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Abstract

Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis. Currently, only sorafenib is approved by the
FDA for advanced HCC treatment; therefore, there is an urgent need to discover candidate therapeutic drugs for HCC. We
hypothesized that if a drug signature could reverse, at least in part, the gene expression signature of HCC, it might have the
potential to inhibit HCC-related pathways and thereby treat HCC. To test this hypothesis, we first built an integrative
platform, the ‘‘Encyclopedia of Hepatocellular Carcinoma genes Online 2’’, dubbed EHCO2, to systematically collect,
organize and compare the publicly available data from HCC studies. The resulting collection includes a total of 4,020 genes.
To systematically query the Connectivity Map (CMap), which includes 6,100 drug-mediated expression profiles, we further
designed various gene signature selection and enrichment methods, including a randomization technique, majority vote,
and clique analysis. Subsequently, 28 out of 50 prioritized drugs, including tanespimycin, trichostatin A, thioguanosine, and
several anti-psychotic drugs with anti-tumor activities, were validated via MTT cell viability assays and clonogenic assays in
HCC cell lines. To accelerate their future clinical use, possibly through drug-repurposing, we selected two well-established
drugs to test in mice, chlorpromazine and trifluoperazine. Both drugs inhibited orthotopic liver tumor growth. In conclusion,
we successfully discovered and validated existing drugs for potential HCC therapeutic use with the pipeline of Connectivity
Map analysis and lab verification, thereby suggesting the usefulness of this procedure to accelerate drug repurposing for
HCC treatment.
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Introduction

Hepatocellular carcinoma (HCC) is the most common liver

malignancy and one of the leading causes of cancer death

worldwide. It is an aggressive tumor, and the median survival

period following diagnosis is approximately 6 to 20 months [1].

Surgical resection is the main form of therapy; however, the

majority of patients are not resectable due to the late stage of the

disease or poor liver preservation. Liver transplantation, radiofre-

quency ablation, percutaneous ethanol ablation, transarterial

chemoembolization, and targeted therapy are other standard

treatments. Currently, only sorafenib has been approved by the

FDA for HCC treatment [2,3]; however, in the phase III, double-

blind, placebo-controlled trial, the median overall survival period in

the sorafenib group was prolonged by only 2.8 months compared

with the placebo group [3]. Therefore, there is great urgency to

identify additional drugs for treating HCC (see review [4]).

Several studies [5,6] have utilized a novel technique to discover

potentially therapeutic chemicals through a collection of chemi-

cally-induced gene expression profiles. This method includes

searching for anti-correlated expression patterns of the genes of

interest. Through proof of concept studies, the ‘‘Connectivity

Map’’ (CMap) project was developed to host a much greater

number of gene-expression profiles from cultured human cancer

cell lines treated with bioactive small molecules and to provide

pattern-matching algorithms to mine these data [7]. The platform-

independent system uses a nonparametric, rank-based algorithm

to calculate a score that indicates the degree of similarity or

dissimilarity between the query gene signatures and profile gene

signatures. A strong positive connectivity score (similarities)
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indicates that the corresponding agent of that profile induces the

expression of the query, while a strong negative connectivity score

(dissimilarities) shows that the corresponding agent reverses the

expression of it. Thus, agents with strong negative connectivity

scores might drive a particular disease state into a more stable state

[8,9]. The use of non-parametric statistics enables users to

compare signatures across various array platforms without

resorting to complicated meta-analysis. The flexible system offers

an opportunity to identify potential drugs targeting specific

diseases. For example, all-trans retinoid acid (ATRA) in acute

promyelocytic leukemia and imatinib in gastrointestinal stromal

tumors and chronic myeloid leukemia have been shown to target

the specific pathways associated with the type of carcinogenesis

and have good treatment outcomes [10,11].

In the post-genomics era, advances in tools (CMap) and

microarray profiling have provided an excellent opportunity to

monitor global gene expression in HCC [12–15] and to better

understand the complex interactions of hepatocarcinogenesis.

These high-throughput analyses have identified numerous differ-

entially expressed genes and have aided in the identification of

disease markers for diagnosis and potential targets for treatment.

To better embrace the paradigm shift, we have improved our

information-harvesting infrastructure, the Encyclopedia of Hepa-

tocellular Carcinoma genes Online 2, dubbed EHCO2 (http://

ehco.iis.sinica.edu.tw). EHCO2 employs natural language pro-

cessing and softbots (or Web wrapper agents [16]) to collect

scattered gene annotations either by mining data sources directly

or by querying publicly accessible databases.

