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There is substantial interpatient variation in recovery from upper
limb impairment after stroke in patients with severe initial
impairment. Defining recovery as a change in the upper limb
Fugl-Meyer score (DFM), we predicted DFM with its conditional
expectation (i.e., posterior mean) given upper limb Fugl-Meyer
initial impairment (FMii) and a putative functional magnetic
resonance imaging (fMRI) recovery measure. Patients with first
time, ischemic stroke were imaged at 2.5 6 2.2 days poststroke
with 1.5-T fMRI during a hand closure task alternating with rest
(fundamental frequency 5 0.025 Hz, scan duration 5 172 s).
Confirming a previous finding, we observed that the prediction of
DFM by FMii alone is good in patients with nonsevere initial
hemiparesis but is not good in patients with severe initial
hemiparesis (96% and 16% of the total sum of squares of DFM
explained, respectively). In patients with severe initial hemiparesis,
prediction of DFM by the combination of FMii and the putative fMRI
recovery measure nonsignificantly increased predictive explanation
from 16% to 47% of the total sum of squares of DFM explained. The
implications of this preliminary negative result are discussed.
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Introduction

Stroke is the leading cause of long-term disability among adults,

and hemiparesis is the most common impairment after stroke

(Wolfe 2000; Krakauer 2005). Recovery from hemiparesis can

be considered from the perspectives of recovery of function

(i.e., regaining the ability to perform a given task, but not nec-

essarily through the same pattern of muscle activation as used

to perform it prestroke) and recovery from impairment (i.e.,

regaining the ability to perform a given task through the same

pattern of muscle activation as used to perform it prestroke).

We are concerned here with prediction of recovery from

impairment (Fugl-Meyer et al. 1975) rather than of recovery of

function. This is because though recovery of function is of great

socioeconomic importance, it is influenced by compensatory

strategies (Lyle 1981; van der Lee et al. 1999; Kwakkel et al. 2004).

A substantial proportion of initial impairment is recovered in

patients with first time, nonsevere hemiparesis by 3 months

poststroke. Using the Fugl-Meyer scale, for example, we pre-

viously observed that a change in measure of recovery (meas-

ured as the change from initial impairment to impairment at 3

months poststroke) in such patients was well described as

0.70�initial impairment (Prabhakaran et al. 2008) (‘‘proportional

recovery’’). Also, recovery at this time point tends to be near

(say within 10% of) asymptotic recovery in this patient sub-

population (Duncan et al. 1992, 1994; Nakayama et al. 1994;

Jorgensen et al. 1995, 1999; Kwakkel et al. 2004, 2006; Swayne

et al. 2008; Verheyden et al. 2008; van Kuijk et al. 2009). The

degree of regularity of the magnitude and time course of this

recovery and its seeming robustness to rehabilitation dose

(reviewed by Kwakkel et al. 2004) have suggested that it is

mediated by a common, ‘‘spontaneous’’ mechanism.

In contrast to patients with nonsevere initial hemiparesis,

~50% of stroke survivors that have severe initial hemiparesis

remain so in the chronic state (Nakayama et al. 1994; Jorgensen

et al. 1999; Hendricks et al. 2002; Kwakkel et al. 2003;

Prabhakaran et al. 2008; van Kuijk et al. 2009). Motor-evoked

potentials (MEPs) at the abductor digiti minimi using trans-

cranial magnetic stimulation (TMS) 1 week poststroke in

patients with severe initial impairment have a positive pre-

dictive value of ~0.95 for recovery of some criterion dexterity

at 3--6 months poststroke but tend to have less impressive

negative predictive value (Hendricks, Pasman, Merx, et al. 2003;

Hendricks, Pasman, van Limbeek, et al. 2003; Swayne et al.

2008; van Kuijk et al. 2009). This might 1) be an artifact of MEP

threshold choice, 2) indicate that MEPs assayed within 1 week

poststroke inherently cannot detect all usable, residual cortico-

spinal (CST) connections early poststroke (perhaps due to

diaschisis corticospinalis; Kwakkel et al. 2004), or 3) indicate

that recovery from hand impairment can be effected through

non-CST, cortical reorganization mechanisms. Furthermore, the

positive predictive value of TMS-evoked MEPs has been ob-

served to act through a delay of a few weeks such that a patient

can be MEP positive while still having substantial recovery in

front of him (Swayne et al. 2008; van Kuijk et al. 2009), which

suggests that cortical reorganization is sometimes also re-

quired, above and beyond CST physiological integrity, to effect

or complete recovery. For these reasons, if functional neuro-

imaging measures cortical reorganization, then it might provide

information about subsequent recovery.

To wit, a multivariate correlation has been reported between

early poststroke, task-related functional magnetic resonance

imaging (fMRI) activation and subsequent recovery in a sample

evincing a wide range of initial impairment (Marshall et al.

2009). However, the magnitude of this correlation does not

directly (or at least simply) imply the accuracy of prediction of

recovery based on fMRI. Here we formally assessed prediction

of the same measure of recovery that we have assessed pre-

viously (Prabhakaran et al. 2008) from its posterior mean given

the combined measurement of initial impairment and fMRI. We

were particularly interested in the contribution of fMRI to

prediction of recovery in patients with severe initial impair-

ment as proportional recovery already seems to provide

accurate prediction of recovery in patients with nonsevere

initial impairment (Prabhakaran et al. 2008).

