases required for this processing step. In the

absence of A3 factors, four ribosomal proteins adjacent to

each other, rpL17, rpL26, rpL35, and rpL37, fail to assem-

ble, and preribosomes are turned over by Rat1. We con-

clude that formation of a neighbourhood in preribosomes

containing the A3 factors establishes and maintains stabi-

lity of functional preribosomes containing 27S pre-rRNAs.

In the absence of these assembly factors, at least one

exonuclease can switch from processing to turnover of

pre-rRNA.
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Introduction

Formation of mature ribosomal subunits involves interplay

between folding, modification, and processing of pre-rRNA,

and binding of ribosomal proteins (r-proteins) to pre-rRNA

(reviewed in Sykes and Williamson, 2009). Biogenesis of

ribosomal subunits in Saccharomyces cerevisiae also requires

the activity of B200 transiently associating assembly factors

(reviewed in Henras et al, 2008; Kressler et al, 2009). These

factors bind preribosomes at specific steps of the assembly

pathway, perform their functions, and eventually dissociate

before the formation of mature ribosomal subunits. The

precise mechanisms by which these assembly factors and

r-proteins exert their roles during ribosome assembly are only

now beginning to be understood.

Initially, studies of ribosome assembly in yeast focused on

identification of intermediates in pre-rRNA processing, dis-

covery of assembly factors, and determining which factors

were required for which steps in pre-rRNA processing or

nuclear export of pre-rRNPs. Subsequently, physical and

genetic interactions between factors were identified, assem-

bly intermediates were purified and their constituents

determined, and assembly subcomplexes were discovered

(reviewed in Henras et al, 2008; Kressler et al, 2009).

It appears that most assembly factors have been found and

initially assigned to one or more steps in subunit biogenesis.

Thus, it is now possible to more comprehensively examine

how all factors known to participate in one step work

together to drive each assembly step and the biogenesis

pathway. Such focused approaches have provided more

detailed insights into mechanisms of late steps in maturation

of pre-40S and pre-60S particles (reviewed in Panse and

Johnson, 2010).

To better understand the mechanism of biogenesis of 60S

subunits in yeast, we have focused on the pre-rRNA proces-

sing step involving the exonucleolytic removal of ITS1

sequences of 27SA3 pre-rRNA to form 27SB1S pre-rRNA

(‘A3 processing step’) (Figure 1A and C). Proper processing

of 27SA3 pre-rRNA is important because it generates the

50-end of the major form of mature 5.8S rRNA, 5.8SS rRNA.

Furthermore, this processing event may initiate a conforma-

tional switch necessary to form functional ribosomes.

Secondary structure models predict that ITS1 sequences in

27SA3 pre-rRNA, removed by the A3 processing step, basepair

with sequences in what will become the 50-end of 5.8SS rRNA

(Yeh et al, 1990; van Nues et al, 1994). In mature ribosomes,

the same sequences of 5.8SS rRNA basepair with 25S rRNA

and provide a binding site for the r-protein rpL17 (Taylor

et al, 2009; Ben-Shem et al, 2010; Supplementary Figure S1).

Exonucleolytic trimming of 27SA3 pre-rRNA to 27SB1S

pre-rRNA therefore provides an excellent framework to

understand how the interplay between RNA folding,

RNA processing, and protein binding enables maturation of

preribosomes.

Approximately 80 different assembly factors have been

found in one or more 66S preribosomes that are precursors

to mature 60S ribosomal subunits. Effects on 60S subunit

biogenesis have been examined for 70 of these 80 factors.

A defect in 27SA3 pre-rRNA processing is evidenced by the

accumulation of the 27SA3 pre-rRNA precursor and reduction

of the immediate downstream product, 27SB1S pre-rRNA

(Dunbar et al, 2000; Pestov et al, 2001; Adams et al, 2002;
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Gadal et al, 2002; Oeffinger et al, 2002; Oeffinger and

Tollervey, 2003; Horsey et al, 2004; Miles et al, 2005;

Figure 1B; Supplementary Table S3). Thus far, mutation or

depletion of only seven of these 70 assembly factors tested

unambiguously results in a pre-rRNA processing phenotype

diagnostic of a role in 27SA3 pre-rRNA processing. These

proteins, which we refer to as the ‘A3 factors’, include

potential scaffolding proteins (Nop7, Erb1, and Ytm1),

RNA-binding proteins (Rlp7 and Nop15), and proteins with

no predicted function (Nsa3/Cic1, Rrp1).

The 50–30 exonucleases Rat1, Xrn1, and Rrp17 together

with Rai1 (Rat1-interacting protein) also are required for

processing 27SA3 pre-rRNA, and normally halt precisely at

the B1S site (Henry et al, 1994; Xue et al, 2000; Oeffinger et al,

2009). When 60S subunit assembly is aborted upon depletion

of A3 factors, 27S pre-rRNAs undergo turnover (Dunbar et al,

2000; Pestov et al, 2001; Adams et al, 2002; Gadal et al, 2002;

Oeffinger et al, 2002; Oeffinger and Tollervey, 2003;

Horsey et al, 2004; Miles et al, 2005). Interestingly, Rat1

has been shown to function in the turnover of poly(A)þ 27S
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Figure 1 Pre-rRNA processing pathway in S. cerevisiae and assembly factors involved in processing of 27SA3 pre-rRNA. (A) Pre-rRNA
processing pathway in S. cerevisiae. The initial 35S pre-rRNA transcript, synthesized by RNA Polymerase I, contains sequences for mature 18S,
5.8S, and 25S rRNAs along with internal and external transcribed spacer sequences (ITS/ETS). Processing intermediates that form during
ribosome assembly are indicated. Exo- and endonucleases, where known, are mentioned alongside the step in which they function. (B) Defects
in pre-rRNA processing in A3 factor mutants. RNA was extracted from lysates prepared from cells grown in galactose (left lane in each pair)
or shifted to glucose to deplete respective proteins (right lanes), and subjected to primer extension to assay the A2, A3, B1S, and B1L ends of
pre-rRNAs. The B1S and B1L ends include both 27S and 7S pre-rRNA species. Depletion of Tif6 and Ebp2 are shown as controls for assembly
mutants that do not specifically block processing of 27SA3 pre-rRNA. A wild-type control is included to indicate effects of the carbon source
shift. Ratios of each processing intermediate in unshifted and shifted samples were quantified and are shown in Supplementary Table S3. All
samples were run on the same gel, except GAL–ERB1, which was run on a separate gel with GAL–RLP7 as a control. (C) Timing of association
of A3 factors with nascent ribosomes. The assembly pathway of 60S ribosomal subunits is shown. Preribosomes (grey circles) are aligned with
processing intermediates in (A). Each line represents the duration of time for which an individual protein associates with preribosomes. The
broken line indicates that the association of the protein with those preribosomal intermediates has not been determined. Arrowheads represent
direction of the assembly pathway, and where determined, the point of exit of assembly factors. (D) Entry point of association of Rlp7,
Nsa3/Cic1, and Ytm1 with nascent ribosomes. TAP-tagged strains as indicated were used to purify preribosomes containing Rlp7, Nsa3, or
Ytm1. Pre-rRNAs present in these preribosomes were assayed by primer extension. Untagged parent strain is used as the negative control.
ENP1–TAP strain is shown as positive control for co-IP of 35S pre-rRNA. Primer extension products for Rlp7 and Nsa3 samples were run on one
gel, for Ytm1 on a second, and for Enp1 on a third, each with an untagged negative control. Figure source data can be found with the
Supplementary Information.
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pre-rRNAs in strains defective for the exosome (Fang et al,

2005). This result led us to ask whether Rat1 might have a

role in turnover of defective 27S pre-rRNAs generated in A3

factor mutants.

