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Neurons and neural circuits undergo extensive structural and
functional remodeling in response to seizures. Sprouting of axons
in the mossy fiber pathway of the hippocampus is a prominent ex-
ample of a seizure-induced structural alteration which has re-
ceived particular attention because it is easily detected, is induced
by intense or repeated brief seizures in focal chronic models of epi-
lepsy, and is also observed in the human epileptic hippocampus.
During the last decade the association of mossy fiber sprouting
with seizures and epilepsy has been firmly established. Many ana-
tomical features of mossy fiber sprouting have been described in
considerable detail, and there is evidence that sprouting occurs in
a variety of other pathways in association with seizures and in-
jury. There is uncertainty, however, about how or when mossy fi-
ber sprouting may contribute to hippocampal dysfunction and
generation of seizures. Study of mossy fiber sprouting has provided
a strong theoretical and conceptual framework for efforts to under-
stand how seizures and injury may contribute to epileptogenesis
and its consequences. It is likely that investigation of mossy fiber
sprouting will continure to offer significant opportunities for in-
sights into seizure-induced plasticity of neural circuits at molecu-
lar, cellular, and systems levels.

 

A

 

xonal sprouting is a prominent feature in brain develop-
ment and is an essential cellular process in the establish-

ment of neural connections and formation of neural circuits.
The formation of neural circuits and their organization into
complex networks involves a coordinated sequence of overlap-

ping cellular events that include cell birth, differentiation, mi-
gration, neurite outgrowth or sprouting, synapse formation,
programmed cell death, and activity-dependent pruning that
refines neural connections. It is now recognized that neural
circuits continue to undergo neurite outgrowth and axonal
sprouting in response to seizures. This review focuses on ana-
tomic and physiologic aspects of axonal sprouting, its associa-
tion with injury and seizures in neural circuits, and issues re-
lated to the contribution of sprouting to epilepsy and its
consequences, but does not address the molecular aspects of
sprouting in development and circuit remodeling.

 

Axonal Sprouting in Response to Injury and Damage

 

Axonal sprouting was long regarded as an essential event in the
formation of neural circuits during development, but it was the
prevailing view that sprouting did not continue in the adult
nervous system. This viewpoint was challenged by a series of
experimental observations by Steward, Cotman, and Lynch
(1,2), who demonstrated that pathways in the hippocampal
formation of the adult possessed a capacity to undergo sprout-
ing and rearrangement of synaptic connectivity in response to
injury and damage. In pioneering studies, unilateral electro-
lytic lesions of the entorhinal cortex denervated the ipsilateral
dentate gyrus, and induced sprouting and reinnervation by
surviving axons of the normally sparse crossed pathway from
the contralateral entorhinal cortex. The sprouting axons of the
crossed pathway formed synapses with granule cells in the
denervated dentate gyrus which not only supported functional
synaptic transmission (3–5), but also had the capacity to un-
dergo synaptic plasticity and long-term potentiation (LTP) (6).
Lesion-induced sprouting was also observed in the septohippo-
campal, associational, and mossy fiber pathways within the den-
tate gyrus and hippocampal formation (7–9) in response to elec-

 

trolytic damage, axotomy, and chemical toxins (10–12). A potential
connection of lesion-induced sprouting to phenomena of epilepsy
was initially suggested by Messenheimer and Steward (13), who ob-
served that sprouted axons of the crossed entorhinal pathway to the
dentate gyrus gained access to hippocampal networks modified by
kindling. This observation suggested that sprouting might be linked
to seizure-induced transformation of neural circuits.

