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ABSTRACT

When evaluating sequence similarities among nucleic acids by
the usual methods, statistical significance is often fouind when
the biological significance of the similarity is dubious. We
denonstrate that the known statistical properties of nucleic acid
sequences strongly affect tne statistical distribution of
similarity values when calcuilated by standard procedures. We
propose a series of iiodels which account for some of these known
statistical properties. The utility of the method is
demonstrated in evaluating high relative similarity scores in
four specific cases in which there is little biological context
oy which to judge the simnilarities. In two of the cases we
identify the statistical properties which are responsible for the
apparent similarity. In the other two cases the statistical
significance of the similarity persists even when the known
statistical properties of sequences are modelled. For one of
these cases biological significance is likely while the other
case remains an enigma.

INTRODlJCTION

When apparently similar subsequences are detected between

two nucleic acid sequiences, an important que.stion is: Does this

degree of similarity imply an evolutionary or functional

relationship between the subsequences? This question is

particularly relevant when there is little or no biological

context in which to judge an apparent similarity. such a

situation will increasingly arise with the advent of large

sequence data banks and the development of rapid, sensitive

mnethods with which to search for similarity (1).
Statistical methods are often usefuil in answering this

question. Typically, a distribution of similarity scores among

sequences which do not share an evolutionary or functional

relationship is used to find a significance level associated with
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a comnputed similarity score. The distribution of siTnilarity

scores may be a theoretically determined distribution (e.g., the

normal curve), or the distribution may be generated by Monte

Carlo methods. The standard Monte Carlo method involves

generating reference sequences which retain only the base

composition and length of the original sequences.

However, using current statistical methods, one often

encounters sequence similarities which are identified as

statistically significant, but their biological significance is

unclear, and perhaps, even dubious. A possible explanation for

this situation may be that the set of reference sequences (the

state space) sampled by the statistical method is not

representative of the true statistical distribution from which

the specific sequences were taken. More specifically, the

similarity values between sequences in the reference set may be

unrealistically low. Recent results on the statistical
properties of sequenced nucleic acids suggests that some

statistical patterns are common amoung sequences which do not

have a verified functional or evolutionary relationship on the

sequence level.

For example, Nussinov (2) has described universal rules on

dinucleotide assymetry, which govern doublet frequencies.

Fickett (3) and Smith, et al. (4) have detected statistical

properties unique to coding sequences. Grantham, et al. (5,6)
have compiled extensive data on codon usage clearly demonstrating

a nonrandom use of synonymous codons, while, Lipman & Wlilbur (7)
have subsequently shown a contextuial constraint on synonymous

codon usage in eukaryotes. Data is also accumuilating on the

nonuniform base composition along nucleic acid sequences (i.e.

adenine clusters, adenine & thymine rich regions) (8,9).
The statistical patterns are held to be largely the result

of functional constraints acting on the evolution of sequences.

These constraints may be virtually universal (2,8) or they may be

different in coding versus noncoding regions (3). In either

case, such statistical patterns might influence the distribution
of similarity values between randomly chosen pairs of nucleic
acid sequences. Recently, Fitch (10) proposed retaining the

nearest neighbor frequencies of the original sequences in a Monte
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Carlo method, however he did not, with the exception of two

hypothetical examples, examine the effect of this modification.

We will show that two known statistical properties of

sequences, the nearest neighbor frequencies, and the local

fluctuations in base composition, can greatly affect the

distribution of similarity between randomly generated

sequences. We will also demonstrate that the choice of

statistical model can affect conclusions regarding the

statistical significance of similarities detected between

specific pairs of sequences. We propose that consideration of

the shared statistical properties of nucleic acid sequences will

assist in understanding the relationship between statistical

significance and biological significance.

METHODS

Similarity between two sequences was determined using the

local similarity algorithm of Smith & Waterman (11). A

similarity score is obtained by adding the number of base matches

with penalties assessed for the number of mismatches, gaps and/or

for each base in a gap. The algorithm considers all possible

alignments of two sequences and finds the subsequences with the

best possible score under the scoring rules. The scoring rules

used in all comparisons were,

match = +1.0

mismatch = -0.9

each base in a gap = -2.0

A similarity score for a given alignment is the sum of all the

matches, mismatches and gaps, weighted by the above factors. The

algorithm will find the alignments which correspond to the

highest possible score.