Among all possible functions of the random variables that are

available as predictors (here, initial impairment and fMRI), the
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posterior mean minimizes the expectation of the squared

prediction error (SPE) of the random variable to be predicted

(here, recovery) (Shao 2003). Computation of a posterior mean

requires a conditional probability density of recovery given

initial impairment and fMRI; the form of this density is thus

a hypothesis being assessed by the quality of the prediction.

Moreover, the free parameters of this density need in practice

to be estimated. Part of this report involves describing the form

of this density and the estimation of its parameters.

Materials and Methods

Ethics Statement
Patients signed informed consent forms as approved by either Columbia

University’s or University of Freiburg’s Institutional Review Boards.

Patient Samples
Two nonoverlapping patient samples were used in this study: 1) an

imaged patient sample for which prediction of recovery was performed

and 2) a nonimaged patient sample from which parameters for the joint

density of recovery, initial impairment, and fMRI were obtained (Fig. 1).

Both samples comprised patients with first time, ischemic stroke with

some degree of clinical hemiparesis (NIH stroke scale for the arm >1

for both the patients studied at Columbia Medical Center and those

studied at the University of Freiburg).

The patients of the imaged sample (N = 30; age = 60.3 ± 9.9 years; 21

male, 28 right handed) were recruited as part of Columbia’s Specialized

Program of Translational Research in Acute Stroke, an National Institute

of Neurological Disorders and Stroke-funded national network to

investigate new pathophysiological, diagnostic, and clinical approaches

in acute stroke. Fourteen of these 30 patients were part of a sample

used in a previous report that did not concern imaging (Prabhakaran

et al. 2008). fMRI results from 23 of these 30 patients were reported

previously in a paper that did not examine prospective prediction of

recovery(Marshall et al. 2009).

The nonimaged patient sample (N = 64; age = 61.6 ± 11.6 years; 38 M,

59 right handed) comprised 24 patients from the University of Freiburg

and 40 patients from Columbia Medical Center. Twenty-seven of these

64 patients were part of a sample used in a previous report that did not

concern imaging (Prabhakaran et al. 2008). Patients with prior

symptomatic subcortical stroke or any prior cortical stroke were

excluded. Also excluded were patients with seizure at stroke onset,

aphasia, neglect, any other cognitive impairment that precluded

training on the fMRI task, or any contraindication to MRI. At Columbia

Medical Center, aphasia was assessed with the Western Aphasia Battery

(spontaneous speech, repetition, naming, and comprehension); neglect

was assessed with line bisection, letter cancellation, and line judgment;

and apraxia was assessed by pantomiming scissors. At the University of

Freiburg, aphasia was assessed with part 9 of the NIH stroke scale and

neglect was assessed with part 11 of the NIH stroke scale; apraxia was

not assessed at the University of Freiburg.

fMRI Data Acquisition
Patients underwent gradient echo echoplanar fMRI (General Electric 1.5

T, 64 3 64 matrix, field of view = 19 cm, 21 slices, slice thickness/skip =
4.5 mm/0 mm, TR = 4000 ms, TE = 52 ms, flip angle = 60�) while

performing the repetitive hand closure task described below. One

session (43 volumes ó 2 min 52 s) was performed per hand. fMRI data

preprocessing was performed as described previously (Marshall et al. 2009).

Motor Task Used during fMRI
The motor task comprised alternations of 20-s epochs for which

patients had been instructed to attempt hand closure (the first such

epoch beginning 12 s after initiation of scanning) with 20-s rest

epochs. Four cycles were performed per hand. The instruction for hand

closure blocks was to close the hand gently from a resting position to

a fist in synchrony with a 1-Hz metronome click that was played

continuously (during both attempted hand closure and rest epochs) via

MRI-compatible headphones in the scanner. Auditory ‘‘start’’ and ‘‘stop’’

commands were given via the headphones at the beginning and end of

each 20-s attempted hand closure block. Separate runs were performed

for the affected hand and unaffected hand (only the data corresponding

to use of the affected hand were used in the current analysis). For

patients with complete hand plegia, instructions were to ‘‘do exactly

what you did with your good hand.’’ That instructions were varied with

initial impairment was understood to be an experimental design error

Figure 1. Schematic of patient sample composition.
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in hindsight. Nevertheless, we could not conceive of any mechanism

for how any confound of scanning design with initial impairment could

artifactually improve prediction of recovery over initial impairment

alone. Task performance was not measured, but grip force dynamom-

etry score obtained on the day of scanning was included as a covariate

in the second-level fMRI analyses (to prevent any task-related fMRI

activation linearly related to dynamometry from contributing to

prediction of recovery). Patients were familiarized with the task

outside of the scanner. No formal assessment of mirror movements was

performed; the potential effect of mirror movements on prediction is

taken up in the Discussion section.

Measure of Impairment
We used the upper limb Fugl-Meyer score (FM) (Fugl-Meyer et al. 1975)

as the upper limb impairment measure. The FM is a valid (Gladstone

et al. 2002; Platz et al. 2005; Woodbury et al. 2008) and highly reliable

(Duncan et al. 1983; Gowland et al. 1993; Gladstone et al. 2002; Platz

et al. 2005; Prabhakaran et al. 2008) measure of upper limb impairment

with a maximum score of 66 (higher score corresponds to less

impairment). FM was assessed both at ~2 days poststroke (FMinitial) and

~3 months poststroke (FM3 months); more specifically, FMinitial (as well as

grip force dynamometry score) was assessed in the imaged sample on

the day of fMRI scanning (2.5 ± 2.2 days poststroke). FM3 months was

assessed in the imaged sample at 96 ± 17 days poststroke. FMinitial was

assessed in the nonimaged sample between 1 and 3 days poststroke

(average not available). FM3 months was assessed in the nonimaged

sample between 81 and 176 days poststroke (108 ± 25 days poststroke).