 

Seizure-Induced Axonal Sprouting

 

Further evidence suggesting links between seizures, neuronal
damage, and sprouting was provided by studies of Nadler, Ben-
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Ari, et al. (14–16) using the glutamate analogue kainic acid,
which induced intense status epilepticus and macroscopic
damage in the hilus of the dentate gyrus, subfields of the hip-
pocampus, and a variety of extrahippocampal regions, accom-
panied by reactive sprouting of the mossy fiber axons in the
dentate gyrus (10). In these initial studies, it could not be de-
termined whether the sprouting induced by kainic acid was a
consequence of direct neurotoxic damage, excitotoxic damage
as a consequence of status epilepticus, or both factors. Experi-
ments combining kainic acid administration with anticonvul-
sant treatment supported the viewpoint that at least some
component of the damage and accompanying axon sprouting
might be caused by seizures (17–19). With the massive and
macroscopic damage associated with seizures in these models,
however, the specific contributions of lesion-induced deaffer-
entation and seizures to induction of axonal sprouting were dif-
ficult to distinguish.

Axonal sprouting was first definitively associated with sei-
zures by the observation in kindled rats that mossy fiber axons
labeled by Timm histochemistry expanded their terminal field
to the supragranular region of the dentate gyrus, where such ter-
minals are not normally found (20,21). This reorganization of
the mossy fiber terminal field was not associated with macro-
scopic damage in rats experiencing repeated brief seizures in-
duced by kindling. Mossy fiber sprouting develops after only a
few brief seizures, progresses with repeated seizures, and is per-
manent (22). Sprouting is induced not only by seizures evoked
by direct stimulation of hippocampal afferents, but also by sei-
zures that propagate into the hippocampus from remote regions
(23). Repeated brief seizures (e.g., only a few partial seizures
evoked by kindling) are sufficient to induce mossy fiber sprout-
ing in the absence of extensive hippocampal damage (22).

Seizure-induced sprouting has been observed in numer-
ous chronic models of epilepsy, including genetic mouse mod-
els such as the tottering and stargazer strains (24,25), after
eight to 10 electroconvulsive (ECT) seizures (26,27), and after
seizures evoked by flurothyl, pentylenetetrazol, and hyperther-
mia in immature rats (28–30). Although seizures in develop-
ing animals appear to induce less damage and less sprouting
than those in adults (31), pathways in the developing brain
undergo sprouting and other structural/functional alterations
in response to both injury and seizures (8,29), which has im-
plications for the consequences of seizures during develop-
ment. As mossy fiber sprouting has been observed in the hu-
man epileptic temporal lobe (32–35) and in chronic epileptic
models in a variety of species, sprouting can be regarded as a
common seizure-induced cellular phenomenon of epilepsy.
Because mossy fiber sprouting is progressively induced by kin-
dling and also is observed in dentate gyrus and hippocampus
of humans with temporal lobe epilepsy, poorly controlled sei-
zures in humans may induce progressive sprouting and synap-

 

tic reorganization. The question of whether seizures are suffi-
cient to induce sprouting in the absence of neuronal damage
and deafferentation has not been definitely resolved (20,36), as
a continuing series of studies have demonstrated that seizures
evoked by kindling, despite the absence of macroscopic dam-
age, also induce topographically specific and cumulative pat-
terns of neuronal damage in a variety hippocampal and limbic
areas (37–41).

 

Features of Mossy Fiber Axonal Sprouting

 