In order to understand the events underlying the A3

processing step, and to understand the principles involved

in eukaryotic ribosome biogenesis, we have addressed the

following issues: (1) the timing of association of A3 factors

with preribosomes, (2) the interdependence among A3 factors

for association with preribosomes, (3) the role of A3 factors, if

any, in recruitment of exonucleases to preribosomes, and in

stopping exonucleases precisely at the B1S site, (4) whether

A3 factors enable association of other assembly factors and

r-proteins with preribosomes, which might be required for

subsequent remodelling events within preribosomes, and (5)

the fate of preribosomes in A3 factor mutants, specifically

whether they are turned over by the Rat1 exonuclease.

Results

A3 factors associate with preribosomes in a concerted

manner, well before processing of 27SA3 pre-rRNA

To begin to understand how 27SA3 pre-rRNA processing

occurs, we asked when and how all assembly factors required

for this processing step are recruited into preribosomes. Nop7

and Erb1 first associate with 90S preribosomes containing

35S pre-rRNA, whereas Rrp1 and Nop15 associate subse-

quently with 66S preribosomes containing 27SA2 pre-rRNA

(Oeffinger and Tollervey, 2003; Horsey et al, 2004; Miles et al,

2005; Figure 1C). In order to determine the timing of entry of

the remaining A3 factors—Rlp7, Nsa3/Cic1, and Ytm1, we

assayed with which pre-rRNA species each protein copurifies.

The 90S factor Enp1 was used as a positive control for

coimmunoprecipitation (co-IP) of 35S pre-rRNA. Co-IP of

35S pre-rRNA revealed that, like the other A3 factors, Rlp7,

Nsa3/Cic1, and Ytm1 assemble early into preribosomes, well

before their requirement for processing of 27SA3 pre-rRNA

(Figure 1C and D).

Since A3 factors are required for the same pre-rRNA

processing step and some of them physically interact with

each other (Miles et al, 2005; Tang et al, 2008), we examined

whether they are interdependent for their association with

preribosomes. We purified preribosomes from strains in

which each A3 factor was depleted and asked what happened

to the other A3 factors. Because all seven assembly factors are

essential, we engineered conditional GAL promoter strains to

regulate expression of each gene (Longtine et al, 1998). We

used TAP-tagged assembly factor Rpf2 to purify preribo-

somes, since Rpf2 is present in all precursors to 60S subunits

and does not have a known role in processing of 27SA3

pre-rRNA (Zhang et al, 2007). Preribosomes were purified

from strains grown in galactose and after shifting from

galactose to glucose-containing medium for 16 h to deplete

each assembly factor.

As shown before, Nop7, Erb1, and Ytm1 are interdepen-

dent for assembly into preribosomes (Figure 2A; Tang et al,

2008). Silver staining and mass spectrometry also revealed

that Rlp7, Nop15, and Nsa3/Cic1 were significantly de-

creased in preribosomes lacking Nop7, Erb1, or Ytm1

(Figure 2A; unpublished observations). Likewise, upon

depletion of Rlp7, Nop15, or Nsa3/Cic1, the five other

A3 factors (except Rrp1) were greatly diminished in

preribosomes (Figure 2A and B; Supplementary Figure S2A).

The SDS–PAGE profiles of preribosomes upon depletion of

each of these six interdependent proteins were remarkably

similar (Figure 2A), and appeared to be unique to factors

required for 27SA3 pre-rRNA processing. Very different

changes in the composition of Rpf2-containing preribosomes

were seen in strains mutant for any of 20 other assembly

factors that function in different steps of pre-rRNA proces-

sing, for example upon depletion of Rea1 (Figure 2A; unpub-

lished observations). Therefore, the observed gel profiles of

preribosomal proteins in A3 factor mutants are specific and

not simply a secondary effect of prolonged growth in glucose-

containing medium, to deplete the A3 factors.

Western blotting of preribosomes purified from the

GAL–RLP7 strain is shown here as an example of interdepen-

dent association of A3 factors (Figure 2B). In the absence of

Rlp7, levels of the A3 factors Nop7, Ytm1, Nsa3/Cic1, and

Nop15 are diminished in preribosomes (Erb1 was not tested).

Although not in preribosomes under these conditions, the

three proteins Nop7, Erb1, and Ytm1 are present as a hetero-

trimeric subcomplex (Miles et al, 2005) (Figure 2C).

In contrast, factors required for other steps in pre-rRNA

processing and assembly were unchanged when Rlp7 was

depleted (Figures 2A and B and 3A and B; Supplementary

Figure S2B). When Rrp1 was depleted from cells, few changes

in preribosome composition could be detected by inspection

of stained proteins resolved by SDS–PAGE (Figure 2D).

Thus, six A3 factors—Nop7, Erb1, Ytm1, Rlp7, Nop15, and

Nsa3/Cic1 are interdependent for their association with pre-

ribosomes, whereas Rrp1 appears to associate independently.

Owing to the interdependence of A3 factors (Figure 2), all

experiments described henceforth were performed only in the

GAL–RLP7 strain.

To more thoroughly assay global changes in the composi-

tion of preribosomes upon depletion of A3 proteins, we took a

proteomic approach, using iTRAQ (Ross, 2004). We com-

pared preribosomes purified from the GAL–RLP7 RPF2–TAP

strain grown in galactose or shifted to glucose, to identify

proteins that either increased or decreased in the absence

of Rlp7 (Figure 3A and B; Supplementary Figure S2B;

Supplementary Table S1). We identified 177 proteins from

1859 spectra (X95% confidence), including 51 assembly

factors (Figure 3A), 63 r-proteins (Figure 3B), and 62 other

proteins (Supplementary Figure S2C).

