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Abstract
MicroRNAs (miRNAs) are 22 nt non-coding RNAs that regulate expression of downstream
targets by messenger RNA (mRNA) destabilization and translational inhibition. A large number of
eukaryotic mRNAs are targeted by miRNAs, with many individual mRNAs being targeted by
multiple miRNAs. Further, a single miRNA can target hundreds of mRNAs, making these small
RNAs powerful regulators of cell fate decisions. Such regulation by miRNAs has been observed in
the maintenance of the embryonic stem cell (ESC) cell cycle and during ESC differentiation.
MiRNAs can also promote the dedifferentiation of somatic cells to induced pluripotent stem cells.
During this process they target multiple downstream genes, which represent important nodes of
key cellular processes. Here, we review these findings and discuss how miRNAs may be used as
tools to discover novel pathways that are involved in cell fate transitions using dedifferentiation of
somatic stem cells to induced pluripotent stem cells as a case study.

MicroRNA-mediated suppression of mRNAs
Details of how miRNAs recognize and downregulate their downstream mRNA targets can
be found in other excellent reviews [1–3] and the topic is only briefly discussed here.
MiRNAs are approximately 22nt long small RNAs that regulate their targets through
incomplete nucleotide complementation. Most miRNA-mRNA targeting occurs through
base-pairing between a short sequence located at the 5′ end of the miRNA, called the seed
sequence, and its mRNA target. This seed sequence, ranging from nucleotide positions 2–8
in the miRNA, largely defines the miRNA’s downstream targets and hence is the basis of
most target prediction programs (reviewed in [1]). Exceptions to seed sequence pairing
exist, but these make up a much smaller repertoire of miRNA-mRNA targeting events [4].
The exact consequence of miRNA-mRNA pairing is controversial, although the end result is
both a decrease in mRNA and protein levels [5–8]. Interestingly, within cells, pairing
between miRNA-mRNA can be regulated by various mechanisms including co-expression
of the target and miRNA, alternative poly-adenylation leading to alternative 3′UTRs of
mRNAs, and protein based enhancement or suppression of specific miRNA-mRNA pairing
[9–17]. Ultimately, this minimal requirement of nucleotide complementation for miRNA-
mRNA pairing results in a single miRNA suppressing hundreds of targets [1].

MicroRNA Redundancy
Studies in miRNA function have been complicated not only by the fact that a single miRNA
regulates multiple targets, but also by functional redundancy among miRNAs in many, if not
most, biological processes [18–20]. This redundancy results in part from miRNAs existing
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in large families sharing common seed sequences that can be co-expressed in the same cell,
and hence share overlapping downstream mRNA targets [20]. Redundancy also occurs at the
level of co-targeting where multiple distinct miRNAs with very different sequences
commonly target a single transcript through non-overlapping sites [21].

A powerful means of overcoming this redundancy in order to study individual miRNA
function in a given biological setting is to first remove all miRNAs and then reintroduce
individual miRNAs mimics. Global removal of miRNAs is made possible by deleting genes
encoding proteins responsible for the processing of miRNAs. The biogenesis of most
miRNAs requires two essential processing steps: primary- to precursor-miRNA by the
DGCR8/DROSHA complex and precursor- to mature miRNA by DICER [22,23]. Knockout
alleles for all three genes encoding these proteins have been made, thus providing powerful
tools with which the function of individual miRNAs can be studied [24–28].

MicroRNA functions in embryonic stem cells
Deletion of Dgcr8 or Dicer in embryonic stem cells (ESCs) results in two interesting
phenotypes, a proliferation defect and a block in differentiation [20,26–29]. The
proliferation defect is associated with an accumulation of cells in the G1 phase of the cell
cycle. In a screen conducted to identify miRNAs that could rescue this phenotype, members
of the miR-290 and 302 clusters were uncovered [20]. The miR-290 cluster is highly
expressed in mouse ES cells, while the 302 cluster is highly expressed in human ES cells
[30,31]. The specific members of these clusters that rescue proliferation share a common
seed sequence and are collectively termed the ESCC family of miRNAs for ESC cell cycle
promoting miRNAs. The ESCC miRNAs target a number of important cell cycle regulators.
These included the CDK inhibitor Cdkn1a, the tumor suppressor Lats2, and members of the
RB family of proteins. Expression of Cdkn1a without its 3′UTR in wild-type ES cells
partially recapitulates the cell cycle phenotype of Dgcr8 knockout cells, indicating that
Cdkn1a can only partially explain the effect of ESCC miRNA loss [20].

