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Abstract More than 1 million people in the United
States live with a spinal cord injury (SCI). Despite
medical advances, many patients with SCIs still expe-
rience substantial neurological disability, with loss of
motor, sensory, and autonomic function. Cell therapy is
ideally suited to address the multifactorial nature of the
secondary events following SCI. Remarkable advances
in our understanding of the pathophysiology of SCI,
structural and functional magnetic resonance imaging,
image-guided micro-neurosurgical techniques, and trans-
plantable cell biology have enabled the use of cell-based
regenerative techniques in the clinic. It is important to
note that there are more than a dozen recently
completed, ongoing, or recruiting cell therapy clinical
trials for SCI that reflect the views of many key
stakeholders. The field of regenerative neuroscience
has reached a stage in which the clinical trials are
scientifically and ethically justified. Although experi-
mental models and analysis methods and techniques
continue to evolve, no model will completely replicate
the human condition. It is recognized that more work
with cervical models of contusive/compressive SCI are
required in parallel with clinical trials. It is also
important that the clinical translation of advances made
through well-established and validated experimental

approaches in animal models move forward to meet
the compelling needs of individuals with SCI and to
advance the field of regenerative neuroscience. However, it is
imperative that such efforts at translation be done in the
most rigorous and informed fashion to determine safety
and possible efficacy, and to provide key information to
clinicians and basic scientists, which will allow improve-
ments in regenerative techniques and the validation and
refinement of existing preclinical animal models and
research approaches. The field of regenerative neuroscience
should not be stalled at the animal model stage, but
instead the clinical trials need to be focused, safe, and
ethical, backed up by a robust, translationally relevant
preclinical research strategy.
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Introduction

Spinal cord injury (SCI), which results from sudden or
sustained trauma or progressive neurodegeneration, is a
devastating condition whereby sufferers experience signifi-
cant functional and sensory deficits, as well as emotional,
social, and financial burdens. They also have an increased risk
of cardiovascular complications, deep vein thrombosis,
osteoporosis, pressure ulcers, autonomic dysreflexia, and
neuropathic pain. The estimated annual global incidence of
SCI is 15 to 40 cases per million. In the United States (U.S.),
approximately 1.275 million individuals are affected, with
more than 12,000 new cases each year [1–3].
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Despite advances in pre-hospital care, medical and
surgical management, and rehabilitation approaches, many
SCI sufferers still experience substantial neurological
disability. Intensive efforts are underway to develop
effective neuroprotective and neuroregenerative strategies.
Given the debilitating consequences of SCI, and the
significant advances in micro-neurosurgical techniques,
image-guided surgery coupled with major progress in our
understanding of the biology of cell-based therapeutic
strategies for central nervous system (CNS) repair and
regeneration through the large number of pre-clinical
studies, as well as past clinical trials, we argue that the
timing is optimal to commence and extend clinical trial
investigations of cellular transplants for SCI. While it is
acknowledged that much remains to be learned regarding
the biology of transplantable cells, it is only with a balanced
investigative approach, combining preclinical research with
careful controlled clinical trials, that significant advances
can be made in the field [4].

The significant advances that have been made on the
basis of pre-clinical studies carried out in rodent models of
SCI have enabled clinical trials demonstrating the safety of
cell therapy for SCI to proceed, and have informed
researchers of the knowledge gaps that remain to be
addressed. Given that no experimental model, rodent or
otherwise, will completely mimic the human condition, it is
an unrealistic hurdle or criterion for all pre-clinical findings
to be validated in larger animal models, such as pigs and
primates. This would be financially and practically unfea-
sible for most laboratories and would place such a lengthy
and unnecessary delay on the clinical translation of
important developments already made, as to be detrimental
to the field. Indeed, this has been recognized by the U.S.
Food and Drug Administration (FDA) in allowing a clinical
trial of embryonic stem cell-derived cells in SCI to
proceed on the basis of pre-clinical safety demonstrated
exclusively in rodent models (www.clinicaltrial.gov; clinical
trial identifier: NCT01217008).

Moreover, it is important to note that rodent contusion/
compression models of SCI are generally “incomplete”
with partial sparing of motor and sensory functions. These
models closely mimic most patients with severe, partial
lesions with an American Spinal Injury Association
(ASIA) impairment (ASI) scale rating of AIS B or C.
Given that most trials of cell therapy have been carried
out in AIS A patients (the safest to inject, but also the
least likely to show cell therapy-induced benefit), there
is a need for future clinical trials to include patients
actually modeled in the laboratory. In addition, there is
a compelling need for preclinical researchers to develop
valid models of compressive/contusive cervical SCI,
given that approximately 50 to 60% of human SCIs
involve the cervical region [2, 3, 5].