Levels of B15 assembly factors associated with preribo-

somes were increased upon depletion of Rlp7 (Figure 3A; see

also Figure 2A). These assembly factors function in early

steps of ribosome biogenesis, before processing of 27SA3 pre-

rRNA (Dragon et al, 2002; reviewed in Henras et al, 2008;

Kressler et al, 2009). Their accumulation in preribosomes

when 27SA3 pre-rRNA processing is blocked is in agreement

with the observed enrichment of early pre-rRNAs in these

mutants. Consistent with the SDS–PAGE and immunoblot

analysis (Figure 2A and B), levels of Nop7, Nop15, and

Nsa3/Cic1 in preribosomes were reduced in the absence of

Rlp7. Erb1 and Ytm1 were not identified by iTRAQ, as is often

the case in our experience. Assembly factors Nog2, Nsa2, and

Alb1 also were reduced, consistent with their joining preribo-

somes after completion of 27SA3 pre-rRNA processing

(Saveanu et al, 2001, 2003; Lebreton et al, 2006). Cgr1,

Spb1, Ybl028c, Nop16, and Dbp10 proteins exhibited the

greatest reduction in preribosomes when A3 factors were
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absent. However, it is not known when these assembly

factors are present in preribosomes. While Dbp10 and Spb1

function after the A3 processing step (Kressler et al, 1999;

Burger et al, 2000; Moy et al, 2002; Fleischer et al, 2006),

mutants for Cgr1, Nop16, and Ybl028c have not been thor-

oughly assayed. Therefore, it remains possible that one or

more of these assembly factors might be as yet unidentified

A3 factors. Levels of most other assembly factors did

not change, consistent with SDS–PAGE profiles and

western blotting (Figures 2A and B and 3A; Supplementary

Figure S2B).

The 50–30exonuclease Rrp17, but not Rat1 or Xrn1,

requires A3 factors for association with preribosomes

Since the exonucleases Rat1, Xrn1, and Rrp17 are required for

processing 27SA3 pre-rRNA, we hypothesized that A3 factors

might recruit these enzymes to preribosomes. Therefore, in

the absence of A3 factors, these exonucleases would no

longer be present in preribosomes, resulting in accumulation

of unprocessed 27SA3 pre-rRNA. iTRAQ and western blotting

revealed that this was the case for Rrp17 (Figures 3A and 4A).

In contrast, western blotting revealed that the remaining two

exonucleases, Rat1 and Xrn1, still were able to associate with

preribosomes in the absence of Rlp7 (Figure 4A). Therefore,

we conclude that the absence of Rrp17 is responsible, at least

in part, for the accumulation of 27SA3 pre-rRNA observed in

A3 factor mutants.

Rat1 is not directed to preribosomes by its cofactor Rai1

and enters preribosomes before creation of its

substrate, the 50-end of 27SA3 pre-rRNA

Since Rat1 appears to be a major exonuclease involved in

27SA3 pre-rRNA processing (Henry et al, 1994), but is not

recruited to preribosomes by A3 factors, we wanted to explore

other mechanisms by which Rat1 might be recruited to

preribosomes. Rai1 physically interacts with Rat1 (Xue

et al, 2000), and stimulates its exonuclease activity (Xiang

et al, 2009). Therefore, we investigated whether Rai1 directs

Rat1 to preribosomes, by assaying levels of Rat1 in preribo-

somes purified from the rai1D strain. Rat1 was present in

these preribosomes, indicating that Rai1 is not required for

assembly of Rat1 into preribosomes (Figure 4B).

To test whether Rat1 is recruited to preribosomes by its

RNA substrate, the 50-end of 27SA3 pre-rRNA, we assayed

preribosomes when cleavage at the A3 site is blocked. To do

so, we depleted Pop3 (Dichtl and Tollervey, 1997), a protein

component of RNase MRP that cleaves 27SA2 pre-rRNA at the

A3 site (Lygerou et al, 1996). Rat1–HA was still present in

Figure 2 A3 assembly factors are mutually interdependent for association with preribosomes. (A) Depletion of each of the six A3 factors results
in mutant preribosomes with similar changes in protein constituents. Precursors to 60S subunits were isolated using TAP-tagged assembly
factor Rpf2, from strains in which A3 factors were depleted using the conditional GAL promoter. Proteins present in the purified preribosomes
were resolved by SDS–PAGE, and stained with silver. * Indicates proteins whose levels increase upon depletion of each protein, K indicates
proteins whose levels decrease upon depletion of each protein. A3 factors are labelled. The GAL–REA1 RPF2–TAP strain is shown as a control
for specificity of the phenotype. (B) Five other A3 factors are specifically missing from preribosomes in the absence of Rlp7. Western blotting
was used to specifically assay the presence of selected proteins, including A3 factors, in mutant and wild-type preribosomes. (C) The Nop7
subcomplex remains intact, but is not associated with preribosomes in the absence of Rlp7. TAP-tagged Nop7 was used for affinity purification
from wild-type (left lane) and Rlp7-depleted (right) extracts. Silver-stained protein bands corresponding to Nop7 subcomplex proteins Erb1,
Nop7 and Ytm1 are indicated. (D) In the absence of Rrp1, the association of A3 factors with preribosomes is not measurably reduced. Proteins
present in Rpf2–TAP-containing preribosomes purified from the GAL–RRP1 strain were assayed by SDS–PAGE, silver staining, and western
blotting. rpL11 is the loading control.
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preribosomes in the absence of Pop3, suggesting that the

50-end of 27SA3 pre-rRNA does not have to be generated for

Rat1 to be recruited to preribosomes (Figure 4C).

The results above suggest that Rat1 may be present in

preribosomes before the A3 end is generated. Therefore, we

assayed with which pre-rRNAs Rat1 is associated. Primer

extension revealed that Rat1 co-IPed with large amounts of

27SA2 pre-rRNA (Figure 4D), indicating that it joins preribo-

somes before generation of 27SA3 pre-rRNA. Therefore, Rat1

might be recruited to preribosomes by other early associating

assembly factors.

rpL17, rpL26, rpL35, and rpL37 cannot stably associate

with preribosomes lacking A3 factors

Of the 63 r-proteins identified in preribosomes by iTRAQ, 18

were from the 40S ribosomal subunit (rpS proteins). The

levels of most rpS proteins were significantly increased in

Rpf2-containing preribosomes in the absence of Rlp7. This is

consistent with the presence of 40S subunit r-proteins in 90S

preribosomes, and the accumulation of early ribosomal inter-

mediates including 90S preribosomes when 27SA3 pre-rRNA

processing is blocked. In contrast, r-proteins of the 60S

subunit were affected to varying extents. Some were unaf-

fected, whereas others were modestly reduced (Figure 3B).