Since the etiology of HCC (i.e., HCV, HBV, or alcohol-related)

differs in its molecular carcinogenesis, the ultimate aim is to

discover drugs that exploit either distinct etiology-related targets or

common targets. With no proper array paired samples or ample

clinical data (Table 1) to separate subgroups in the EHCO2 data,

however, we can only concentrate on the latter aim. Despite these

limitations, various gene signature selection methods were

employed to identify common genetic signatures. Using these

HCC gene signatures and the CMap tool, a combination of

computational and experimental studies identified several poten-

tial therapeutic drugs for the treatment of human HCC.

Materials and Methods

Ethics Statement
All animal experiments were performed in accordance with the

guidelines of the Animal Welfare Committee of National Taiwan

University College of Medicine. (Approval ID: 20090352)

Collection of HCC-related gene expression signatures
A fundamental part of EHCO2 was the collection of 14 HCC-

related gene sets from PubMed as well as diverse high-throughput

studies [17], computational predictions, and validations [18]

(Figure 1A). The details of each set are listed in Table 1 and

Method S1.

Validation of EHCO2 genes by Q-RT-PCR
The mRNA expression levels were determined by quantitative

RT-PCR in 21 pairs of HCC patients (from the Taiwan Liver

Cancer Network, see Acknowledgement). The results were

normalized to the mRNA expression level of GAPDH in each

sample (Figure 1B).

Generation of HCC test sets
Two groups of datasets were used in this study; the details are

summarized in Table 1. Group 1 contained the original eight sets

of HCC gene signatures derived from EHCO2 microarray-based

studies. Group 2 contained sets derived from Group 1, including

randomized sets, sets derived from combinations of studies, and

sets from Clique Analysis.

a) Generation of Group 1: Original EHCO2 sets. Group 1

contained the original eight sets of microarray-based HCC gene

expression profiles from EHCO. The other six sets contained no

microarray information and, thus, were excluded from further

analysis. The UCSF and POFG sets were discarded since they

only contained up-regulated genes. The SMD set, in which the

number of differentially expressed probe sets exceeded CMap’s

limit of 1,000 probe sets, was filtered using the STITCH [19]

database such that all genes had known interacting proteins.

b) Generation of Group 2: Derived EHCO2 sets. The

Group 2 datasets were derived from the Group 1 data. The set,

‘‘100 random sets,’’ was generated to reflect a variety of HCC

conditions, using a randomization technique to simulate possible

combinations. The Confident Set (Method S1) was used as the

pool for the randomization. Only genes with Affymetrix U133A

annotations were retained, resulting in a smaller set of 1,588 up-

regulated and 1,308 down-regulated genes. The set consisted of

100 sets of 250 randomly selected up-regulated genes and 250

randomly selected down-regulated genes. The randomly selected

genes were converted into the probe IDs of the Affymetrix U133A

platform by using the R packages from BioConductor [20]. In

addition, to be able to closely represent the complete HCC

conditions, sets using 500 up-regulated and 500 down-regulated

genes and sets using 1,000 up-regulated and 1,000 down-regulated

genes were also generated. To efficiently conduct massive

calculations, a program written in Ruby implemented the CMap

core algorithm and utilized CMap’s original data. The results were

compared to Cmap’s output and verified for exactness. The

program also overcame the CMap input limit of 1,000 probe sets,

making it feasible to run sets with larger input size.

Furthermore, two sets were generated to enrich the HCC gene

expression profile. The ‘‘Frequent sets’’ were created using all

combinations (n) of eight EHCO2 sets and three frequency

thresholds (k). For instance, for n = 7, or C8
7, eight sets were

created, each with one set omitted; for k = 2, genes presented 2

times or more were included. This criterion extracted the most

common altered HCC genes for further testing. In addition, to

further enrich the gene sets, Clique Analysis [21] was employed.

The term clique, originating from the field of Graph Theory,

describes nodes of a sub-graph that have connections to all the

other nodes in that sub-graph. For example, a 3-clique is a graph

with 3 interconnected nodes, which is also a triangle. The genes

were used to construct their Protein-Protein Interaction (PPI)

network, where we were able to make calculations to select

proteins with complete interactions. The ‘‘Clique sets’’ contained

all ‘‘Frequent sets’’ that had undergone Clique Analysis.