Detailed anatomic studies have demonstrated that seizure-
induced mossy fiber reorganization is not limited to the supra-
granular region of the dentate gyrus, but also includes axonal
growth in the hilus, development of infrapyramidal to supra-
pryamidal (interblade) connectivity not observed in normal
rats, and expansion of the terminal field of the mossy fiber
pathway in CA3 and along the septotemporal axis of the
hippocampus over distances as long as 700–800 microns
(29,42,43). Seizure-induced reorganization along the septotem-
poral axis is of particular interest from the point of view of pos-
sible functional effects of sprouting, as physiologic studies have
demonstrated right- and left-specific place cells organized in
lamellar patterns along the septotemporal axis (44,45). Ana-
tomic studies also revealed specificity of afferent projections
along the septotemporal axis in the rat, with amygdala and lim-
bic inputs projecting to the temporal region and neocortical in-
puts projecting to septal and more distributed areas along the
axis (46). With the perspective of these anatomic and physio-
logic observations, functional activity in the reorganized sprouted
projections along the septotemporal axis would thus potentially
disrupt the topographic organization of afferent inputs undergo-
ing processing in hippocampal circuitry and could produce para-
digm-specific behavioral and cognitive dysfunction. In addition
to axonal sprouting, the dendrites of granule cells undergo sprout-
ing in association with seizures (43,47,48). Although granule cells
appear to possess a robust capacity for seizure-induced process
formation and structural reorganization in adulthood, sprouting
also has been observed in other systems such as CA1 and neo-
cortex (49–52), which indicates that seizure-induced sprouting
is most likely a general property of neurons and circuits in a
variety of neural networks.

 

Assessing the Functional Effects of Mossy
Fiber Sprouting

 

The spatial, temporal, and morphologic features of seizure-
induced sprouting have been relatively well characterized, but
understanding of the effects of sprouting on the functional
properties of hippocampal circuitry is more limited. With the
evidence that lesion-induced sprouting in the entorhinal den-
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tate pathways supported functional synaptic transmission,
pathways reorganized by seizure-induced mossy fiber sprout-
ing might potentially modify properties of hippocampal cir-
cuits. The functional effects of mossy fiber sprouting will
depend on the type and numbers of postsynaptic targets con-
tacted by the sprouted axons. Synapses formed by sprouted
mossy fibers on dendrites of granule cells would result in re-
current excitatory circuits and would be expected to increase
excitatory drive, potentially promoting epileptogenesis. Con-
versely, synapses formed by sprouted mossy fibers on inhibi-
tory interneurons would enhance inhibition. Histologic and
ultrastructural evidence in several experimental models sug-
gested that sprouted mossy fibers form both recurrent excita-
tory and recurrent inhibitory circuits (43,53–60), but defini-
tive quantitative analyses of their relative numbers are not
available. Mossy fiber terminals may form synapses with den-
drites of inhibitory interneurons in normal animals (55,56),
but it appears that many sprouted mossy fiber terminals form
synapses on granule cells, and therefore are likely to increase
recurrent excitation in the dentate gyrus. Although seizures
induce expression of the 67-kDa isoform of 

 

�

 

-aminobutyric
acid (GABA) synthetic enzyme glutamic acid decarboxylase
(GAD67) in mossy fiber terminals (61,62), the overwhelming
majority of terminals formed by sprouted fibers are asymmet-
ric (Gray type), and therefore excitatory.

In 1985 Tauck and Nadler (63) analyzed evoked field po-
tentials in the dentate gyrus of hippocampal slices from kainic
acid–treated rats, and demonstrated an association between the
duration and complexity of multispike field potentials and the
extent of mossy fiber sprouting examined by the Timm method.
This association was consistent with recurrent excitation as a
consequence of sprouting, but was a relatively limited, indirect
test of the hypothesis that mossy fiber sprouting formed new re-
current excitatory circuits and increased recurrent excitation.
Definitive evidence for recurrent excitatory circuits would in-
clude evidence of monosynaptic excitatory postsynaptic poten-
tials (EPSPs) or currents (EPSCs) evoked by current injection in
simultaneously recorded pairs of granule cells, which normally
show no physiologic or anatomic evidence of recurrent connec-
tions. The extensive neuronal loss in the kainic acid–treated
dentate gyrus potentially confounded the interpretation of ab-
normalities observed in population field potentials.