Notably, four r-proteins were significantly diminished in

preribosomes when Rlp7 was depleted—rpL17, rpL26,

rpL35, and rpL37 (Figure 3B). Immunoblotting confirmed

this result from iTRAQ experiments (Figure 5A). These four

r-proteins were also diminished when two other A3 factors,

Nop7 and Nop15, were depleted (Supplementary Figure S4).

Based on the crystal structure of the yeast 60S ribosomal

subunit (Ben-Shem et al, 2010), rpL17, rpL26, rpL35, and

rpL37, lie close to each other, adjacent to 5.8SS rRNA, whose

50-end is generated by 27SA3 pre-rRNA processing (Figure 5B

and C; Supplementary Figure S1). rpL17 is particularly inter-

esting because it contacts helix 2, formed between the 50-end

Figure 3 iTRAQ analysis of changes in composition of preribosomes upon depletion of Rlp7. (A) Effects of depleting Rlp7 on ribosome
assembly factors. The relative abundance of ribosome assembly factors is shown as the ratio from Rlp7-depleted cells to Rlp7-expressed cells
(average relative ratio depletion/wild type). Light bars: proteins involved in 40S subunit assembly. Dark bars: proteins involved in 60S subunit
biogenesis. s.e.m. are given. Results here and in (B) are from two independent biological replicates (two mutant, two wild type). The data were
collected as a four-plex after a single LCLC MALDITOFTOF run. (B) Effects of depleting Rlp7 on ribosomal proteins. The relative abundance of
r-proteins is shown as the ratio from Rlp7-depleted cells to Rlp7-expressed cells (average relative ratio depletion/wild type). Light bars: 40S
ribosomal proteins. Dark bars: 60S ribosomal proteins. s.e.m. are given.
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of 5.8SS rRNA and 25S rRNA. We imagined that binding of

rpL17 to helix 2 might form an RNP structure that stops Rat1

precisely at the B1S site. Therefore, we wanted to understand

when and how rpL17 associates with preribosomes.

rpL17 becomes more stably associated with

preribosomes after processing of 27SA3 pre-rRNA

The absence of rpL17 from preribosomes in A3 factor mutants

might indicate that it associates with pre-rRNPs only after

Figure 4 Recruitment of exonucleases Rat1, Xrn1, and Rrp17 to preribosomes. (A) Rrp17, but not Rat1 and Xrn1, is dependent on A3 factors to
associate with preribosomes. The presence of Rat1, Xrn1, and Rrp17 in preribosomes purified from A3 factor mutants was assayed by
SDS–PAGE and western blotting. rpL5 is the loading control. Binding of Rat1 to beads was not detected when extracts from untagged strains
were used for purification (unpublished observations). (B) In the absence of Rai1, association of Rat1 with preribosomes is not affected.
Preribosomes were purified from RAI1 (left) and rai1D (right) strains. Proteins were assayed by SDS–PAGE, silver staining, and western
blotting. rpL5 is the loading control. (C) Generation of the 50-end of 27SA3 pre-rRNA is not required for association of Rat1 with preribosomes.
66S preribosomes were isolated using TAP-tagged assembly factor Rpf2, from a strain in which RNase MRP was inactivated by depleting Pop3
using the conditional GAL promoter. Preribosomes were assayed by SDS–PAGE, silver staining, and western blotting against indicated proteins.
(D) Rat1 is recruited to preribosomes early in the pathway of 60S subunit biogenesis. TAP-tagged Rat1 was used to purify Rat1-containing
preribosomes. Pre-rRNAs present in these preribosomes were assayed by primer extension. In all, 50% of TAP-purified RNA was used to assay
pre-rRNAs containing A2, A3, B1S, and B1L ends. The remaining RNA was used to detect 35S pre-rRNA (not shown).

Figure 5 Ribosomal proteins adjacent to 5.8S rRNA in mature ribosomes are missing from preribosomes lacking A3 factors. (A) Specific
ribosomal proteins are reduced in preribosomes in the absence of Rlp7. Western blotting of ribosomal proteins in preribosomes purified from
GAL–HA–RLP7 RPF2–TAP strain are shown. Indicated ribosomal proteins are 3xHA-tagged. R-proteins in the bottom panel were unaffected in
the absence of Rlp7. (B) R-proteins dependent on A3 factors cluster around 5.8S rRNA. In both B and C, a 1801 rotation of the crown view of the
mature 60S subunit is shown. Domain I of rRNA is highlighted, with the region corresponding to 5.8S rRNA in blue and 25S rRNA in brown.
Colour coding of ribosomal proteins: rpL17—purple, rpL26—teal, rpL35—green, rpL37—red. 5S rRNA is highlighted in orange. Pymol images
here and in (C) were generated using PDB file 3O58 (Ben-Shem et al, 2010). Affected r-proteins are close to helices formed by basepairing
between 5.8S and 25S rRNA. Only domain I of 5.8S/25S rRNAs is shown. rRNA and r-proteins are colour coded as in (B).
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processing of 27SA3 pre-rRNA is completed. Therefore, in

mutants where 27SA3 pre-rRNA processing is blocked, rpL17

might not yet have assembled into nascent ribosomes.

Alternatively, rpL17 might associate with preribosomes be-

fore the 27SA3 pre-rRNA processing step, but its binding may

be strengthened by rRNP remodelling. In A3 factor mutants,

where such rearrangements might not occur, weakly bound

rpL17 might readily dissociate from preribosomes. To begin

to distinguish between these possibilities, we determined the

timing of association of rpL17 with nascent ribosomes, by

assaying with which pre-rRNA processing intermediates it

co-IPs (Figure 6A). rpL17 co-IPed 27SA2 and 27SB pre-rRNAs,

Figure 6 rpL17 becomes more stably associated with 66S preribosomes after 27SA3 pre-rRNA processing. (A) rpL17 is present in 27SA2 and
27SB containing preribosomes. rpL17–TAP strain was used to purify preribosomes containing rpL17. The untagged parent strain is used as a
negative control. Pre-rRNAs that copurified were assayed by primer extension. The two samples on the left are from one gel and the two on the
right are from a second gel. (B) rpL17 copurifies in larger amounts with ‘later’ 66S preribosomes than with ‘early’ 66S intermediates.
Preribosomes were purified using indicated TAP-tagged early (Npa2) or middle assembly factors (Nsa1, Nog2), and assayed by SDS–PAGE,
silver staining, and western blotting. Purification with the untagged parent strain is shown as a negative control. Purified bait proteins are
indicated with asterisks. The higher molecular weight band in the untagged control strain corresponds to IgG heavy chain, and the lower
molecular weight band is TEV protease. All protein samples were assayed on the same gel and blot. (C) Association of rpL17 with Npa2-
containing preribosomes, but not Nog2-containing preribosomes, is salt sensitive. Preribosomes were purified using indicated TAP-tagged
strains. After binding of cell lysates, beads were washed with buffer containing increasing concentrations of NaCl, as indicated. SDS–PAGE,
silver staining, and western blotting were used to assay preribosomes. (D) Binding of rpL17 to preribosomes does not depend on processing of
27SA3 pre-rRNA. The three exonucleases required for 27SA3 pre-rRNA processing were depleted using the GAL–RRP17 MET–RAT1 xrn1D
strain. The strain was grown in indicated media and preribosomes were purified using TAP-tagged Rpf2. Preribosomes were assayed by
SDS–PAGE, silver staining, and western blotting. Figure source data can be found with the Supplementary Information.
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and a small amount of 35S pre-rRNA (Figure 6A). No 27SA3

pre-rRNA was detected copurifying with rpL17, most likely

due to the very low abundance of this pre-rRNA species in

cells under wild-type conditions.