CMap Analysis
The CMap analysis steps are illustrated in Figure 2A. Each set,

consisting of up- and down-regulated genes, was input into CMap

according to the program’s instructions. Sets with less than 10 up-

regulated (or down-regulated) probe sets were discarded due to

limited input. Only drugs with negative scores and p-values of less

than 0.05 were retained. Drug occurrences were summed and

used to rank the drugs.

Chemicals, cell culture, MTT cell viability assay and
clonogenic assay

The HCC cell lines, Mahlavu, PLC5, HepG2, and Huh7, were

cultured in Dulbecco’s Modified Eagle Medium (DMEM;

Potential Therapeutic Drugs in Liver Cancer
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Seromed, Berlin, Germany) supplemented with 10% heat-

inactivated fetal bovine serum, 100 mg/ml streptomycin,

100 mg/ml penicillin, and 2 mM L-glutamine in a humidified

atmosphere containing 5% CO2 at 37uC. The viability of the

exposed cells was determined using the MTT cell viability assay kit

(Sigma-Aldrich, St. Louis, USA), according to the manufacturer’s

instructions. The tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) is used to determine cell

viability in assays of cell proliferation and cytotoxicity. Twenty-

four hours after seeding cells at a concentration of 1.56103 cells/

well in 100 ml of culture medium in a 96-well microplate, the cells

were then treated with small molecules (Table 2) selected from the

drug lists from the CMap queried results. The cells were exposed

to different concentrations of the small molecules for 72 hours.

Control cells were incubated in the absence of small molecules.

Afterwards, the cells were incubated with medium containing

MTT for 2 hours. The optical density at 450 nm was measured

using a microplate reader (Spectral Max250). For the clonogenic

assay, Huh7 cells were seeded out in appropriate dilutions in a 6-

well plate and treated with selected small molecules at various

concentrations for 15 days. Colonies were fixed with glutaralde-

hyde (6.0% v/v), stained with crystal violet (0.5% w/v), and

counted.

Animal study
The mouse hepatoma cell line BNL was purchased from the

American Type Culture Collection (Rockville, MD) and main-

tained in DMEM supplemented with 10% fetal calf serum. Male

BALB/c mice aged 7–8 weeks were used in the experiments. All

animal experiments were performed in accordance with the

guidelines of the Animal Welfare Committee of National Taiwan

University College of Medicine. For the single HCC nodule

model, 36105 BNL cells were injected into the left liver lobe of

mice on day 0. The needle hole was sealed with an electric

coagulator (Aaron, Petersburg, Florida, USA) immediately after

the withdrawal of the needle to avoid leakage. The incision was

subsequently sutured. In the prophylactic experiment, chlorprom-

azine (10 mg/kg/day) or trifluoperazine (10 mg/kg/day) were

administered orally beginning on day 1 after tumor formation

(n = 10 for each group); in the therapeutic experiment, these test

agents were administered beginning on day 14. The tumors were

measured using calipers after the 21-day treatment by an

investigator blinded to the treatment groups. The tumor volume

was calculated using the following formula: volume = width26
length60.52.

Results

Generation of EHCO2 data
To have a more thorough collection of HCC-related gene

expression profiles, EHCO2 was expanded from eight gene-set

collections to 14 gene-set collections, totaling 4,020 non-redundant

genes (the additional six gene-sets collections are described in

Method S1). Figure 1A shows the intersection between each gene

set. The SMD and UCSF datasets had the greatest overlap of 416

genes. Interestingly, 35% of the SMD (403 out of 1,160) and 26%

of the UCSF (164 out of 636) collections (referring to distinct genes

in Figure 1A) were genes that have not been reported in other gene

sets. A cross-dataset comparison of 14 datasets revealed the 14

genes that were most often identified, which appeared at least

seven times each in EHCO2 (Figure 1A). However, the majority

(,65%) of genes in the EHCO2 collections (see the bar chart in

Figure 1A) appeared only once, and there were some discrepancies

among the gene sets, indicating the need for further validation.

Table 1. HCC set criteria and individual gene counts.