We chose 3 months as the intended endpoint because it has been

shown that recovery from impairment tends to be near asymptote <3

months poststroke (Duncan et al. 1992; Jorgensen et al. 1995, 1999;

Kwakkel et al. 2004, 2006; Swayne et al. 2008; van Kuijk et al. 2009).

Initial impairment was defined as FMii = 66 – FMinitial.

Measure of Recovery
Our recovery measure was DFM = FM3 months – FMinitial. We chose DFM
as opposed to FM3 months as the recovery measure because, from

a physiological perspective, the process of recovery is not reflected in

the final level of patient performance per se but is instead the

mechanism that takes a patient from initial to final level of performance

(Kwakkel et al. 2006; Prabhakaran 2008).

Dichotomous Categorization of Stroke Severity
A previous study of variability in stroke recovery (Prabhakaran et al.

2008) suggested to us that, up to some suitably high value of FMii, DFM
was approximated well by the proportional recovery relationship:

DFM=bFMii; ð1Þ
with b = 0.70. At higher (i.e., more severe) values of FMii, however, this

relationship qualitatively failed, with a nontrivial proportion of patients

with severe FMii showing a much smaller DFM than that predicted by

equation (1). Here, we consider the threshold FMii that determines this

dichotomy in the relationship between DFM and FMii as a demarcation

between nonsevere versus severe FMii. To get a reasonable estimate of

this demarcation to be used for subsequent modeling steps, Rj (the

correlation coefficient between DFM and FMii computed using the

lowest value of FMii up to FMii,j, where j is an index of the ordered FMii

values) was computed using the nonimaged sample and plotted against

FMii,j. If equation (1) (for any fixed b) held throughout the entire range

of FMii, then the resulting Rj versus FMii,j plot would tend to stabilize

around a decelerating (but increasing) curve as FMii,j increased. In

contrast, if there was a dichotomy as described above in the

relationship between DFM and FMii, then the plot, after an initial

period of stabilization, would begin to appreciably decrease in the

neighborhood of some FMii,j. The plot showed this latter pattern of

behavior (Fig. 2) and subjectively suggested FMii > 56 (5FMinitial < 10)

as a reasonable definition of severe FMii. A patient with an FM of 10 in

the upper limb would have a dense hemiparesis with some proximal

movement but no distal movement. Using this criterion on the

nonimaged sample itself yielded 46/64 patients with nonsevere FMii

and 18/64 patients with severe FMii. Though it was determined in

a completely different way, this criterion closely corresponds to the

value of FMinitial chosen by one other group to define severe

hemiparesis (Shelton and Reding 2001), but it is more inclusive than

that used by another group, which defined as severe those patients

with FMinitial = 0 (van Kuijk et al. 2009).

Model for Recovery versus Initial Impairment
The conditional probability density of DFM given FMii, fDFMjFMii

; is

required for computing the posterior mean of DFM (see Posterior mean

of DFM). Motivated by the previous finding described by equation (1),

we assumed fundamentally a proportional recovery model,

DFM=bFMii +/; ð2Þ
with proportionality constant b and unexplained interpatient variation

/~N
�
0;r2

/) but with 2 flexible model features: First, it was not

required that patients with nonsevere and severe FMii had the same b
or r2

/. Second, it was not required that all patients within a severity

class had the same b or r2
/. These modeling features were motivated by

the data from a previous report (Prabhakaran et al. 2008), which

suggested that b in patients with severe FMii took on more than one

value (e.g., say 2: ~0.70 and ~0). These assumptions are formalized by

stating that separate mixtures of proportional recovery models were

allowed for patients with nonsevere and severe FMii; this implicitly

defines fDFMjFMii
: For each severity category, the number of proportional

recovery models K was varied from 1 to 6 and maximum likelihood

estimates of
�
pl ; bl ;r

2
/;l

�
l=1...K

were obtained from the nonimaged

sample (pl is the weight for the lth component). The Akaike

Information Criterion (AIC) (Stone 1977; Burnham and Anderson

2002) was used to select among fDFMjFMii
. Details are provided in Section

3 of the Supplementary Material.

fMRI-Based Measurement of DFM
We obtained an fMRI-based measurement (Zj) of DFM in the jth patient

in the imaged sample to serve as the fMRI information in computing the

posterior mean of DFMj (see Posterior Mean of DFM). Zj is a corrected

and normalized inner product of the jth patient’s fMRI ‘‘task-related

activation pattern’’ (âj ; a standard first-level statistical parametric T-map

Figure 2. Cumulative correlation coefficient (see text for description) versus FMii for
the nonimaged sample. The arrow marks where we specified the (inclusive) threshold
(which corresponds to FMii $ 56) for defining severe FMii based on where the
cumulative correlation coefficient begins to decrease. We chose to place this
threshold slightly before the apparent decrease so as to be less likely to misclassify
severe strokes as nonsevere.
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(SPM) representing task-related activation) and a ‘‘recovery pattern’’