To further investigate the timing and degree of association

of rpL17 with preribosomes, we measured its copurification

with ‘early’ (Npa2) or ‘middle’ (Nsa1, Nog2) assembly inter-

mediates. Consistent with experiments above, we found that

rpL17 is present in early preribosomes purified using the

TAP-tagged early assembly factor Npa2 (Figure 6B). Npa2 is

thought to leave the assembly pathway during or immedi-

ately after processing of 27SA2 pre-rRNA (Rosado et al, 2007).

However, reproducibly more rpL17 copurified with later

assembly factors such as Nsa1 or Nog2 (Figure 6B and C)

(Saveanu et al, 2003; Kressler et al, 2008). No such difference

in copurification could be observed for the other r-protein

tested, rpL8 (Figure 6B and C). Taken together, the above

results suggest that rpL17 normally associates with preribo-

somes before processing of 27SA3 pre-rRNA. Thus, there are

two possible explanations for the reduced association of

rpL17 in A3 factor mutants. On the one hand, rpL17 might

completely fail to associate with preribosomes in the absence

of A3 factors. Alternatively, rpL17 might be weakly bound to

preribosomes early in the assembly pathway, and may dis-

sociate from pre-rRNPs if there is a block in 27SA3 pre-rRNA

processing.

The consistently elevated amounts of rpL17 observed in

Nsa1 and Nog2-containing preribosomes, compared with

Npa2-containing pre-rRNPs, suggests that rpL17 is in fact

more tightly associated with later preribosomes, than with

early pre-rRNPs. We therefore tested salt sensitivity of asso-

ciation of rpL17 with preribosomes. Association of rpL17

with Npa2–TAP, but not Nog2–TAP, was salt sensitive

(Figure 6C), indicating that association of rpL17 with later

preribosomes is stronger than with early preribosomes. No

such difference in association was observed for the other r-

protein tested, rpL8 (Figure 6C). The difference in recovery of

rpL17 in preribosomes at 50 mM NaCl compared with higher

concentrations of salt is not merely an artefact of contamina-

tion with mature ribosomes, since levels of rpL8 that copurify

with preribosomes remain constant at different salt concen-

trations (Figure 6C). Taken together, these results suggest that

rpL17 assembles into early preribosomes before the 27SA3

pre-rRNA processing step, but its association is strengthened

after subsequent remodelling events, coincident with produc-

tion of 27SB1S pre-rRNA.

We hypothesized that exonucleolytic processing of 27SA3

pre-rRNA might be the event that triggers more stable associa-

tion of rpL17 with preribosomes. To test this idea, we used the

GAL–RRP17 MET–RAT1 xrn1D strain, in which all three exo-

nucleases required for 27SA3 pre-rRNA processing can be

conditionally repressed (Oeffinger et al, 2009). Because A3

factors remained in preribosomes when Rat1, Xrn1, and

Rrp17 were depleted, using this strain allowed us to prevent

removal of ITS1 sequences in 27SA3 pre-rRNA, in a manner

independent of the A3 factors (Figure 6D). However, equal

amounts of rpL17 could still associate with preribosomes

(Figure 6D), indicating that 27SA3 pre-rRNA processing is not

required for strengthening association of rpL17. It is possible

that rpL17 is stably bound to helix 2, which might have already

formed before 27SA3 pre-rRNA processing occurs. The above

result also suggests that the stable association of rpL17 with

preribosomes depends on the presence of A3 factors or some

other remodelling event induced by their presence.

rpL17 is required for processing within ITS2

The presence of rpL17 near the 50-end of helix 2 in mature

ribosomes suggests that it could serve as a roadblock to Rat1,

causing it to stop precisely at the B1S site during 50–30

processing of ITS1. This idea is further supported by the

results above that rpL17 is associated with preribosomes

before processing of 27SA3 pre-rRNA. To test whether rpL17

functions to halt Rat1, we determined the effect of depleting

rpL17 on pre-rRNA processing. In the absence of rpL17, we

observed accumulation of pre-rRNA species whose 50-ends

are B10 nts downstream of the B1S site, very close to the end

of helix 2 (Figure 7, left). This 50-truncated pre-rRNA has not

been observed in the absence of any other assembly factor or

r-protein tested, including rpL35 (Zhang et al, 2007; Pöll et al,

2009; Babiano and de la Cruz, 2010; Supplementary Figure

S3). This shorter pre-rRNA may form due to the inability of

Rat1 to stop at the B1S site in the absence of rpL17. To test

whether Rat1 is required for the formation of this shorter pre-

rRNA species, we constructed a temperature-sensitive rat1-1

strain where rpL17 was depleted using the GAL promoter.

When rpL17 was depleted and Rat1-1 was inactivated by

shifting to 37 1C, the 50-truncated product observed in the

absence of rpL17 alone no longer accumulated (Figure 7,

right), revealing a direct role for Rat1 in the formation of

these pre-rRNAs. Therefore, it appears that in a small fraction

of preribosomes lacking rpL17, Rat1 starts processing at the

A3 site, but cannot stop at the B1S site. Instead, it is stopped

B10 nts downstream of this site.

The significance of this 50-truncated pre-rRNA species,

however, is unclear, as it appears that the major fraction of

Figure 7 rpL17 is required for processing within ITS2, and to a
smaller extent within ITS1. RNA was extracted from indicated
strains grown in galactose or grown in galactose and shifted to
glucose. The GAL–RPL17 rat1-1 strain was grown in glucose for 12 h
at 25 1C to deplete rpL17 and then shifted to 37 1C for 5 h to
inactivate Rat1-1. Primer extension was used to assay the A2, A3,
B1S, and B1L ends of pre-rRNA. * Indicates 50-truncated pre-rRNAs
formed in the absence of rpL17. All samples were assayed on the
same gel. Figure source data can be found with the Supplementary
Information.
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27SA3 pre-rRNA is properly processed by the exonucleases to

form 27SB1S pre-rRNA. We observed an increase in 27SB1S

pre-rRNA (Figure 7, left), indicating that rpL17 is required for

the next step in pre-rRNA processing—conversion of the

27SB1S pre-rRNA to 25.5S and 7S pre-rRNAs. Consistent

with these data, it has been shown that there is a reduction

in the amount of 7S pre-rRNA in the absence of rpL17 (Pöll

et al, 2009).