Epidemiology: Incidence and Impact on Sufferers
and Healthcare

The estimated annual global incidence of SCI is 15 to 40
cases per million. In the U.S., approximately 1.275 million
individuals are affected, with more than 12,000 new cases
each year [1, 6, 7]. The most common causes of traumatic
SCI are road traffic accidents, falls, occupational mishaps,
and sports-related injuries, resulting in contusion and
compression of the spinal cord [1]. Approximately 55% of
SCIs occur at the cervical level (C1 to C7-T1) with a
mortality of 10% in the first year following injury and an
expected lifespan of only 10 to 15 years postinjury, and
thoracic (T1 to T11), thoracolumbar (T11-T12 to L1-L2),
and lumbosacral (L2 to S5) injuries each account for
approximately 15% of SCI [1]. Depending on the age of the
patient, the severity, and the level of SCI, the lifetime cost
of healthcare and other injury-related expenses can reach
$25 million [8]. Cell therapy can potentially enhance the
quality of life of those affected by SCI, while reducing their
financial and practical dependence on other individuals and
ultimately on the society as a whole.

Pathophysiology

SCIs involve a primary (the physical injury) and a
secondary injury (the subsequent cascade of molecular
and cellular events that amplify the original injury) [9]. The
primary injury damages both upper and lower motor
neurons and disrupts motor, sensory, and autonomic
(including cardiac output, vascular tone, and respiration)
functions. Pathophysiological processes occurring in the
secondary injury phase, which are rapidly instigated in
response to the primary injury in an attempt to homeostati-
cally control and minimize the damage, are paradoxically,
largely responsible for exacerbating the initial damage and
creating an inhibitory milieu, which prevents endogenous
efforts of repair, regeneration, and remyelination. These
secondary processes include inflammation, ischemia, lipid
peroxidation, production of free radicals, disruption of ion
channels, axonal demyelination, glial scar formation
(astrogliosis), necrosis, and programmed cell death.
Nevertheless, endogenous repair and regenerative mecha-
nisms are used during the secondary phase of injury to
minimize the extent of the lesion (through astrogliosis),
reorganize blood supply through angiogenesis, clear cellular
debris, and reunite and remodel damaged neural circuits, and
as such offer exploitable targets for therapeutic intervention.
The spatial and temporal dynamics of these secondary
mediators (for more detail see Figley et al. [10]) are
fundamental to SCI pathophysiology.

A multitude of characteristics of cells tested both pre-
clinically and clinically make them ideal for SCI repair and
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form the basis of the possible mechanisms by which they
can promote functional recovery, which are anti-
inflammatory, immunomodulatory [11–13], anti-gliotic
[14], pro-oligodendrogliogenic [15, 16], pro-neuronogenic
[17], pro-axonogenic, and secrete various anti-apoptotic
and pro-angiogenic neurotrophic factors. Given the patho-
physiological targets of SCI [10], transplanted cells should:
1) enable regenerating axons to cross any cysts or cavities,
2) functionally replace dead or damaged cells, and/or 3)
create an environment supportive of axonal regeneration
and/or myelination. However, given the multifactorial nature
of SCI and its dynamic pathophysiological consequences, the
success of future clinical trials of cell therapy will likely
depend on the informed co-administration of multiple
strategies, including pharmacological and rehabilitation
therapies [10].

Cell Therapy

Cell therapy is particularly well suited to addressing the
multifactorial nature of the pathophysiology of secondary
SCI, and as such its potential has been a focus in
regenerative medicine for many years. Different sources and
types of cells, including stem/progenitor cells (embryonic
stem cells, neural progenitor cells, bonemarrowmesenchymal
cells) and non-stem cells (olfactory ensheathing cells [OECs]
and Schwann cells) have been, and/or are being tested in
clinical trials for SCI. Others are still in the pre-clinical stages
of testing [18] (Table 1).