Group Name
Number of up/down
regulated genes Sample Size Features Selection Criteria

1 SMD 90/180 102 primary HCC and 74 non-tumor tissues HBV, HCV Intersected with STITCH[19]

GIS 160/38 37 HBV and non-tumor tissues (paired) HBV

LEE_NIH 161/153 91 human HCC and 7 mouse HCC Mouse vs human models

KIM_NIH 46/178 59 cirrhotic tissues, 14 HCC HBV, HCV (mixed signature)

CGED 305/291 120 HCC tissues, 86 non-tumor tissues and 32
normal liver tissue

FUDAN 201/292 29 HCC and 29 non-tumor tissues (paired) HBV

PASTEUR 31/53 15 HCC, 15 non-tumor tissues (paired) HBV, HCV (mixed signature)

TOKYO 94/147 20 HCC and 20 non-tumor tissues (paired) HBV, HCV (mixed signatures)

SMD_3K 8/15 Gens with 3-cliques

CGED_3K 12/9 Gens with 3-cliques

FUDAN_3K 13/10 Gens with 3-cliques

2 250-gene sets
(100 sets)

250/250 Randomly selected from EHCO2

500-gene sets
(100 sets)

500/500 Randomly selected from EHCO2

1000-gene sets
(100 sets)

1000/1000 Randomly selected from EHCO2

Frequent Sets
(494 sets)

Derived from Confident set

Clique Sets
(256 sets)

doi:10.1371/journal.pone.0027186.t001
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Thus, we randomly selected five genes that had an ‘‘Up’’

expression pattern in EHCO2 for validation of their expression

using quantitative RT-PCR. As shown in Figure 1B, RHAMM,

INTS8, CDCA8, DEPDC1B, and KIAA0195 are over-expressed

in 21 of the paired HCC patient samples examined.

To shed new light on the in silico drug-screening platform

CMap, EHCO2 data were used for creating gene signatures. Since

the utility of CMap relies on its use of non-parametric statistics, no

meta-analysis was required when combining data from various

sources, making it manageable to conduct studies with data from

different array platforms. To utilize CMap, two groups of gene

signatures were created from the EHCO2 database to allow a

comparison of the results for the best prediction power.

Gene signatures and CMap analysis of Group 1 sets
(original EHCO2 sets)

Group 1 contained the original eight microarray-based HCC
gene expression profiles from EHCO2 (Table 1), with an average
of 136 up-regulated and 166 down-regulated genes. Before the
CMap analysis, the degree of data consistency was analyzed using
Jaccard’s Index (Method S1) as a measure of set similarity (Table
S1). Figure S1 shows that each set had a very high distance from
(or low similarity to) each other based on the clustering result using
Jaccard’s distance (i.e., one minus Jaccard’s Index) as a
dissimilarity measure. Even though sets marked as up-regulated

were ideally separated from those marked as down-regulated, the

up-regulated KIM set showed very little resemblance to the others.

Figure 1. Collection, intersection, and validation of HCC-related genes in EHCO2. (A) Gene sets in EHCO2 and their intersecting
genes. The gray box indicates the number of genes reported in each set, while the intersection cell indicates the numbers of common genes. Each
pair of datasets shares a small number of common genes, suggesting the heterogeneous nature of HCC. The bottom-left insert shows the frequency
of genes reported. Most genes are reported only once. (B) Validation of up-regulated genes via Q-RT-PCR. RHAMM, INTS8, CDCA8, DEPDC1B,
and KIAA0195 are over-expressed in 21 paired HCC patient samples.
doi:10.1371/journal.pone.0027186.g001

Potential Therapeutic Drugs in Liver Cancer
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Figure 2. Flowchart and comparisons of prediction accuracy. (A) The CMap analysis flowchart. All eight sets from EHCO2 (Group 1), 100-
member random sets, Frequent sets, and Clique sets (Group 2) were individually queried with CMap. Only drugs with a p-value of less than 0.05 and a
negative enrichment score were retained. (B) Comparison of the accuracy of predicted drugs from each set. The top 10 drugs from each set
were labeled according to their anti-cancer effects. (C) The comparison of the Frequency sets and the Clique sets. The average effectiveness
of drugs was compared side by side.
doi:10.1371/journal.pone.0027186.g002

Table 2. The most frequently identified drugs from the Top 20 drugs of Group 1 (EHCO2 sets) and Group 2 (Derived EHCO2 sets).