Rat1 initiates turnover of misassembled preribosomes

when A3 factors are absent

Pulse-chase and steady-state assays of pre-rRNA processing

in A3 factor mutants suggest that 27S pre-rRNA is turned over

when 60S subunit assembly is aborted (Dunbar et al, 2000;

Pestov et al, 2001; Adams et al, 2002; Gadal et al, 2002;

Oeffinger et al, 2002; Oeffinger and Tollervey, 2003; Horsey

et al, 2004; Miles et al, 2005). Because Rat1 is present in

preribosomes when A3 factors are depleted (Figure 4A), we

hypothesized that Rat1 might degrade the 27SA3 pre-rRNA in

abortive preribosomes, instead of properly processing it.

Thus, turnover intermediates degraded from their 50-ends

might be detectable. Primer extension assays revealed the

presence of such turnover intermediates. We detected low

levels of pre-rRNA species with 50-ends 67–69 nts down-

stream of the B1S site, when Rat1 was present in preribo-

somes lacking A3 factors (Figure 8A, lanes 1–12).

Figure 8 In the absence of A3 factors, Rat1 initiates turnover of misassembled preribosomes. (A) 50-Truncated 27SB pre-rRNAs are formed in
the absence of A3 factors. RNA was extracted from whole-cell lysates prepared from the indicated strains, and assayed by primer extension to
detect A2, A3, B1S, and B1L 50-ends. For each panel, asterisks indicate primer extension products that are 67–69 nts shorter than 27SB1S pre-rRNA
at the 50-end. All samples were run on the same gel, except GAL–ERB1, which was run won a separate gel with GAL–RLP7 as a control. (B) Rat1
activity is required for formation of the shorter pre-rRNAs. RNA was extracted and assayed as described in (A) above. The GAL–RPL17 rat1-1
strain was grown in glucose for 12 h at 25 1C to deplete rpL17 and then shifted to 37 1C for 5 h to inactivate Rat1-1. Samples from lanes 3 and 4
were run on the same gel. (C) Model for the role of A3 factors during ribosome assembly. Basepairing between 5.8S and 25S RNAs is indicated
by short red lines. Dashed red lines indicate that the basepairing is affected. Dashed black lines indicate that the pre-rRNAs are being turned
over. Dashed circles show that the r-proteins might not be tightly associated with preribosomes. (Left panel) Binding of A3 factors (yellow
diamonds) determined by CRAC (Granneman et al, 2011) allows basepairing between 5.8S and 25S rRNAs. It also enables stable association of
rpL17, rpL26, rpL35, and rpL37 (blue circles), and all proteins together help Rat1 to stop at the B1S site. rpL17 is also required for processing
within ITS2. (Right panel) Preribosomes undergo turnover in the absence of A3 factors, and the four r-proteins. Figure source data can be found
with the Supplementary Information.
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To confirm that Rat1 is required for formation of these

shorter RNAs when A3 factors are absent, we constructed a

strain in which both Rlp7 and Rat1 were depleted. In this

strain, no 50-truncated pre-rRNAs accumulated (Figure 8B,

lanes 1 and 2). Similar results were obtained upon depletion

of Rlp7 in a temperature-sensitive rat1-1 strain or rat1D235A

catalytic mutant strain (Figure 8B, lanes 1–4). Taken together,

these results indicate a direct role for Rat1 exonuclease

activity in turnover of 27S pre-rRNA in A3 factor mutants.

Discussion

The work described here has enabled us to bring into sharper

focus the assembly factors known to be involved in the

processing of 27SA3 pre-rRNA. At the same time, we have

also been able to make connections between these assembly

factors and r-proteins in a manner that is consistent with the

structure of S. cerevisiae 60S ribosomes.

We have shown that all known A3 factors associate with

preribosomes well before their requirement for processing of

27SA3 pre-rRNA. Six of seven A3 factors assemble into

preribosomes in a concerted manner. A3 factors enable stable

association of one of the 50–30 exonucleases, Rrp17, but not

Rat1 or Xrn1, with preribosomes. Four ribosomal proteins—

rpL17, rpL26, rpL35, and rpL37 specifically cannot associate

with preribosomes when A3 factors are depleted. These four

r-proteins bind adjacent to each other on 5.8S rRNA in

mature 60S ribosomes in S. cerevisiae (Ben-Shem et al,

2010). This result indicates that the presence of A3 factors,

which are required for proper formation of the 50-end of 5.8SS

rRNA, stabilizes this neighbourhood of r-proteins within

assembling ribosomes. We also show here that in the absence

of A3 factors and rpL17, rpL26, rpL35, and rpL37, Rat1 cannot

stop at the B1S site and proceeds beyond this site to turn over

27S pre-rRNA (Figure 8C).

Recruiting functions of A3 factors during ribosome

assembly

The seven assembly factors required for processing of 27SA3

pre-rRNA enable stable association of three classes of pro-

teins with preribosomes—other A3 assembly factors, an

exonuclease, and r-proteins. First, A3 factors ensure produc-

tive assembly of other A3 factors into preribosomes. Such a

pattern of interdependence could reflect both direct and

indirect interactions—directly by protein–protein contacts,

and indirectly via a network of RNA–protein and RNA–RNA

contacts. Indeed, recent proteome-wide protein complemen-

tation analysis has revealed that these proteins, except Rrp1,

are in the vicinity of each other (Tarassov et al, 2008).

Consistent with these data, Nop7, Erb1, and Ytm1 form a

stable heterotrimer that can be isolated from preribosomes

(Miles et al, 2005; Figure 2C). It has been proposed that this

Nop7 subcomplex might serve as a scaffold upon which

further assembly can occur (Lapik et al, 2004). CRAC analysis

(Granneman et al, 2009) revealed that Nop7 and Erb1 bind

RNA sequences that lie close to each other in 25S rRNA near

the ITS2 junction, whereas Nop15 and Cic1 bind sequences

within ITS2 (Granneman et al, 2011). As Ytm1 has been

shown to interact directly with Erb1 (Miles et al, 2005), it

follows that its binding site on preribosomes is very close to

those of Erb1 and Nop7. Since these five A3 factors are

potentially present in such close proximity to each other in

preribosomes, one can well imagine how their association

with preribosomes would be interdependent.

Second, A3 factors are required for the association of

Rrp17, one of the three 50–30 exonucleases that processes

27SA3 pre-rRNA to 27SB1S pre-rRNA (Oeffinger et al, 2009).