Other evidence suggesting a relation between mossy fiber
sprouting and increased excitation in the dentate gyrus in-
cluded observations that evoked EPSCs, spontaneous EPSCs,
and spontaneous burst discharges develop after kainic acid- or
pilocarpine-induced status epilepticus in association with de-
velopment of mossy fiber sprouting (64–70). These studies re-
vealed little or no change in apparent excitability in normal
medium with inhibition intact, but with decreased inhibition
or elevated [K

 

�

 

]

 

o

 

 consistently demonstrated evidence of in-

 

creased local circuit excitation and epileptiform activity not
observed in normal control preparations. Support for func-
tional synaptic transmission in the sprouted mossy fiber path-
way was provided by in vivo current source density analysis in
kindled rats (71). In these studies, an inward current (sink)
spatially corresponding to the terminal field of the sprouted
mossy fiber terminals in the inner molecular layer of the den-
tate gyrus developed at a latency consistent with disynaptic
transmission in response to perforant path stimulation (71).

More direct evidence for development of recurrent excita-
tion in association with mossy fiber sprouting was obtained by
Wuarin and Dudek (72) in hippocampal slices from kainic
acid–treated rats. Focal application of glutamate microdrops to
dendrites and cell bodies of granule cells remote from the re-
corded granule cell normally evokes no responses, but in hippo-
campal slices with sprouting, microdrops evoked EPSPs at long
and variable latency when inhibition was blocked. Although
supporting the formation of recurrent excitatory circuits, the
long and variable latency of these responses suggested that recur-
rent excitation was generated by multisynaptic circuits rather
than monosynaptically. Using similar techniques in kindled rats
with mossy fiber sprouting, Lynch and Sutula (69) also demon-
strated trains of EPSPs and population discharges evoked by
glutamate microstimulation remote from the recording site at 1
week after induction of kindled seizures when sprouting is first
detectable by Timm histochemistry. EPSPs were not evoked in
hippocampal slices from kindled rats examined at 24 h after a
single afterdischarge before the development of sprouting (69).
Monosynaptic EPSPs evoked at short latency (2.6 

 

�

 

 0.36 ms)
between blades of the dentate gyrus were observed under condi-
tions in which recurrent inhibitory circuits were blocked by
bicuculline, polysynaptic activity was suppressed by 10 mM
Ca

 

2

 

�

 

 in the bathing medium, and perforant path activation was
prevented by knife cuts (69). Recent studies by Waurin and
Dudek also showed monosynaptic EPSCs in granule cells in re-
sponse to stimulation by flash photolysis of caged glutamate at
sites remote from the recording site (67). Although still falling
short of conclusive evidence for the formation of recurrent exci-
tatory circuits that would require dual recordings from granule
cells, these studies from multiple laboratories support the view-
point that seizures induce recurrent excitatory connectivity in
the dentate gyrus.

Despite the presence of extensive mossy fiber sprouting af-
ter status epilepticus in kainic acid- and pilocarpine-treated rats,
most measures of spontaneous and evoked physiologic activity
appear normal unless inhibition is reduced (64,69,72). This ob-
servation is consistent with the clinical fact that patients with
frequent and intractable seizures still function relatively nor-
mally and manifest epileptic behaviors only briefly and sporadi-
cally. In the presence of extensive seizure-induced sprouting,
physiologic evidence of abnormality such as recurrent excitation
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and excitatory connectivity may be variably expressed and de-
tected in patchy distribution, as might be expected from the
spatially delimited projections of sprouted mossy fiber collater-
als. The variable spatial and temporal expression of physiologic
abnormalities is consistent with the anatomic irregularity of
mossy fiber connections in the dentate gyrus reorganized by sei-
zure-induced sprouting, and with a stochastic process of syn-
chronization in a complex neural network. Supporting this
viewpoint, physiologic abnormality in association with sprout-
ing also emerges when [K

 

�

 

]

 

o

 

 is elevated (65,73), as occurs dur-
ing seizures. The expression of abnormal recurrent excitation by
recurrent excitatory circuits formed by sprouted mossy fibers is
likely to be dependent on the level of activity in inhibitory path-
ways, the extracellular ionic milieu, and metabolic conditions.