In addition to the cell cycle defect, Dgcr8 knockout ES cells fail to downregulate
pluripotency factors when cultured under differentiation-inducing conditions [28,29].
Introduction of members of the let-7 family of miRNAs can rescue this defect. Let-7
miRNAs are highly expressed in differentiated tissues and hence are well positioned to
repress the self-renewal program [32]. Profiling after introducing let-7 into Dgcr8 knockout
cells combined with bioinformatic analyses reveals a large number of likely targets for this
family of miRNAs [29]. These targets include multiple well-known pluripotency genes such
as nMyc, Sall4, and Lin28. Interestingly, Lin28 is an inhibitor of let-7 biogenesis producing
a double negative feedback loop [33]. Members of the let-7 family of miRNAs are not the
only miRNAs shown to promote silencing of ESC self-renewal. For example, miR-145 and
miR-134 silence self-renewal of human and mouse ESCs respectively. MiR-145 targets
Oct4, Sox2 and Klf4, while miR-134 targets Nanog and LRH1, all important pluripotency
genes [34,35].

Collectively these studies show that miRNAs are critical regulators of the switch between
ESC self-renewal and differentiation. While a single miRNA family, the ESCC family,
seems to be largely responsible for promoting ESC self-renewal, multiple miRNAs can
promote differentiation [36]. Importantly, each of these miRNAs is predicted to have many
downstream mRNA targets.

One microRNA – many targets
Historically, most miRNA phenotypic studies have focused on one or a small number of
targets. These include classic examples such as the regulation of lin-14 by the small RNA
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lin-4 and the regulation of lin-41 by let-7 in worms [37,38]. However, it is becoming
increasingly apparent that regulation of a single target by a miRNA is unlikely to explain
how they function in most situations. Indeed, the power of miRNAs influencing a cell fate
decision is likely through their ability to alter levels of many genes and pathways
simultaneously. For example, the introduction of a lineage-specific miRNA (miR-124) into
HeLa cells (tumor cells of cervical origin) results in a global shift in their expression profile
towards that of a cell of the neural lineage. Much of the shift can be attributed to direct
targeting by the miRNA, as there is a strong enrichment of seed matches in the 3′UTRs of
downregulated genes [7].

Functional experiments have corroborated these early findings. For example, a number of
miR-124’s targets have since been confirmed as direct targets with functional relevance to
neuronal differentiation [39–41]. Another example is miR-31, which is repressed in
metastatic breast cancer cells, while its targets including RhoA, Fzd3, ITGA5, M-RIP,
MMP16 and RDX are upregulated [42]. Co-expression of three targets, ITGA5, RDX and
Rho in breast cancer cells overcomes the block in metastasis upon overexpression of
miR-31, while individual targets had only a partial effect [43]. Additional examples of
miRNAs with multiple targets in common processes are provided in Table 1. However, this
list is not comprehensive.

Induced pluripotency – resetting the clock
In 2006, Yamanaka and colleagues demonstrated that the introduction of four transcription
factors, Oct3/4, Sox2, Klf4 and cMyc into somatic cells, resulted in their conversion into
pluripotent cells, called induced pluripotent stem cells [44]. While many groups thereafter
have also succeeded in creating induced pluripotent stem cells from a variety of starting cell
populations, little is known about all the changes that a cell has to undergo to become
pluripotent. Furthermore, reprogramming remains to date a slow and relatively inefficient
process and a better understanding of downstream events after introduction of the Yamanaka
factors would enable us to develop patient-specific iPS lines in a faster and safer manner.
Often cells become trapped in a partially reprogrammed state following introduction of the
factors [45–47]. These cells are self-renewing, but not pluripotent. The comparison of
partially reprogrammed cells to fully reprogrammed cells or embryonic stem cells or to the
starting population of differentiated cells has provided valuable insight into the roadblocks
during the process of reprogramming [46,47]. Such comparisons have revealed that
reprogramming of MEFs to iPS cells requires a genome-wide alteration of epigenetic marks.
This includes the conversion of monovalent histone methylation marks such as H3K4me3 or
H3K27me3 to bivalent marks at developmental genes; the reactivation of transcription of
pluripotency genes and the loss of DNA methylation from a large part of the genome [48].
In support of the role of epigenetic modifications during dedifferentiation, treatment of cells
with small molecule inhibitors to HDACs, DNA methyltransferases and the G9a
methyltranferase have been shown to enhance the process of reprogramming [46,49–51].
Transcriptional profiling of partially reprogrammed cells indicates that while a number of
genes associated with cell proliferation and DNA synthesis are upregulated, genes such as
Cdkn1a which regulate cell cycle checkpoints are also expressed at high levels. Indeed, a
number of studies have reported that knockdown of Cdkn1a, p53 or Ink4/Arf enhance the
efficiency of reprogramming [52–57]. In addition to the involvement of epigenetics and cell
cycle in the process of reprogramming, the conversion of cells from a mesenchymal to an
epithelial state is also required [58,59]. Thus, the acquisition of pluripotency is associated
with a number of changes in the state of the cell, of which only a few are known.
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MicroRNAs and induced pluripotency: pathway discovery during cell fate
transitions