Thus, the absence of Rrp17 could account for the observed

accumulation of some unprocessed 27SA3 pre-rRNA in A3

factor mutants. Two-hybrid assays revealed no physical inter-

actions between any of the A3 factors and Rrp17 (unpub-

lished observations), suggesting that A3 factors might affect

association of Rrp17 with preribosomes indirectly through

their effect on the structure of nascent ribosomes.

Interestingly, it appears that the association of the remaining

exonucleases, Rat1 and Xrn1, is not affected in A3 mutants by

such changes in preribosomal architecture. They might be

anchored to preribosomes or properly positioned within pre-

rRNPs by other assembly factors and/or r-proteins that

remain stably associated with preribosomes in the absence

of A3 factors.

A third important function of A3 factors is to ensure stable

association of r-proteins rpL17, rpL26, rpL35, and rpL37 with

preribosomes. Interestingly, the binding sites in mature ribo-

somes of rpL17, rpL26, rpL35, and rpL37 are near each other

in domains I and III of 5.8S/25S rRNAs (Ben-Shem et al,

2010). This appears to be close to the binding sites of Erb1 in

domain I, Nop7 in domain III, and potentially Nop15 and

Nsa3/Cic1 in ITS2 within preribosomes (Granneman et al,

2011). We have not detected physical interactions between A3

factors and these r-proteins (unpublished observations),

suggesting that binding of these r-proteins to preribosomes

also depends on remodelling or stabilization of preribosome

structure mediated by A3 factors. It is conceivable that the

binding of Nop7 and Erb1 to domains I and III of 5.8S/25S

rRNAs, respectively, might help bring these two rRNA do-

mains in close proximity, thereby providing binding sites for

the four r-proteins and stabilizing their association with

preribosomes.

Rat1 might function as a processing or degradative

enzyme depending on the presence or absence of

roadblocks

It has been observed that in mutants defective in ribosome

biogenesis, pre-rRNA processing intermediates do not accu-

mulate to high levels, suggesting that when assembly fails,

pre-rRNAs are turned over. Mistakes made in the course of

normal ribosome assembly in wild-type cells may also trigger

turnover. In fact, in wild-type cells, polyadenylation targets

pre-rRNAs for 30–50 degradation by the exosome (LaCava

et al, 2005). In strains defective for the exosome, depletion

of Rat1 results in increased accumulation of poly(A)þ pre-

rRNAs (Fang et al, 2005), suggesting that the 50–30 exonu-

clease activity of Rat1 plays a role in turnover of aberrant pre-

rRNAs during ribosome assembly. Our work provides evi-

dence for the role of Rat1 in 50–30 degradation of specific

aberrant pre-rRNA intermediates when ribosome assembly is

aborted in A3 factor mutants. This is evident by the accumu-

lation of shorter Rat1-dependent RNAs in the absence of A3

factors and rpL17 (Figures 7 and 8A). Consistent with this

idea, there is greater accumulation of 27SA3 pre-rRNA in the

GAL–RLP7 rat1-1 double mutant compared with the GAL–

RLP7 single mutant (Figure 8B). However, this Rat1-mediated

turnover might not be a very efficient process, since in the
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absence of A3 factors, significant amounts of 27SA3 inter-

mediate still can be detected relative to the short degradation

products. It is also likely that turnover by Rat1 is not the only

pathway for degradation of aberrant pre-rRNA intermediates.

An important question in ribosome biogenesis is why cells

employ both endonucleases and exonucleases for pre-rRNA

processing. The exonucleases Rat1 and Xrn1 are implicated in

generating precise 50-ends of two mature rRNAs—5.8SS and

25S rRNAs (Geerlings et al, 2000). While at first glance the

use of an exonuclease to create precise 50-ends of rRNA might

appear counterintuitive, it is in fact an ingenious display of

cellular economy. Exonucleases, such as Rat1, could process

pre-rRNA to create appropriate 50-ends when stopped by

roadblocks such as RNA secondary structure or RNA–protein

contacts present in preribosomes. However, under conditions

of aberrant ribosome assembly as signalled by the absence of

the roadblock, the same exonuclease might not stop at a

specific site to create a precise 50-end. Instead, its processing

function would now be converted to a turnover function,

without necessitating recruitment of other factors explicitly

for the purpose of turnover. Such a dual role has recently

been proposed for the mammalian homologue of Rat1, Xrn2,

during 60S ribosome biogenesis (Wang and Pestov, 2011).

rpL17 binds to the 50-end of 5.8S rRNA (Ben-Shem et al,

2010), immediately downstream of the B1S site where exonu-

cleolytic processing precisely halts in wild-type cells. rpL17 is

present in preribosomes before processing of 27SA3 pre-rRNA

is completed. We therefore predicted that rpL17 might serve

as a roadblock to the exonucleases Rat1, Xrn1, and Rrp17

during processing of 27SA3 pre-rRNA, causing them to stop at

the B1S site. Our results indicate that in part rpL17 is a

roadblock to Rat1 (Figure 7), as seen by the small fraction

of Rat1-dependent 50-truncated pre-rRNAs observed in the

absence of rpL17. However, rpL17 most likely does not act

alone to stop Rat1. Instead, it is likely that an RNP

structure created by the stable association of A3 factors and

all four r-proteins with preribosomes might serve as the

roadblock to Rat1.

A3 factors may be necessary to help fold ITS2 RNA, and

bring together 5.8S and 25S rRNA sequences to stabilize

27S pre-rRNAs during ribosome biogenesis

Because all seven A3 factors are present in preribosomes after

27SA3 pre-rRNA processing is completed (Figure 1C), they

might also function in later steps of ribosome biogenesis, for

example processing of 27SB pre-rRNA into 25.5S plus 7S pre-

rRNAs. This is thought to be the last step that occurs before

nucleolar release of pre-60S particles (Kressler et al, 2009).

Consistent with this idea, preribosomes are found to remain

in the nucleolus in ytm1-1, cic1-2, and rlp7-1 mutants (Gadal

et al, 2002; Fatica et al, 2003; Miles et al, 2005). Furthermore,

the AAAþ-ATPase Rea1 releases the Nop7–Erb1–Ytm1 sub-

complex from preribosomes just prior to the exit of pre-60S

particles from the nucleolus (Ba�ler et al, 2010). Therefore, A3

factors might also play a structural role to enable proper

processing of 27SB pre-rRNA, before they are released from

66S preribosomes.