Drug Name Description Frequency*
IC50
(mM)

Clonogenic
Assay**

PubMed
cancer

PubMed
HCC

Tanespimycin HSP90 inhibitor 3 ,0.1 N/A Yes[24] Yes[24]

Trichostatin A HDAC inhibitor 9 0.1,1 N/A Yes[25],[26] Yes[32]

Thioguanosine Purine analog 9 5,10 N/A Yes[27] Yes[27]

Thioridazine Antipsychotic drugs 4 5,10 N/A Yes[37] No

Phenoxybenzamine Antihypertensive drugs 6 .10 Effective No No

Trifluoperazine Antipsychotic drugs 2 .10 Effective Yes[37] No

Dipyridamole Platelet aggregation inhibitor 5 .10 Effective Yes[37] No

Sulconazole Antifungal agents 7 .10 Effective No No

Apigenin Flavone 8 .10 Effective Yes[37] Yes[37]

Chlorpromazine Antipsychotic drugs 4 .10 Effective Yes[36],[38] No

Luteolin Flavonoid 9 .10 Effective Yes[39] Yes[39]

Medrysone Steroid 9 .10 Ineffective No No

8-azaguanine Purine analog 7 .10 Ineffective Yes[40] No

Repaglinide Antidiabetic Agents 7 .10 Ineffective No No

Alpha-estradiol Hormone 7 .10 Ineffective No No

*: The frequency of drugs appeared in top 20 drugs in group 1 and group 2.
**: Effectiveness in the clonogenic assay is defined as reducing the number of colonies by more than 50% at 10 mM. Table is sorted by IC50 value.
doi:10.1371/journal.pone.0027186.t002
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Similar to other studies [22], our analysis showed the heteroge-

neous nature of HCC, indicating that HCC may comprise

multiple states and/or subtypes.

After conducting CMap analysis, the top 10 drugs from each set

are listed (Figure 3). Some of the drugs, such as trichostatin A and

thioguanosine, have also been reported in previous studies

(Table 2), suggesting some degree of power for discovering

potential drugs. In contrast, FUDAN and PASTUER shared very

few common drugs with the other sets, a result of their only mild

similarity in gene expression to the other sets (Figure S1). The

disparity in drug predictions confirms the gene-set sensitivity of

CMap. Therefore, to guarantee optimal drug discovery, several

strategies were formulated to devise enriched gene sets.

Gene expression of Group 2 (Derived EHCO2 sets)
a) Generation of Random Sets. With the collection of

candidate HCC-related genes, a collection of possible

combinations of simulated patient gene expression profiles was

created to reflect the heterogeneous nature of HCC. Sets of 250

up-regulated and 250 down-regulated genes were selected

randomly from the EHCO2 gene pools of up- and down-

regulated sets, respectively, for a total of 100 sets.

Since a set of 500 genes comprises less than 15% of the total

number of EHCO genes (4,020 genes), this might not be adequate

to represent HCC. Selections of 500 up-regulated and 500 down-

regulated genes and of 1,000 up-regulated and 1,000 down-

regulated genes were also made for further comparison. A

computer program written in Ruby that simulates the CMap

calculations was implemented to handle the larger data inputs.

b) Generation of Frequent Sets. Since HCC is a

heterogeneous disease, it is likely that genes reported in one

study differ greatly from another study. Therefore, to simulate all

possible scenarios, all combinations (n) of eight EHCO sets were

created. In other words, any two studies (n = 2) were combined as

a set, and this was continued until all studies were combined into a

set (n = 8). In each combination, three frequency thresholds (k)

were set (i.e, no genes were discarded when k = 1 and genes were

kept if genes occurred in two or more studies when k = 2). A total

of 1,021 sets were created.

c) Generation of Clique Sets. The notion of clique from the

field of Graph Theory was utilized to enrich the gene sets. A

protein-protein interaction network of EHCO2 genes was created,

and cliques were extracted from this graph. A clique is a sub-graph

where all the nodes are connected to each other. The simplest

clique is the 3-clique, 3 interconnected nodes, or a triangle. The

proteins in the clique set might represent a possible protein

complex, which is the preferred candidate for drug targeting [23].

Clique Analysis [21] was used to search for 3-clique sets in each

‘‘Frequent set’’.

CMap analysis of Group 2 sets (Derived EHCO2 sets)
Group 2 containing five different HCC gene sets, including

three ‘‘100-random sets’’, the ‘‘Frequent sets’’, and the ‘‘Clique

sets’’, was queried with CMap, and corresponding prioritized drug

lists were generated (Figure 3).