The comnputer simnulations of various statistical models will

be described in the Results. Computing was done on the DE.C KL-

10, and VAX 11/780 computers at the National Institutes of

Health, and on the CRAY1 computer at Los Alamos National

Laboratory. All sequences were taken from the National

Institutes of Health DNA Data Bank of Los Alamos Scientific

Laboratory (Genbank).
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RESIJLTS

To examine the effect of the statistical properties of

sequences on the distribiition of similarity valiues, a set of 100

vertebrate nucleic acid sequences was randomly chosen from

Genbank (the library set). The Genbank sequences had previouisly

been screened to remove exceptionally long or short sequences. A

subset of ten sequences (the query set) was also randomly chosen

and each of its members were compared for local similarity with

all 100 sequences in the library set. The mean, median and

estimnated standard deviation of the resulting 1000 similarity

scores were computed and are in Table T.

Three subsequent sets of comparisons were also made with

randomized sequences which retained specified statistical

properties of the library set.

Randomized Set A (base composition preserved):

One hundred sequences were generated retaining the length

distribution as well as the base composition of the

library set. Two techniques exist to accomnplish this

task. The usual one is to generate a random sequence

where the (independent) probability of a base in any

Table I

SET MEAN MEDIAN E.S.0.1

The Library Set 15.0 14.8 4.44

Randomized Set A

(base composition 13.3 13.3 2.81

preserved)

Randomized Set B

(nearest neighbors 14.7 14.7 3.25

preserved)
Randomized Set C

(local base composition 13.5 13.7 3.85

preserved)

1. Estimated Standard Deviation: calculated as .740 *

(interquartile range), which is unbiased for the standard

deviation if the distribution is normal.
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position is proportional to its composition in the

original sequence. Second is the shuffling technique

where a randomn permutation of the original sequence is

calculated (12). For sequences of length
gredter than 30, these two techniques are equivalent.

Randomized Set B (nearest neighbors preserved):

One hundred sequences were generated retaining the length
distribution and nearest neighbor frequencies of the

library set.

Randomized Set C (local base composition preserved):

One hundred sequences were generated retaining the length
distribution and base composition of the library set as

well as the pattern of fluctuations in base composition
along each sequence (i.e. regions rich in adenine and

thymine remained so). This was done by shuffling the

sequence within 12 base blocks; the blocks overlapped

each other by 3 bases. This choice of block size and

overlap size were somewhat arbitrary. Small variations

in block size and overlap size however have little effect

on the final results.

The query set sequences were compared to each of the

randomized library sets. 1000 pairwise comparisions were thus

made for each case, the mean, median, and estimates of spread or

standard deviation were calculated and are shown in Table I.

Figure 1 contains histograms of the different sets of

pairwise comparisons. The upper histogram is based on the

comparisons among the real sequences and the lower histograms are

based on comparisons among the different sets of randomized

sequences. Sequence comparisons resulting in similarity scores

greater than 36 are not shown. For the real sequences, most

pairs with scores greater than 36 represented known homologies
(i.e. related protein coding regions or repetitive elements).
Those pairs in the group below 36 undoubtedly share short

homologies such as Pribnow boxes, or some heretofore

unidentified, related repetitive elements. For the Set A

comparisons (base composition preserved) and Set B comparisons
(nearest neighbors preserved) there were no scores greater than
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Figure 1:

Similarity comparisons of Query Set with indicated reference
sets. Upper Histogram: Query Set versus Library Set.
Lower Histogram: Query Set versus Randomized Set A (base
composition preserved), solid line; Randomized Set B (nearest
neighbors preserved), "+"; Randomized Set C (local base
composition preserved), "o".

30. For Set C comparisons (local base composition preserved)
there were 15 scores greater than 36.

Consistent with the means and standard deviations shown on

Table I, the area under the right hand tail of the histogram is

least in the comparisons between Set A sequences (base
composition preserved). In addition, the histogramns for the Set

B, and the Set C comparisons are more similar to the histogram
for the real sequences than is the histogram for the Set A

comnparisons. Thus it is clear that the distribution of

similarity values is dependent on the statistical distributions
of the ensemble of sequences being considered.
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We now examine how the choice of statistical model can

affect conclusions regarding the statistical significance of

sinilarity values of specific pairs of sequences. Four

particular comparisons were chosen because of their relatively

high respective similarity scores, and because of the lack of

bioloyical context in which to judge the significance of the

siimilarities fouind. (The choice of pairs was not influenced by

whether or not a member of a pair coded for protein.) The pairs

are listed in Table II.