(d̂–j ; a standard second-level SPM [t] representing correlations between

fMRI and DFM). For those unfamiliar with inner products, one can

heuristically think of a regression model in which âj acts as the

dependent variable and d̂–j acts as the independent variable. Then Zj

can be thought of as a regression coefficient of this model that is

corrected for biases. A proof that Zj is an asymptotically unbiased

estimator of DFMj (given the existence of some linear relationship

between fMRI task-related activation and DFM) is provided in Section 2

of the Supplementary Material. This means that as d̂–j itself is estimated

(see next paragraph) from more and more fMRI data sets, the

difference between E < Zj > and DFM gets closer to zero. The formula

for Zj is provided in Section 1 of the Supplementary Material.

d̂–j itself is estimated from standard linear regression based on

½ðâi ;hi ;DFMi Þ�i2A–j
, where A–j is an index set and hi is an optional

vector of nuisance variables from patient i (see Section 1 of

Supplementary Material); here hi comprised a constant term and grip

force dynamometry score. To avoid artifactual contributions to the

statistical relationship between Zj and DFMj, it is necessary that the

observation
�
âj ;hj ;DFMj

�
not contribute to the computation of d̂–j .

Therefore, j 2 A–j (hence the motivation for the choice of subscript for

d–j), which makes Zj a cross-validatory (CV) estimator of DFMj (Stone

1974, 1977). This type of CV (known as either leave-one-out or N-fold

CV) has the same purpose as split-half CV (Strother et al. 2002): to

determine the prediction error for a dependent variable (in this case,

DFMj) when applying model parameters (in this case, d–j) estimated

from an independent sample. CV is not to be confused with

bootstrapping (the purpose of the latter being estimation of the

variance of an estimator l̂ of a model parameter l by computing l̂
repeatedly via a resampling scheme; Efron and Tibshirani 1981). The

principle of CV is fundamentally related to the idea behind the AIC

(Stone 1977; Burnham and Anderson 2002). If d̂–jwere not estimated

using CV, then estimation of SPE would be biased downward (i.e., it

would lead to an overly optimistic assessment of prediction accuracy in

future patients). The reason we used leave-one-out instead of split-half

is that the former uses the maximum possible sample size for parameter

estimation (d̂–j being a multidimensional parameter) with no drawback

in terms of prediction validity. Software written in MATLAB used in

conjunction with SPM5 (Wellcome Department of Imaging Neurosci-

ence) to compute Zj as well as the fMRI data set are available from the

authors upon request.

In addition to fDFMjFMii
(see Model for Recovery Versus Initial

Impairment), fZ jDFM is also required for the computation of the

posterior mean of DFM (see Posterior mean of DFM). It follows from

the asymptotic unbiasedness of Z that (asymptotically)

Zj=DFMjj + ej ; ð3Þ

where ej is a zero mean random variable. For expedience, we assume

that ej has a Gaussian density, which implies that asymptotically

fZ jDFM

�
Zj

���DFMj

�
is a Gaussian density with mean DFMj and variance r2

e ;

the poorer the accuracy of this assumption the poorer will be the

prediction DFM. The maximum likelihood estimator of r2e is

r̂2e=+
N

j=1

�
DFMj –Zj

�
N

2

: ð4Þ

Posterior Mean of DFM
Given information about a realization of a random variable, the

predictor (or, equivalently, estimator) of that random variable that

minimizes the expected squared error is the expectation of that

random variable with respect to the conditional density of the random

variable given the information (Shao 2003). This density is called the

‘‘posterior density’’ in the context of Bayes’ theorem, and the

expectation with respect to it is called ‘‘the posterior mean.’’ Here,

we wished to predict DFM given the information about it contained in

FMii and/or Z, and so we computed the appropriate posterior means.

Assuming that Z is conditionally independent of FMii given DFM, the

posterior mean of DFM given FMii and Z can be shown to be (see

Section 3 of Supplementary Material)

E ÆDFMjFMii=FMii;j ;Z=Zj æ=

R
v
vfZ jDFM

�
Zj

���v
�
fDFMjFMii

�
v

���FMii;j

�
dv

R
u
fZ jDFM

�
Zj

���u
�
fDFMjFMii

�
u

���FMii;j

�
du

; ð5Þ

where u and v are dummy variables of integration corresponding to the

random variable DFM, which was approximated numerically. In

addition to this model, 3 additional posterior means of DFM were

computed: (conditioning on) FMii, Z and dichotomous stroke severity,

or dichotomous stroke severity (formulae for these posterior means are

provided in Supplementary eqs S3.7, 3.9, and S3.10, respectively, in

Section 3 of the Supplementary Material).

For subject i of the imaged sample, the SPE of DFM

SPEi=ðDFMi – D̂FMi Þ
2
; ð6Þ

where D̂FMi , the prediction of DFMi , was computed under each model

as the posterior mean. The critical test was the comparison of SPE

under conditioning on FMii alone versus that under conditioning on

FMii and Z in the severe subgroup. A 1-tailed, paired t-test was used for

this comparison; the rationale for using a 1-tailed test is that the

alternative hypothesis is that including fMRI improves prediction (i.e.,

lowers SPE) over using initial impairment alone.

Results

Age (average ± standard deviation = 60.3 ± 9.9 years), time

between stroke and assessment of FMii (2.5 ± 2.2 days), lesion

location, FMii (28.9 ± 23.1), DFM (14.9 ± 13.8), and acute

dynamometry (12.3 ± 13.3 kg) for the individual patients of the

imaged sample are presented in Table 1. Patients in the imaged

sample were assessed for FMii and scanned with fMRI at 2.5 ±
2.2 days poststroke for 2 minutes 52 seconds per hand during

the same MRI session as their clinical exams. Patients had been

instructed just prior to scanning to attempt hand closure (for

a specified hand) at an auditorily cued 1-Hz pace (alternating

with rest epochs with matched auditory stimuli). Only fMRI

data from the affected hand were used in this analysis. Follow-

up for assessment of DFM in the imaged patient sample was at

93 ± 17 days poststroke.