Using selected HCC gene signatures to reveal potential
drugs with anti-proliferative or cytotoxic effects from
CMap

Bioactive small molecules in CMap that reverse, at least in part,

the HCC gene signatures may be drugs with potential to eradicate

HCC cells. In fact, several identified drugs already have literature

references of cancer studies. Drugs such as pyrvinium and

levonorgestrel have PubMed references related to cancers, while

MS-275 and LY-294002 are known to inhibit HCC cells. These

drugs were marked as ‘‘PubMed Cancer’’ and ‘‘PubMed HCC’’,

respectively (Figure 3). Additionally, we selected the 50 top-

occurring small molecules (Table S2) from each top 20 drugs of

the 2 groups (a total prediction of 258 drugs) and determined the

effects of these drugs on the proliferation of 4 HCC cell lines by

MTT and/or clonogenic assays. Drugs with (1) an IC50

(concentration that inhibits cell growth by 50%) less than 10 mM

Figure 3. Effectiveness of drugs in Group 1 and Group 2. The top 10 drugs from each set were labeled according to their anti-cancer effects.
doi:10.1371/journal.pone.0027186.g003
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or (2) a 50% reduction in number of colonies at 10 mM in the

clonogenic assay were defined as effective against HCC cell lines.

As shown in Table 2 and Figure S3, the viability of HCC cell lines

was reduced by more than 50% after co-incubation with various

concentrations of trichostatin A and tanespimycin for 72 hours

(IC50,10 mM). These results were consistent with previous studies

[24–27]. Drugs with IC50 over 10 mM (Table 2) were subjected to

the clonogenic assay as a secondary screening. Treatment of Huh7

cells with 10 mM chlorpromazine and trifluoperazine dramatically

reduced the clonogenic survival of Huh7 cells (Figure 3). In short,

as shown in Table S2, 28 of the 50 top-ranked drugs were

considered effective.

Accuracy of drug prediction comparison
The effectiveness of the top 10 drugs from each set is depicted in

Figure 2A. Group 1 sets showed great variability in prediction

power, suggesting that gene signatures from a single study of a

heterogeneous disease might not guarantee an optimal drug

prediction result. We resorted to using combined studies for larger

gene pools.

To this end, using EHCO’s Confidence Set (Method S1)

consisting of 1,821 up regulated and 1,477 down-regulated HCC-

related genes, a randomization technique was employed to select

gene signature sets of 250-gene, 500-gene, and 1,000-gene in order

to represent the heterogeneous nature of HCC. As depicted in

Figure 3, this method identified 13 drugs, 7 of which appeared in

all three sets. The results were consistent despite the differences in

gene number. Compared to the results of Group 1, however, this

method did not significantly improve the accuracy or reduce the

inaccuracy. Furthermore, several ineffective drugs even had higher

rankings. The mediocre result can be explained by the lack of gene

structure maintenance while randomly choosing genes.

Another gene selection strategy is to keep the most occurring

genes, putting more emphasis on consensus genes and ignoring

infrequent genes. To simulate studies, we generated all combina-

tions of Group 1 sets and, for each set, set three occurrence

thresholds (k). Under these stringent thresholds, some combina-

tions did not have enough genes (probe sets ,10) and were

discarded, resulting in a total of 494 sets. As depicted in Figure 3,

at first glance, the result was not as promising. However, once the

result was stratified, as shown in Figure 2C, certain trends

emerged. For all thresholds (k), sets with more studies (n) combined

had better results. Furthermore, the accuracy (0.6) peaked when

k = 2. In addition, as depicted in Figure S2B, while the unverified

rate remained similar to sets of k = 1, sets of k = 2 had much lower

ineffective rates. The above observations suggested an effective

strategy to combine studies and enrich the gene sets using the

frequency threshold.

While instituting a frequency threshold eliminates less occurring

genes, gene sets can be further enriched by using Clique Analysis.

This elimination, unlike that conducted in the Randomization sets,

preserves the gene structures, making function-related genes sets.

After eliminating sets with insufficient genes (probe sets ,10), 254

sets were created. As depicted in Figure 3, the result reached 80%,

and the previously highly ranked but ineffective drug medrysone

was now ranked 10th. Furthermore, as presented in Figure 3C, the

clique version of the sets outperformed the frequent versions in all

cases. Among the 254 sets compared, there was an average of

86.22% and 91.71% reduction in up-regulated genes and down-

regulated genes, respectively. Furthermore, 72% of the clique sets

had a greater effective rate and 89% of the clique sets had a less

ineffective rate compared to the corresponding frequent sets. The

reduction in gene set numbers and improvement in accuracy

strongly indicate that these selected genes play a vital role in HCC

cells.