We will evaluate the statistical significance of

sinilarities detected with respect to three models.

the

Model A (base composition preserved)

The degree of similarity found between two sequences is

due to global similarity in the base composition of the

sequences.

Table II

1. The number of standard deviations above mean, using the values
on Table I.
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Pair #1 (similarity score=31.5, 3.8 s.d. above mean1)
Human alpha-2 globin gene:
The subsequence encompassed the 3' flanking region, the
first exon and approximately the first half of the first
intervening sequence.
Xenopus laevis ribosomal RNA genes:
The subsequence between the lgs ribosomal RNA gene and the
5.8s ribosomal RNA gene.

Pair #2 (similarity score=37.6, 5.1 s.d. above mean)
Human leuikocyte (lambda alpha-2) cDNA:
The 5' flanking region.
Human delta globin gene:
The 3' end of the second intervening sequence.

Pair #3 (similarity score=37.7, 5.2 s.d. above mean)
Mouse Bl repetitive cDNA, copy A:
The subsequence encompassing the B1 consensus sequence.

Rat preprolactin gene;
The subsequence within the first intervening sequence.

Pair #4 (similarity score=29.4, 3.3 s.d. above mean)
Mouse H2 transplantation antigen cDNA:
The subsequence within first third of cDNA.
Rat preproinsulin gene:
The subsequence fromn 3' end of second intervening sequence
through coding region #2.
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Model B (nearest neighbors preserved)

The degree of similarity found between two sequences is

due to similarity in the nearest neighbor frequencies of

the two sequences.

Model C (local base composition preserved)

The degree of simnilarity found between two sequlences is

due to local similarities in the base composition of the

two sequences.

To indicate the statistical significance of a similarity

under each of the above models, a mean and standard deviation is

determined for 100 randomized sequence pairs; each se,quence in a

pair retaining either the overall base composition (Model A),

nearest neighbor frequencies (Model B), or local base composition

(Model C) of its respective original sequence. To maintain

doublet frequencies, we used an algorithm similar to that of

Fitch (1983) (Our algorithm does not have the possibility of

nonuniform sampling of the state space and will be reported on

elsewhere.). To maintain local base composition, the bases

within nonoverlapping four base blocks of a sequence are

shuffled. This is the smallest blocksize which insures adequate

randornization. The number of standard deviations above the mean

for each model is displayed in Table Ill.

For pair #1, the three models cannot be discriminated

between. The relative similarity between this pair is adequately

accounted for by base composition alone (Model A). While Models

A and B do not account for the similarity valuie of pair *2, Model

C clearly does. Thus the relative similarity between pair *2

appears due to similar, nonrandom local fluctuations in base

Table Ill

Significancel under each Model

Pair
#1 *2 $3 #4

Model A <0 4.4 23.5 12.2
Model B <0 6.3 12.1 7.6
Model C <0 0 5.7 5.

1. The number of standard deviations from the mean.
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composition. Without this analysis, simply running a Model A

Monte Carlo gives the irnpression of high statistically

significant simnilarity. Pairs *3 and * 4 require a more detailed

examination which is given in the discussion.

DISCUSS ION

Table I and Figure I show how strongly statistical

properties known to be present in biological sequences affect the

distribution of similarity values. As an example, consider a

similarity score of 24. 1000 comparisons among Set A sequences

(base composition preserved), which lack statistical properties

present in real sequences, produced a score of 3 24 only three

times. Randomized Set B (nearest neighbors preserved) produjced a

score of > 24 thirteen times, while Randomized Set C (local hase

composition preserved) produced a score > 24 sixty three

times. This, although the sequences in sets A,B, and C are

randomn, the distributions of their respective sifmilarity scores

are clearly different. A given similarity score would be

considered more significant under Model A then under Model C.

What then should the reference set be?

Perhaps the ideal similarity score distribuition for

evaluating the evolutionary significance of an apparent

similarity would be determined from a large, representative

sample of all naturally occuring nucleic acid sequences from the

same taxon and encoding the same kind of information (protein,

structural RNA, regulatory signals, etc.), which do not have a

known evolutionary relationship at the sequence level. The upper

histogramn of Figure 1 would seem to be just suich a

distribution. Its most imnportant failing is that the current

nucleic acid sequence data bank does not yet contain a

representative sample of all naturally occuring nucleic acid

sequence types. Thus, while this ideal reference set would be

desirable, it is not a realistic option with the present data

base.