Twelve out of 30 patients of the imaged sample had an acute

dynamometry score of 0 kg (Table 1) and thus are likely to have

been unable to execute the instructions of the motor task.

Formally, however, the experimental condition was not the

performance of the task but was rather the instruction to

perform the task: behavior is never directly under experimental

control and so cannot be properly thought of as an

experimental variable. Behavior was not measured, but acute

dynamometry score was used as a covariate in the estimation of

CV fMRI recovery pattern expression (Z), and so any task-

related fMRI activation linearly related to dynamometry could

not contribute to prediction of recovery through Z. For

example, if task-related activation was simply a reflection of

dynamometry score, then Z would be pure noise with respect

to DFM, even though dynamometry and DFM are correlated

(R = 0.56, 2-tailed P = 0.001).

Z was computed in a CV fashion by essentially taking the

inner product of a given patient’s task-related fMRI activation

data with an estimated fMRI recovery pattern whose compu-

tation involved neither that patient’s fMRI data nor their DFM. Z

was significantly correlated with DFM in the net imaged sample

(R = 0.56, 1-tailed P < 0.001; it is not a typo that this is the same

R value as immediately previous). While this result is more

robust than a correlation between non-CV recovery pattern

expression and DFM, it still does not directly indicate the

accuracy of prediction. Thus, we also assessed SPE (squared

Cerebral Cortex December 2011, V 21 N 12 2715



prediction error, an explicit measure of prediction accuracy) in

the imaged sample for posterior means of DFM given FMii and/

or Z. To facilitate appreciation of the magnitude of SPE relative

to the range of the FM (0--66), below we will express SPE in the

form of ‘‘x2,’’ where x is thus in FM units.

The posterior mean of DFM given FMii required an estimated

fDFMjFMii
(which was allowed to be a mixture of K proportional

recovery models for each severity category) and fZ jDFM. Based
on fitting using the nonimaged sample, the minimum AIC

fDFMjFMii
for the patients with nonsevere FMii was K = 3

(p̂1;nonsevere=0:37, b̂1;nonsevere=0:55, r̂2
/;1;nonsevere=27:51,

p̂2;nonsevere=0:31, b̂2;nonsevere=0:81, r̂2
/;2;nonsevere=0:38,

p̂3;nonsevere=0:32, b̂3;nonsevere=0:93, r̂2
/;3;nonsevere=1:22) and the

minimum AIC model for the patients with severe FMii was K = 1

(p̂1;severe=1, b̂1;severe=0:44, r̂2
/;1;severe=376:22). We were sur-

prised that a 1-component model fit best for the severe FMii

group given our previous findings suggesting a mixture of 2

proportional recovery models (one with b ~ 0.7 and one with b
~ 0) (Prabhakaran et al. 2008). Visual inspection of the

nonimaged sample data confirmed, however, that there was

a more even distribution of DFM in the patients with severe

FMii from the University of Freiburg (who were not repre-

sented in that study) than from Columbia University (who

were); we proceeded regardless. The sole parameter of fZ jDFM is

r2
e . Its maximum likelihood estimator was obtained from Z and

DFM in the imaged sample: r̂2e=644.
A preliminary remark is that it is not a mathematical

necessity that SPEs decrease (just as the AIC need not

decrease) as more information is added to the prediction

algorithm; this can be contrasted with the necessary increase of

R
2 for a linear regression model as the rank of the design matrix

increases. We now present the (average) SPE in the net imaged

sample for the various posterior means of DFM: The SPE of the

posterior mean of DFM given dichotomous stroke severity was

162. The SPE given FMii was 102, while the SPE given FMii and Z

was 82. The decrease in SPE in the net imaged sample from

using FMii to using FMii and Z was not significant (t(29) = 1.14,

1-tailed P = 0.13).

A more meaningful understanding of the effect of condi-

tioning is provided by looking at SPE separately in the

nonsevere (N = 23) and severe (N = 7) FMii patient subgroups

of the imaged sample (Table 2; Fig. 3). SPE tends to be much

greater in all models in the patients with severe FMii. Relative to

conditioning on dichotomous stroke severity alone, condition-

ing on FMii improves SPE only in the patients with nonsevere

FMii (nonsevere FMii: DSPE = 132, t(22) = 5.89, 1-tailed P <

0.0001; severe FMii: DSPE = –22, t(6) = –0.66, 1-tailed P = 0.73).

Relative to conditioning on FMii, conditioning on FMii and Z

improves SPE meaningfully, although not significantly, only in

the patients with severe FMii (nonsevere FMii: DSPE = 22, t(22) =
0.98, 1-tailed P = 0.17; severe FMii: DSPE = 122, t(6) = 1.03, 1-

tailed P = 0.17).

A way of reexpressing SPE for a given predictive model is in

terms of the percentage of the total sum of squares of DFM
explained by that model, which equals 100�(1 – [mean SPE for

that model]/[mean DFM2]). Unlike R
2, this value need not be

positive. For patients with nonsevere FMii, this value was 96%

and 97% when conditioning on FMii and [FMii, Z ], respectively.