Chlorpromazine and trifluoperazine decrease the growth
of orthotopic liver tumors

To test for anti-tumor effects in a clinically relevant situation, we

used an orthotopic liver tumor model representing a large tumor

load. BNL cells (36105) were injected into the left liver lobe of an

animal. Usually, a tumor nodule of ,60–100 mm3 can be observed

on day 14 after tumor implantation. Liver tumors were measured

on day 35 using calipers. As shown in Figure 4, in the prophylaxis

experiment, while animals in the control groups showed apparent

tumor enlargement on day 35 compared to day 14 (170.2658.0%),

those treated with chlorpromazine showed less tumor enlargement

(93.1675.4%), and those treated with trifluoperazine also showed

an inhibition of tumor enlargement (93.2643.4%). The tumor

growth in the chlorpromazine and trifluoperazine groups was

significantly slower than that of the control group (chlorpromazine

group vs. control group, p,0.05; trifluoperazine group vs. control

group, p,0.005). For both treated groups, the therapeutic effects

were obvious compared to the control group. In the therapeutic

experiment, the tumor volume of the animals in the control groups

was 3,739.663,304.0 mm3 on day 21, and those treated with the

test agents showed decreased tumor growth (1,313.26610.8 mm3

for chlorpromazine and 1,093.06720.5 mm3 for trifluoperazine).

The tumor growth in the chlorpromazine and trifluoperazine

groups was significantly slower than that of the control group

(chlorpromazine group vs. control group, p,0.05; trifluoperazine

group vs. control group, p,0.05).

Discussion

The ultimate goal of this study is to identify potential drug

candidates for rapid screening for anti-HCC therapy via CMap.

The heterogeneous nature of HCC yields gene signatures with

little similarity; thus, it is a great challenge to formulate an optimal

gene list for drug prioritization. To address this, we did the

following: (1) collected HCC-related genes from various array

sources and studies in the literature and organized EHCO2 as an

updated public resource, (2) devised strategies for creating gene

signatures from the heterogeneous data, (3) tested the CMap-

predicted drugs in vitro and compared the performance of gene-

selection strategies from the experiment, and (4) validated two

candidate FDA-approved drugs, chlorpromazine and trifluopera-

zine, in orthotopic liver tumor models. This strategy provides a

shortcut for the development of anti-HCC therapies. With an

ever-increasing amount of genomic data available, other diseases

of interest will also likely face similar difficulties. Our method

provides a novel approach for combining several genomic studies,

aiming for the precise prediction of drug efficacy.

Since the development of CMap, researchers have used this tool

to investigate several cancers, including breast [28], colon [29],

and prostate cancers [30], as well as nasopharyngeal carcinoma

[31]. Using the EHCO2 datasets, we proposed to conduct CMap

analysis with the aim of finding therapeutic drugs for HCC. The

EHCO2 database provides us with diversified HCC samples for

this purpose. In order to simulate possible combinations of HCC

gene expression, we filtered genes by three different methods,

including the ‘‘Frequent sets’’, ‘‘Clique sets’’, and randomly

selected 100-member subsets of all occurring genes. The

‘‘Frequent sets’’ and ‘‘Clique sets’’ were better gene sets for

precisely identifying potential drugs for HCC than the random

sets. One plausible explanation is that in each of the random sets,

unrelated genes were selected, and genes with high correlations
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might not be selected at once, thus compromising accuracy. On

the other hand, the result of using the ‘‘Frequent Set’’ was far

better than those of the individual sets, proving the usefulness of

applying the ‘‘majority vote’’ method to the heterogeneous gene

sets. Moreover, the use of ‘‘Clique Analysis’’ enriched the gene sets

by only including genes with associated functions and resulting in

higher accuracy (Figure 2C). One drawback is that the Clique

Analysis reduces the gene number greatly, which is unsuitable for

sets with limited numbers of genes. Clique Analysis performs well

in the combination set study with a sufficient number of genes

reported, yet performs poorly on single studies (data not shown).

Finally, the comparison of the accuracy of predictions from all sets

is listed in Figures 2B and 3. With a more concise gene signature,

the CMap program generates a more precise prediction. In

conclusion, the tight integration of CMap and EHCO2 data

provides a good strategy for prioritizing drug selection from a

chemical library.

Of the 50 prioritized drugs (Table S2) from each of the two

groups, 28 were determined to have anti-tumor effects by the

MTT and/or clonogenic assays. Some drugs (Table 2) were

previously reported in PubMed for cancer treatment and even

some for HCC, which verifies our results. Trichostatin A, which is

a histone deacetylase inhibitor, may also inhibit tumor cell

proliferation [25,26,32] (Figure S3A); Tanespimycin is a heat

shock protein 90 (HSP90) inhibitor, which degrades HSP90

related client protein and induces tumor cell death [24] (Figure

S3B). LY294002, which is a PI3K inhibitor, has been extensively

studied to inhibit cancer cell growth by blocking the PI3K/Akt

pathway [33]; Thioguanosine is a purine analog and an anti-

tumor drug. It has been reported to inhibit ribosomal RNA

maturation in hepatoma cells [27]. Interestingly, antipsychotic

drugs such as chlorpromazine, trifluoperazine and thioridazine

were also identified to have anti-tumor effects (Table 2).