An available alternative is the combination of Monte Carlo

methods we used to evaluate specific examples of Table II. Pair

#1 provides an excellent example of the weakness of using a
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representative sample of the present limited data base as a

reference set. Although the simlilarity score is 3.8 standard

deviations above the mean for this set, one would not reject

Model A for this pair. The relatively high similarity score was

due to a long stretch of biased base composition, apparently only

rarely seen in the data bank. If, however, the data bank did

contain a truly representative sample of all naturally occulring,
unrelated sequences, then a high relative similarity score based

solely on a global similarity in base composition may be

sufficient to suggest relatedness. For Pair i2 the relatively

high similarity score was explained by similarities in local base

composition, Model C, but not by Models A or B. In this case,

the subsequences matched were extremely guanine and cytosine

rich. Rejecting Models A and B but not Model C does not

necessarily imply that there is no functional or evolutionary
relationship between the two subsequences. It however

establishes that the similarity is random within local regions

and is therefore a useful analytical tool. We have observed

instances of known biological similarities where the relationship

appears random at the local level. In these cases, an overall

architecture of large fluctuations in base composition appears

important and not a particular sequence of bases.

Although the level of significance for pair #3 decreases

dramatically trom Model A to Model C, one would conclude that the

similarity detected was statistically significant. This wouild

suggest that there is a relationship between a subsequence within

an intervening sequence of the rat prolactin gene and a mouse 81

sequence (an Alu like repetitive sequence). Gubbins, et al. (13)
in their analysis of the rat prolactin sequence reported that the

intervening sequences of the rat prolactin gene contained

sequences repeated elsewhere in the rat genome. This observation

and the rigorously established, statistically significant
similarity between the mouse Bl sequence and a subsequence within

the first intervening sequence of the rat prolactin gene,

strongly suggest that this rat subsequence is an Alu like

repetitive sequence.

All three models can be rejected for pair #4 and thus one

can conclude that there is a statistically significant similarity
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between the two matched subsequences. The biological

significance of this similarity is however unclear. The rat

preproinsulin subsequence spans an intervening sequence and a

protein coding region while the mouse transplantation antigen

subsequence is entirely protein coding. Because of the locations

of gaps and mnismnatches in the alignment, the level of similarity

between protein coding regions decreased when translated into the

amino acid sequence. This unexpected similarity remains an

enigma and is evidence of the distinction between biological and

statistical significance.

So far we have demonstrated that the standard Monte Carlo

methods of assessing statistical significance, by ignoring the

statistical properties of biological sequences, may give

unrealistic results. The statistical methods used by Korn, et

al. (14), Brutlag, et al. (15) and Goad & Kanehisa (16), may

give unrealistic estimates of significance because they are based

on assumptions which also ignore the statistical properties of

biological sequences. The mathematical expression developed by

Goad & Kanehisa (16) has additional problems in that it can be

shown that it does not sum to unity over all the possible states,

in fact it can result in probabilities > 1. All of these

methods may he nelpful at times but are clearly deficient when

the estimation of statistical significance is critical in

evaluating an apparent similarity.

In those instances when the estimation of statistical

significance is critical, the approach we have employed should be

useful. By testing for statistical significance in this series

of models, one can be assured that a statistically significant
similarity is the result of a higher level (though not

necessarily biologically significant) relationship between the

sequences than the shared, nonspecific constraints which, to a

large extent, determine the statistical properties of biological
sequences. When the similarity values fit a model, one can

determnine which statistical properties are responsible for the

apparent similarity. This information will be useful in giving a

perspective on the relationship of the two sequences,
particularly as we learn more about the forces which determine

the statistical properties of sequences.
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A disadvantage of this inethod is that it requires mo(derate

computation. A useful observation therefore is that although it

is clear the doublet frequencies affect the distribution of

similarity and controlling for the doublets greatly reduced the

significance of mnost similarities, we have not yet found an

example in which the concltision of statistical significance was

altered by imposing Model B (nearest neighbor frequencies

preserved), although we assume that such examples exist.

Therefore, in iany instances, it may not be necessary to include

this test.

Even when imposing somne of the important statistical

properties of sequences, apparent similarities (such as that

between pair #4, the rat preproinsulin gene and the mouse B2

transplantation antigen) inay be found which have a poorly

understood biological hasis. Such enigmas may eventually be

explained by experiment or by further imnprovements of the

statistical model.
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