For patients with severe FMii, this value was 16% and 47% when

conditioning on FMii and [FMii, Z ], respectively.

Discussion

Our opinion is that one focus of stroke research should be the

development of novel, early poststroke treatments (Turton and

Pomeroy 2002; Biernaskie et al. 2004) for those patients likely

Table 1
Basic information for imaged sample

Patient ID Age on date of stroke Time between stroke and FMii (days) Lesion side Lesion location FMii DFM Acute dynamometry (kg)

1 56 4 R IC 62 0 0
2 51 1 L CR/IC 5 5 19
3 59 2 R Pons 3 3 11
4 70 4 B Pons 9 6 33
5 48 2 R Caudate/putamen 3 3 28
6 47 3 L Pons 42 39 1
7 65 2 R S1/M1/inferior parietal 41 38 0
8 63 1 L Thalamus/IC 35 26 0
9 59 2 L Insula/CR 61 6 0
10 65 2 R CR 20 15 5
11 77 2 R Superior parietal/S1/M1 45 34 0
12 67 3 R IC 52 26 0
13 56 3 R CR/external capsule 60 0 0
14 59 3 L Pons 60 40 0
15 42 1 L Insula/CR 7 7 26
16 69 2 L Temporal/occipital/pons 29 27 0
17 78 2 B Occipital/insula/frontal/CR 48 35 0
18 43 2 R Pons 17 13 30
19 48 1 L IC 4 3 21
20 72 2 L Frontal/insula 2 2 16
21 60 2 L Temporal/parietal/pons 17 15 27
22 45 1 R CR 4 4 40
23 59 1 L Pons 58 32 1
24 67 2 R Midbrain/pons 20 18 11
25 61 3 R Frontal/temporal/parietal 18 9 23
26 58 2 L Thalamus/IC 16 12 26
27 72 2 R Pons 3 1 28
28 72 4 R IC/CR 2 1 24
29 67 13 B Medulla/pons 62 28 0
30 55 1 L Pons 61 �1 0

Note: CR, corona radiata; IC, internal capsule; M1, primary motor cortex; S1, primary sensory cortex; R, right; L, left side; B, bilateral.
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to remain severely hemiparetic under current standard care.

Such treatments might include noninvasive brain stimulation

(Williams et al. 2009) and robotics-based rehabilitation (Huang

and Krakauer 2009). However, as such alternative treatments

are likely to be more costly in terms of patient effort and

healthcare resources than standard care, one ideally wants to

exclude patients who would recover substantially under

standard care from such alternative treatments. For this

purpose, early poststroke prediction should have high sensi-

tivity for recovery. But of course, a high specificity would be

desired as well in order to have a low chance of mistakenly

excluding patients who will not sufficiently recover. Thus,

a generally accurate prediction algorithm would be useful for

developing and applying new treatments. An alternative

rationale for early prediction of recovery that is more relevant

for the current state of treatment is to inform patients and

family about expected outcomes and also to direct physical and

occupation therapists to focus on compensatory strategies

rather than recovery from impairment. A promising prediction

finding in this regard is that the presence of finger extension

and shoulder abduction 72 h poststroke yielded positive and

negative predictive values for some recovery of upper limb

dexterity using the action research arm test (ARAT) (for a brief

description of the ARAT, which assesses function, see Van der

Lee et al. 2001) of 0.98 and 0.75, respectively (Nijland et al.

2010). Here we assessed the contribution of fMRI (through Z)

to prediction of recovery from impairment at 2--3 days

poststroke. The combination of Z and FMii led to a non-

significant increase from 16% to 47% of the total sum of squares

of DFM explained in patients with severe FMii. Assuming the

effect size observed here for patients with severe FMii, 42

patients with severe FMii would be required for power = 0.80

(58 for power = 0.90; 73 for power = 0.95) to detect such

a reduction. However, these sample size calculations are

conservative in that as imaged sample size increases, r2
e would

also decrease (and consequently decrease SPE when using Z),

while these sample size calculations assume it will remain

constant. Likewise, use of a larger sample size to estimate

fDFMjFMii
would also tend to lower SPE, while these sample size

calculations do not account for such effects. Regardless, we

take our negative statistical result with regard to prediction as

inconclusive. The significant correlation between Z and DFM
could be taken as an impetus for sufficiently powered studies.

Such studies might also be performed at higher field strength

and acquire at larger voxel sizes to increase signal:noise ratio.

Another reason to consider the negative result inconclusive is

the nature of the samples used. We estimated fDFMjFMii
from

a nonimaged sample combined from 2 institutions. Though the

samples were similar in terms of clinical inclusion and exclusion

criteria, they were unlikely to be matched genetically, educa-

tionally, or socioeconomically (factors which could conceivably

affect recovery). We qualitatively observed (after the decision

had been made to use the combined sample) that the patients

with severe initial impairment from the University of Freiburg

had a less stark dichotomy of DFM than those from Columbia

University. This made fDFMjFMii
for this severity a single broad

Gaussian rather than 2 well-separated, narrower ones (the latter

having been our hypothesis based on the results of a previous

study; Prabhakaran et al. 2008). As the imaged sample

(exclusively from Columbia University) manifested dichotomous

DFM, a speculative explanation for the unimpressive perfor-

mance of the posterior mean based on Z and FMii is that

fDFMjFMii
was too far from ground truth for the population from

which the imaged sample was obtained. In hindsight, we

recognize that we were overeager to expand our sample size

for estimating fDFMjFMii
and consequently did not consider the

possibility of important systematic differences in populations

sampled by the 2 institutions; we hope to be more careful in our

future work.