Two drugs, chlorpromazine and trifluoperazine, were further

tested for anti-tumor effects in an in vivo HCC study (Figure 4).

They are both typical anti-psychotic drugs of the phenothiazine

group. Chlorpromazine is also used to control intractable hiccup

nausea and vomiting. Some studies have reported that chlor-

promazine might inhibit tumor cell proliferation and cause cell-

cycle arrest [34–36]. Trifluoperazine has also been demonstrated

to induce cancer cell apoptosis [37]. Other potential therapeutic

drugs are discussed in Method S1.

HCC is a heterogeneous and multi-factorial disorder that may

involve distinct pathways in different individuals. Although the

ideal strategy is to predict drugs for each individual or for patients

with different etiologies (i.e., HBV, HCV, or alcohol-related) or

clinical outcomes, to the best of our knowledge there are no proper

paired sample arrays (diseased vs. normal liver tissues or cirrhotic

liver tissue) that can be utilized to address this. Thus, the main

limitation of this study is that the HCC datasets used for CMap

construction are not uniformly associated with clinical outcomes or

HCC etiologies. HCC behavior will vary in each individual

patient and thus will result in varying risks for overall survival and

tumor recurrence; drug efficacy may also vary as a result of this.

Figure 4. In-vitro and in-vivo effects of chlorpromazine and trifluoperazine. (A) Chlorpromazine and trifluoperazine inhibit
clonogenic survival. Huh7 cells were incubated with chlorpromazine and trifluoperazine at various concentrations (1, 3.3, and 10 mM) for 15 days.
Cell colonies were counted and expressed in terms of percent survival relative to the control. The data represent the mean6SD from three
independent experiments. In vivo effects of chlorpromazine and trifluoperazine on BNL cell orthotopic liver tumor models. (B) The ratio
of tumor size enlargement obtained from all animals in the therapeutic group after 21 days of treatment was calculated. (C) The sizes of the tumors
obtained from the animals in the prophylactic group 21 days after tumor implantation were measured. *P,0.05, **P,0.005, compared to the control
group. (D) The sizes of tumors obtained from the animals in the prophylactic group 21 days after tumor implantation were measured. Black arrows
show the liver tumors.
doi:10.1371/journal.pone.0027186.g004
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In summary, the shortage of new drugs for the treatment of

HCC and the rapidly rising costs of drug development encourage

efforts to explore methodology for drug-repurposing. Our

bioinformatics analysis exploits the resources from EHCO2 and

CMap to make connections between gene expression, disease, and

drug action, resulting in the systematic identification of several

potential therapeutic drugs. This finding in conjunction with

future clinical trials may provide a paradigm of drug discovery for

neglected diseases.

Supporting Information

Method S1 Supplementary method and discussion.

(DOCX)

Figure S1 Clustering Dendrogram for Group 1.

(TIF)

Figure S2 Results of the Frequent sets. (A) Effective rate,

(B) Ineffective rate, and (C) Unverified rate, of the top 10 drugs

from each frequent set. n indicates numbers of studies combined

while k indicates the frequency a gene should at least have to

remain in the gene set.

(TIF)

Figure S3 Trichostatin A and tanespimycin inhibit cell
proliferation. Each drug was administered at various concen-

trations (0.1 mM, 1 mM, and 10 mM) to 4 HCC cell lines, HepG2,

PLC5, Mahlavu, and Huh7, for 72 hours. The cell viability was

evaluated by the MTT assay. Trichostatin A (A) and tanespimycin

(B) exhibited cytotoxicity effect. The data represent the mean6SD

from three independent experiments.

(TIF)

Table S1 Jaccard’s Index between all Group 1 sets.
Jaccard’s Index is used to measure the similarity between pairs of

sets. The ratios in parentheses indicate the number of common

genes out of the total number of genes for each pair.

(XLSX)

Table S2 Potential 50 drugs identified from the Top 20
drugs from Group 1 and Group 2 sets. Potential 50 drugs

identified from the Top 20 drugs of all 13 sets.

(XLSX)
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