 

Conclusions from Experimental Studies of Sprouting
in Neural Circuitry

 

Anatomic and physiologic studies investigating the effects of
seizure-induced mossy fiber sprouting have revealed two major
findings pertinent to assessing the role of mossy fiber sprout-
ing in development of recurrent excitation, abnormal hippo-
campal function, and epileptogenesis:

1. There is a correlation between the development of in-
direct measures of recurrent excitation and anatomic
evidence for mossy fiber sprouting in multiple experi-
mental models, and

2. The evidence for abnormal recurrent excitation, includ-
ing monosynaptic excitatory connections, becomes ap-
parent only conditionally when inhibition is reduced
or [K

 

�

 

]

 

o

 

 is elevated, and is therefore dependent on
multiple factors including the strength of inhibition,
the extracellular ionic milieu, and possibly metabolic
conditions.

 

The Challenges of Assessing Functional Effects
of Sprouting in a “Complex System”

 

What are the implications of the variable and conditional expres-
sion of functional abnormality associated with seizure-induced
mossy fiber sprouting in chronic models of epilepsy? Some skepti-
cism about the potential importance of mossy fiber sprouting has
emerged, as several studies have not detected simple or straight-
forward relations between sprouting in the dentate gyrus and out-
come variables such as spontaneous seizure frequency (74–77).
These findings should come as no surprise, as previous studies
have demonstrated that the dentate gyrus, and therefore mossy fi-
ber sprouting, is not required for the development or expression
of seizures arising from hippocampal circuitry (78–80).

Failure to appreciate the implications of the conditional ex-
pression of functional abnormalities, as discussed earlier, and the

 

challenges presented in attempting to identify “causal” processes
and mechanisms of abnormality in “complex systems” such as
neural circuitry are potentially significant interpretive flaws.
Given the conditional expression of functional abnormality in as-
sociation with sprouting, it is not surprising that robust and dra-
matic emergent properties may be observed in response to incre-
mental changes in a variety of the components of a “complex
system” such as hippocampal circuitry. These components may
include inhibitory interneurons, [K

 

�

 

]

 

o

 

, pH, or other unrecog-
nized factors. In such systems, relations between abnormality in a
single component (e.g., sprouting) and the emergent abnormal
functional property may be highly nonlinear and pose significant
challenges for experimentalists.

Periodic spontaneous seizures, the hallmark of epilepsy, are
likely to be caused by a constellation of abnormalities in the com-
plex distributed systems of neural circuitry in the hippocampus
and elsewhere. From the perspective of hippocampal circuitry
as a complex system, the difficulty of detecting linear relations be-
tween seizure frequency and sprouting should come as no sur-
prise. At best, the finding of a correlation is only suggestive that
mossy fiber sprouting may contribute to seizures. The finding of a
lack of correlation is not strong evidence against the importance
of seizure-induced sprouting and synaptic reorganization, but
points out that other alterations also may contribute to epilepto-
genesis and its consequences (81–83).

 

Emerging Viewpoints

 

Axonal sprouting, a prominent cellular event in development of
neural circuits, is now firmly established as a common feature of
neural circuit remodeling in response to seizures. Efforts to assess
the functional effects of sprouting present considerable challenges
requiring not only sophisticated experimental approaches, but also
appreciation of the difficulties in establishing cause in nonlinear
complex systems such as neural networks. The emerging physio-
logic evidence supports the view that recurrent excitatory circuits
formed by sprouted mossy fibers contribute to increases in recur-
rent excitation under certain conditions in the complex system of
hippocampal circuitry, and may be revealed only in settings where
one or more other alterations may be occurring. Although analysis
of complex systems such as neural circuitry is challenging, under-
standing how and when seizure-induced sprouting alters function
is likely to provide therapeutic opportunities and insights into epi-
leptogenesis and the consequences of poorly controlled epilepsy,
including memory and behavioral dysfunction.
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