Current Level of Impairment and Subsequent Recovery
Could Have Different Neural Correlates

While the purpose here was simply to predict DFM from FMii

and fMRI, rather than characterize the brain mechanisms of

recovery, it is important to make clear how the experimental

design we employed relates to those of previous relevant brain

Table 2
Mean SPE of DFM for various prediction models (columns)

Severe/nonsevere
classification

FMii Z and severe/nonsevere
classification

FMii and Z

Net imaged sample (N 5 30) 162 102 132 82

Patients with severe FMii (N 5 7) 202 202 162 162

Patients with nonsevere FMii (N 5 23) 142 42 122 32

Figure 3. Predicted (posterior mean) versus observed DFM when using either 1)
FMii (patients with nonsevere FMii: white squares; patients with severe FMii: black
squares) or 2) FMii and Z (patients with nonsevere FMii: red circles; patients with
severe FMii: blue circles) as the information in determining the posterior density of
DFM. The SPE for a given datum is the (vertical distance to the identity line)2. All data
plotted correspond to the imaged sample.
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imaging studies of stroke. Previous such studies can be

dichotomized into longitudinal (Marshall et al. 2000; Calautti

et al. 2001; Feydy et al. 2002; Ward et al. 2003b,) and cross-

sectional (Ward et al. 2003a; Loubinoux et al. 2003; Loubinoux

et al. 2003; Loubinoux et al. 2007; Jang et al. 2004) designs; the

design of the current study was cross-sectional. Ward et al.

(2003a, 2004) have argued that the existence of positive cross-

sectional correlations between activation and impairment at

the time of scanning in both the early and chronic periods

indicates that patients with more severe impairment need to

utilize ‘‘secondary motor areas’’ to a greater extent than less

impaired patients in order to generate motor output (which is

nevertheless suboptimal). This hypothesis is supported by

a study that showed that the slowing of reaction time induced

by TMS applied to contralesional dorsal premotor cortex

correlates with the degree of impairment (Johansen-Berg

et al. 2002). However, it is not clear how the cross-sectional

correlations observed by Ward et al. (2003a, 2004) relate,

either in a causal sense or simply in a correlative sense, to

subsequent recovery (i.e., recovery that manifests behaviorally

after the time of imaging). Spatial signatures for these 2 types of

theoretical activation signals (considered at any fixed time

poststroke), those related to current level of impairment

(ostensibly reflected in the results of Ward et al. 2003a,

2004) and those related to subsequent recovery (ostensibly

contributing to the current prediction results and similarly to

the correlations from our previous imaging study), need not be

the same. This is because the failure of proportional recovery in

patients with severe initial impairment uncouples current level

of impairment and subsequent recovery; conversely, in the

absence of patients with severe initial impairment who recover

very little, it would not be possible to disambiguate the neural

correlates of current level of impairment and subsequent

recovery. It is therefore of note that the studies of Ward et al.

(2003b, 2004) seem not to have included any such patients,

which implies that their reported correlations from the early

period could be an admixture of those related to current level

of impairment and those related to subsequent recovery. This

could possibly be an explanation of their finding that certain

correlations detected early were not detected later poststroke

(the ones only detected early possibly being related to

subsequent recovery) (Ward et al. 2003b, 2004).

Three cross-sectional studies have concerned correlation

and/or prediction of future impairment level (as opposed to

change in impairment) (Loubinoux et al. 2003; Jang et al. 2004;

Loubinoux et al. 2007). Two of these studies from the same

group were correlative (i.e., not predictive) and yielded

inconsistent results with respect to one another (Loubinoux

et al. 2003, 2007). The third study (Jang et al. 2004) attempted

prospective prediction based on an arbitrary decision criterion

applied to voxel-wise activation data in a primary sensorimotor

cortical region of interest; the resulting prediction accuracy

was poor. This type of approach was not devised to be optimal

given the region of interest chosen, nor did it reasonably

weight all potential spatial sources of relevant functional

imaging signal (Kjems et al. 2002; Strother et al. 2002; O’Toole

et al. 2007). In contrast, the approach taken in the current

study was to use the posterior mean (which is an optimal

estimator given a conditional density) and also to use all the

linear information about DFM present in multivariate fMRI data

(not just that from a single region of interest). However,

neither study yielded impressive prediction.

MEPs and Recovery in Patients with Severe Initial
Impairment

The volume of anatomical damage per se seems insufficient to

explain the majority of the variation in recovery in patients

with severe initial impairment (Binkofski et al. 2001; Shelton

and Reding 2001; Konishi et al. 2005; Cho et al. 2007). MEPs

ostensibly measure the functional nature of the damage

sustained to the CST (van Kuijk et al. 2005), as opposed to

the total lesion volume. Pooling data from 3 studies that

examined MEPs in hemiplegic patients within the first 10 days

poststroke (Hendricks et al. 1997; Hendricks, Pasman, Merx

et al. 2003; van Kuijk et al. 2009), positive predictive value for

recovery was 0.94 and negative predictive value was 0.83. Thus,

while it does seem that the degree of functional CST damage is

a critical determinant of recovery, recovery is possible in 15--

20% of cases where functional CST damage seems complete;

this recovery could depend on brain plasticity. Moreover,

patients MEP
+
at 1 week tend not to reach their recovery

endpoints until 1--3 months later (Swayne et al. 2008), which

suggests that even in the presence of residual monosynaptic

connections from primary motor cortex (M1) to spinal

motoneurons, some sort of plasticity mechanism which lasts

for several weeks poststroke is required to allow their effective

use. fMRI could be sensitive to these putative brain plasticity

mechanisms. It would therefore be of interest to specify

a conditional density (or better, several densities representing

different hypotheses) for recovery given initial impairment,

fMRI, and MEPs.