The advantages and disadvantages of each cell source
and type being considered or already in clinical trials for
SCI have been extensively described and compared
elsewhere [10, 19–22], and reflect their potential in the
clinic (Table 1). A recent systematic review [23] has
highlighted the paucity of data on the transplantation of
human cells into the most clinically relevant models of SCI
(chronic, cervical) especially in larger-than-rodent animals
and nonhuman primates. However, while the latter would
be useful for optimizing surgical and cell delivery param-
eters and strategies, we argue that is it unreasonable to
require that all pre-clinical data be verified in these models.
The reason for this is that they do not replicate all the
details of the human condition, in addition to being
prohibitively costly and unfeasible for many, if not most,
laboratories that would contribute substantially to the field
through the study of well-established and better characterized
rodent models.

A systematic review of pre-clinical investigations of cell
therapies for SCI has recently been conducted by a
consensus panel convened by the senior author (MGF)
[23–25]. Although we acknowledge the urgent need for
further investigations using cervical models to reflect the T
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predominance of SCIs at this level, a considerable amount
of information can be obtained from an examination of the
published literature, especially in thoracic SCI models,
particularly with regard to safety, even though the variation
in the sources of each cell type, culture conditions, age of
donor, and recipient can make comparisons between studies
difficult. Indeed, so far, most patients being enrolled in the
phase I safety trials (including the Geron trial on GRNOP1
cells [see below]), have been those who suffered thoracic
SCIs with an AIS A rating for locomotor function.

Current Clinical Trials of Cell Therapy for SCI

There are currently more than a dozen recently completed,
ongoing, or recruiting cell therapy clinical trials for SCI
listed on clinicaltrials.gov [26], of which 2 do not involve
stem cells per se (a phase I trial of OECs in thoracic AIS A
subjects [clinical trial identifier: NCT01231893], and a
phase II trial of activated macrophages in cervical and
thoracic SCI [clinical trial identifier: NCT00073853],
subsequently suspended due to financial constraints expe-
rienced by the sponsor). Most trials are phase I or I/II
clinical safety and feasibility studies, indicating that cellular
treatments for SCI developed in the laboratory are still in
the very early stages of clinical translation.

These trials build on the development of micro-
neurosurgical techniques and image-guided approaches
that facilitate the safe targeting of the injured CNS with
cell-based approaches. The safety of such techniques is
borne out by the experience of the Florida group with
fetal cell-based transplantation for SCI associated with
syringomyelia in the 1990s [27], and the more recent
efforts of MacKay-Sim and St. John [22] with OECs in
patients with thoracic SCIs.

The following section discusses the different cell types
and sources used in past and current clinical trials, and
critically evaluates the scientific evidence justifying their
use in the clinic.

Bone Marrow Mesenchymal/Stromal Cells

Bone marrow mesenchymal/stromal cells (BMSCs) are
isolated from the stromal compartment of bone marrow,
which also comprises hematopoietic stem cells by virtue of
their adherence to tissue culture plastic and/or their
expression of distinct cell surface antigenic markers and
nonexpression of hematopoietic stem cells markers. They
have anti-inflammatory and immunomodulatory effects,
mesodermal differentiation potential, and secrete several
neurotrophic factors, making them attractive candidates in
CNS cell rescue and as autologous transplanted cellular
sources of trophic support for endogenous and co-
implanted cells. Contrary to recurring claims of their

neurogenic differentiation potential in vitro or in vivo, there
is no conclusive evidence to support these claims [28].

Most current and recently completed trials involve
autologous BMSC transplantation, given the well-
established safety record of using these cells as part of
bone marrow transplants for leukemia, amyotrophic lateral
sclerosis, and multiple sclerosis (MS) sufferers (see as
follows). Furthermore, most studies of BMSCs have been
carried out in rats (likely due to practical considerations due
to size differences from mice and also due to closer
modeling of the clinical situation), which were found to
have a beneficial effect of BMSC administration after
thoracic SCI, largely as a result of neurotrophic factor
secretion [29, 30] and possibly also anti-inflammatory
cytokine secretion. Intra-spinal (within or adjacent to the
injury site), as well and intrathecal and systemic
(intravenous) delivery have been successful in most
studies [31–33]. Porcine and nonhuman primate studies
have been carried out to further support their clinical use
[34, 35], and as in rodent studies, found that BMSCs
promote a certain degree of axonal regrowth and sprouting, at
least in transection models [36]. This strongly supports their
use in trials of thoracic SCI.