Indeed, three observations suggest a role for A3 factors in

facilitating proper folding and processing of ITS2, and thus

contributing to 27SB1S pre-rRNA processing. (1) Nop15 and

Nsa3/Cic1 bind ITS2 sequences, whereas Nop7 and Erb1

bind 25S rRNA sequences close to the ITS2-25S junction

(Granneman et al, 2011). (2) Cleavage at the C2 site within

ITS2 occurs prematurely in the cic1-2 mutant (Fatica et al,

2003). (3) Mutations in Pes1 and Bop1, the mammalian

homologues of Nop7 and Erb1, respectively, slow processing

of ITS2 (Strezoska et al, 2000; Lapik et al, 2001).

Three of the four r-proteins most affected in the A3 mutants

are not required for 27SA3 pre-rRNA processing, but are

required for 27SB pre-rRNA processing. In the absence of

rpL17, rpL35 or rpL37, 27SB pre-rRNA, but not 27SA3

pre-rRNA accumulates (Babiano and de la Cruz, 2010; M

Gamalinda, personal communication). Consistent with these

observations, A3 factors are present in preribosomes even in

the absence of rpL17, rpL35, or rpL37 (M Gamalinda, perso-

nal communication). The block in processing of 27SB pre-

rRNA indicates that these three r-proteins are required to

establish or maintain structures required for processing of

27SB pre-rRNA, but not 27SA3 pre-rRNA. Recently, we also

found that rpL17 is required for the stable association of

several assembly factors necessary for proper processing

of 27SB to 7S þ 25.5S pre-rRNAs (M Gamalinda, personal

communication).

Binding of A3 factors to domains I and III of rRNA

sequences in preribosomes, coupled with the assembly of

the r-protein neighbourhood adjacent to 5.8S rRNA, might

therefore be required for maintaining the preribosomal archi-

tecture necessary for proper processing of 27SA3 pre-rRNA

and stabilization of 27SB1S pre-rRNA, before cleavage and

removal of ITS2 (Figure 8C). We propose that the A3 factors

and r-proteins facilitate folding of 5.8SS and 25S rRNA

sequences in pre-rRNAs, including formation of helices 2,

4, and 10 between them (Supplementary Figure S1), and

influence proper folding of ITS2 within 27S pre-rRNAs.

Proper maintenance of these helices is likely required not

just for precise processing of 27SA3 pre-rRNA, but also for the

correct processing of later intermediates such as 27SB1S, 7S,

and 25.5S pre-rRNAs. Once A3 factors dissociate from pre-

ribosomes, it is imperative that this basepairing between 5.8S

and 25S rRNAs be maintained. Stable association of rpL17,

rpL26, rpL35, and rpL37 may play a role in maintaining

basepairing between these two rRNAs after release of A3

factors, and in mature functioning ribosomes (Supplementary

Figure S1).

Materials and methods

3xHA-, GFP-, 13xMYC-, TAP-tagged genes, GAL1 promoter fusions,
and gene disruptions were generated as described in Longtine et al
(1998). Yeast strains used in this study are listed in Supplementary
Table S1.

Single-step purifications of preribosomes from whole-cell ex-
tracts using magnetic Dynabeads were performed as described in
Oeffinger et al (2007), with the following modifications. Cells were
grown in either galactose, to express GAL promoter fusion genes, or
shifted to glucose for 16 h to repress these genes, and harvested at
mid-log phase (3�107 cells/ml). Cultures were centrifuged using a
GS-3 rotor at a speed of 5000 r.p.m., for 5 min. Cell pellets were
resuspended in RNP buffer (20 mM HEPES (pH 7.4), 110 mM KOAc,
0.5% Triton, 0.1% Tween 20, 40 mM NaCl), and subjected to glass
bead lysis. After binding of lysates to IgG-coated Dynabeads at 4 1C
for 30 min, beads were washed three times with RNP buffer to
eliminate non-specifically bound proteins. Bead-bound preribo-
somes were eluted by cleaving the TEV protease site within the
TAP-tag, using 10 U of TEV Protease (Invitrogen). Proteins were
recovered from the eluate by precipitation in 10% TCA, and were
subsequently suspended in SDS sample buffer and separated
by SDS–PAGE on 4–20% polyacrylamide NOVEX gels (Invitrogen).

Analysing ribosome assembly one step at a time
A Sahasranaman et al

The EMBO Journal VOL 30 | NO 19 | 2011 &2011 European Molecular Biology Organization4030



For purifications done under high salt conditions, the following
modifications were made. Cell lysis was performed using RNP
buffer containing 40 mM NaCl. After binding of lysates to
Dynabeads, three washes were done with RNP buffer containing
the indicated concentration of NaCl. These were followed by three
washes with RNP buffer containing 40 mM NaCl to get rid of excess
salt that might affect the efficiency of TEV Protease.

Silver staining was done according to standard procedure.
Proteins present in whole-cell extracts or purified preribosomes
were assayed by western blot analysis (Ausubel et al, 1994), with
the following modification. After electroblotting, the nitrocellulose
membrane was cut into smaller sections based on known mobility
of different proteins to enable probing of multiple proteins from one
blot. TAP-tagged proteins were detected using alkaline phosphatase
conjugated to IgG (Pierce). 3HA-tagged proteins were identified
with mouse monoclonal antibody 12CA5, GFP-tagged proteins with
rabbit polyclonal anti-GFP antibody, and myc-tagged proteins with
anti-mouse 9e10 antibody. Otherwise, antibodies specific for
ribosomal proteins or assembly factors were used.

Proteins copurifying with TAP-tagged Rpf2 were identified by
mass spectrometry as described in Horsey et al (2004). For semi-
quantitative iTRAQ analysis, preribosomes were purified as
described above. Following TCA precipitation, pellets were resus-
pended in 20 ml of 20 mM HEPES pH 7.4. iTRAQ labelling and
quantification were done as described in Jiang et al (2007). The
hash that represents these data is iCHfI8YFKDk4nxNV79z9Z+AcPF
8B6tPwYtsNRV8FKþDq7qQPZpgLpS0bbrEfsgaxlmjUBK6pnxlLoDZ
jbjGQkK9Kfv8AAAAAACipjQ¼ ¼ , located at the network Proteome
Commons.org Tranche, under the title ‘Assembly of Saccharomyces
cerevisiae 60S Ribosomal Subunits: Role of Factors Required for 27S
Pre-rRNA Processing’.

RNA from whole-cell lysates was extracted as described in
Horsey et al (2004). RNA enriched from purified preribosomes was
extracted as follows. After binding of cell-free lysate to magnetic
beads, the bead-bound preribosomes were treated with 5ml of
Proteinase K (Roche) for 30 min at 37 1C to degrade proteins. RNA
was extracted from the eluate using phenol chloroform isoamyl

alcohol. Primer extension was carried out using 32P- radiolabelled
oligonucleotide sequences complementary to 27S pre-rRNA (Miles
et al, 2005).

PyMOL images of ribosome structure were generated using PDB
File 3O58 (Ben-Shem et al, 2010).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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