Caveats

No behavioral measure was acquired during imaging. There-

fore, the correlation between Z and DFM could be due to

individual differences in behavior during imaging. Such

behavior can include, but is not limited to, mirror movements,

which have been estimated to occur 70% of the time during

repetitive squeezes using the affected hand and correlate with

severity of impairment of the affected hand (Nelles et al. 1998).

Activation of contralesional motor cortex correlates with

individual differences in mirror movements in hemiparetic

stroke patients (Wittenberg et al. 2000; Kim et al. 2003).

However, even if individual differences in the degree of mirror

movements during imaging were causal to the observed

correlation between Z and DFM, it would not invalidate

prediction of DFM based on fMRI using the current design.

This is because the metric for prediction is the magnitude of

prediction error; nothing more, nothing less (Akaike 1974). While

it is true that the inclusion of more controls at the experimental

design (e.g., clamp performance in the scanner) and/or analysis

stages (e.g., include a covariate for performance in the scanner)

could potentially improve prediction by reducing the variance of

d̂, it is logically incorrect to say that a degree of prediction

obtained in the absence of such controls ‘‘does not count’’ or is

‘‘artificially too high.’’ This is an important difference between

predictive and causal modeling, and this was a prediction study.

If the correlation between Z and DFM were caused only by

correlations between 1) FMii and the degree of mirror

movements (Nelles et al. 1998), 2) mirror movements and

contralesional M1 activation (Wittenberg et al. 2000; Kim et al.

2003), and 3) FMii and DFM (Prabhakaran et al. 2008), then

(assuming the measurement noise of FMii is negligible) Zwould

not improve the prediction of DFM over that provided by FMii

2718 fMRI and Prediction of Recovery d Zarahn et al.



alone. The empirical result was that while recovery pattern

expression was significantly correlated with recovery, its

contribution to the prediction of recovery over that provided

by initial impairment alone was not statistically significant.

Thus, the result is on its face consistent with mirror move-

ments having contributed to recovery pattern expression. In

future studies, mirror movements could be measured quanti-

tatively and included as a covariate in recovery pattern

estimation (see fMRI-based Measurement of DFM); this would

eliminate any (linear) contribution of mirror movements to Z.

Doing so could 1) reduce unexplained variability in the fMRI

data (good for prediction, as it ceteris paribus decreases the

variance of the recovery pattern d̂ and hence decreases r2e ), 2)
reduce the amount of variation in the fMRI data uniquely

attributable to DFM (bad for prediction, as it ceteris paribus

increases variance of d̂ and hence increases r2e ), and 3) increase

the complexity of the model by adding more parameters

(which is bad for prediction, as it ceteris paribus increases r2e ).
The net effect on the accuracy of prediction of DFM would

depend on the balance of these effects.

It is possible that some patients did not perform the

instructed movement with the affected hand at all during

imaging. Indeed, 12/30 patients in the imaged sample had

a grip force dynamometry score (of the affected hand) of 0 on

the day of scanning; recovery was heterogeneous in this

subgroup (Table 1). In the prediction algorithm, both the

estimation of d and the computation of Z use dynamometry

score as a covariate such that any systematic component of the

fMRI signal that is linearly dependent on grip force dynamom-

etry has no effect on the prediction of DFM. Thus, if the

intensity of movement (say the across-click average of the

maximal torque produced by the effector per metronome

click) during scanning is linearly related to dynamometry score,

then whether subjects actually moved or not is irrelevant to

prediction of DFM in this model. If instead, the intensity of

movement during scanning is only weakly correlated with

dynamometry score (or not correlated at all) and if the pattern

of brain activation associated with intensity of movement is

strongly ‘‘spatially’’ correlated with the recovery pattern, then

this would reduce the signal:noise of Z (as the random,

unmodeled variations across subjects in intensity of movement

during scanning would lead to activations similar to those

associated with recovery and hence add noise to Z) and hence

worsen prediction. If this were the case, then measurement of

the intensity of movement within the scanner would allow for

improved prediction. A third possibility is that brain activation

correlates of recovery are modulated by the intensity of

movement; if so, failure (as in the current study) to account

for this modulation (i.e., interaction) would lead to a worsened

prediction. It is again worth noting that there is no way that

failure to account for movement (or anything else) could lead

to an artificially good prediction of DFM.

The patients in the imaged sample had predominantly sub-

cortical strokes. It is an empirical question as to whether fMRI

would contain predictive information about recovery for large

cortical strokes. If the cortical regions damaged were critical for

recovery, thenperhaps thiswouldbe reflected in lowerZ (inwhich

case, the predictive information of Zwould be preserved).

Conclusion

In conclusion, we found that prediction of recovery in patients

with nonsevere initial impairment was accurate based on initial

impairment alone. In contrast, prediction of recovery in

patients with severe initial impairment was poor based on

initial impairment alone and was not statistically significantly

improved by the inclusion of fMRI acquired at 2 days

poststroke. However, the significant correlation between fMRI

and recovery might provide a motivation for further assessment

of prediction using adequately powered studies and more

carefully considered samples.
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