Similar to small molecules, miRNAs can influence reprogramming. The ESCC miRNAs and
the closely related miR-106 family enhance the efficiency of reprogramming [60–63].
Indeed, it was recently reported that the miR-302 cluster (consisting of miRs-302a–d and
miR-367) alone could produce iPSCs from both mouse and human fibroblasts [64].
Interestingly, the promoters of the miR-290 cluster (hsa-miR-371/372/373 in human) and
miR-302 clusters are bound and regulated by the original Yamanaka factors, Oct4, Sox2,
and cMyc [32,60,65]. Therefore, these transcription factors are likely at least in part acting
through these miRNAs to promote de-differentiation of somatic cells.

These results lead to the obvious question of what downstream targets underlie the miRNA’s
remarkable capacity to revert an adult cell back to an embryonic stem cell. Hints come from
profiling experiments following the introduction of the ESCC miRNAs into Dgcr8 knockout
cells [29]. Similar to the miR-124 experiments in HeLa cells described above, hundreds of
transcripts with seed matches in their 3′UTR are downregulated. Interestingly, there is a
highly significant enrichment of seed matches in the open reading frame and 3′UTR,
consistent with targeting in both regions of the transcript. In order to gain a better
understanding of pathways regulated by these miRNAs during reprogramming, a subset of
these targets have been further characterized [63]. This subset was selected on the basis of
their known role in potentially relevant cellular processes including cell cycle regulation,
epithelial-mesenchymal transition (EMT), vesicular trafficking, cell signaling and epigenetic
modifications. Knockdown of any single individual target within this subset of targets only
marginally increases the efficiency of reprogramming, much less so than the miRNA itself.
This finding suggests that these targets/cellular processes work together to promote
reprogramming. Indeed, co-suppression of two targets further enhances reprogramming.
Therefore, these miRNAs uncovered cellular pathways, whose role in reprogramming was
not fully appreciated and that act synergistically to promote the induction of pluripotency.

Using miRNAs as tools to dissect mechanisms of cell fate transitions
While the promiscuous nature of miRNA targeting defies simplification of their roles, we
propose that they can be used as a powerful tool to uncover the multiple pathways/cellular
processes that underlie cell fate decisions (Fig. 1). The approach takes advantage of the fact
that the hundreds of mRNA targets have been evolutionarily selected to have a defined
cellular outcome. That is, the identification of miRNAs that promote a specific outcome,
combined with the identification and functional characterization of all its targets can provide
a holistic picture of the events that must occur. As mentioned in this review, a number of
studies performed on a smaller scale have already provided evidence for the success of such
an approach. However, a full-scale study functionally testing all downstream targets has yet
to be performed.
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Figure 1. Pathway discovery using microRNAs
Introduction of single miRNAs that regulate cell fate decisions followed by profiling can
uncover numerous target genes that are key nodes of signaling pathways.
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Table 1
Individual miRNAs regulate the expression of multiple targets

Listed are a few examples of miRNAs and some select targets that are involved in cell fate transitions.

MicroRNA Validated Targets Context Organism Reference

miR-124 NeuroD1, Baf53a, Ptbp1,
Scp1, Sox9, Dlx2, Jag1

Neural development Xenopus, Mouse, Chick [39–41,66,67]

miR-31 RhoA, Fzd3, Itga5,
Mmp16, M-Rip, Rdx

Metastasis Human [42]

miR-19 Pten, Ppp2r5e, Prkaa1,
Bim

Leukemia Mouse [68]

miR-21 Tiam1, Anp32a, Smarca4,
P12 Cdk2ap1

Cancer Human [69–71]

miR-200 Zeb1, Zeb2, Ets1, Suz12,
Bmi1

Cancer Human and mouse [72–78]

miR-294, miR-302, miR-372 Cdkn1a, Rbl2, Lats2,
Tgfbr2, RhoC, Mecp1–
p66, Mecp2, Aof1, Aof2,
Cyclin D1

Embryonic stem cells and
dedifferentiation

Mouse and human [20,62,63,65,79–83]

Let-7 Hmga2, Ras, cMyc,
NMyc, Sall4, Lin28,
Trim71, Cyclin D1, Tlx

Differentiation and cancer Mouse, human and C.
elegans

[29,33,84–89]
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