However, the use of BMSCs in SCI does present certain
issues, their migration beyond the injection site (for intra-
spinally delivered cells) is limited, and inter-donor variability
in efficacy and immunomodulatory potency might be
reflected in variable clinical outcome [37], making their
evaluation as therapy for SCI difficult. Studies of BMSCs in
cervical contusion-compression models have yet to be
carried out. BMSCs have, in all but 2 studies by the same
group, been used in subacute and acute models [38–41].
Based on the limited number of pre-clinical studies in
chronic models, it is not yet possible to evaluate their
efficacy in the latter. It is also not known whether BMSCs
provide functional preservation of axons or de novo axonal
regrowth across the lesion site in contusion-compression
models, as these are more difficult to distinguish in these
models, unlike in transection models [42–46].

Ongoing clinical studies and those carried out to date
have enrolled small patient numbers and have used
autologous BM-derived cells rather than purified stromal
cells (understandable from a practical perspective) [47–50].
A recently published dose escalation trial examined
autologous BMSCs in patients with chronic SCI [51].
Although BMSCs were safe, they were not found to be
beneficial in this cohort of patients.

Having clearly established the safety and feasibility of
the clinical use of BM-derived cells specifically for SCI in
these trials, and as suggested by Tetzlaff et al. [23] in 2011
(coauthored by MGF) based on the pre-clinical literature,
we now urge the immediate testing of BMSCs in properly
designed and executed clinical trials using International
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Campaign for Cures of Spinal Cord Injury Paralysis (ICCP)
guidelines in SCI patients carefully selected as the most
likely to benefit (acute and subacute thoracic SCI with a
rating of AISA A or B on the impairment scale).

It is worth mentioning the Canadian Bone Marrow
Transplant (BMT) clinical trials for MS led by Freedman et
al. [51]. These have shown that immunomodulation through
an intravenous infusion of autologous bone marrow-derived
cells can not only reduce, but also halt relapses and halt the
formation of new MS lesions, reduce brain atrophy, and
overall reduce disease burden [52]. The inflammatory
component of SCI and subsequent demyelination of
surviving axons are serious limiting factors in the efficacy
of early cell therapy for SCI, as implanted cells are more
likely to be eliminated by the host. It is therefore worth
considering interventions to modify the inflammatory
milieu to enhance donor cell survival and efficacy, as in
the newly initiated clinical trial of autologous BMSCs in
children suffering from SCI (Table 2) (clinical trial
identifier: NCT01328860). On the other hand, and consid-
ering the 1 case of neoplasms in a recipient of fetal neural
progenitor cells (NPCs) reported by Amariglio et al. [53],
the question of whether this strategy may increase the
oncogenic risk of cell therapy must be considered. It is
noteworthy that no BMT-related tumors have been reported
by the Canadian MS BMT study.

OECs

OECs can be isolated autologously from the nerve fiber layer
of the olfactory bulb, as well as the lamina propria of the
olfactory epithelium. They support the constant regeneration
of olfactory axons from the PNS (the olfactory mucosa) into
the CNS (the olfactory bulb) [54], and, as such, represent
cells potentially capable of creating a microenvironment
permissive for axonogenesis across the inhibitory lesion site
into levels of the spinal cord caudal to the injury site.

OECs have also been used in a few clinical trials [22, 55,
56] and smaller studies that do not necessarily conform to
the strict criteria and protocols of formal clinical trials
[ICCP guidelines]), with some measure of success, at
least from the safety and feasibility perspective [22]. These
trials were initiated on the basis of promising results
reported in transection SCI models [57–61], which have
been variably replicated [62–67]. There are several possible
reasons for this, including known differences between
sources of OECs [68], differences in culture conditions,
and their changing phenotype in prolonged culture [69].
Studies are ongoing to address these differences. Nonethe-
less, beneficial effects have been reported in 2 separate
clinical trials for chronic SCI, admittedly undertaken by the
same group [60, 61]. Of note, these trials were carried out
despite the fact that only 2 studies (by the same group) have

examined human olfactory bulb OECs in SCI [70, 71],
which tested fetal OECs implanted 1 week postinjury in a
rat model of moderate-to-severe thoracic contusion SCI
[70] and hemisection SCI [71]. Six weeks after transplan-
tation, cavitation and gliotic scarring were reduced and
functional recovery was superior in human OEC-treated
rats. Furthermore, OECs alone have not been found to
confer functional benefit in subacute or chronic thoracic
contusion SCI, but can do so when combined with
Schwann cells (SCs) [72–74].

For balance, clinical trials have been carried out on the
basis of a small, but compelling, body of scientific evidence
[75, 76] for functional benefit in SCI, even though the
patients selected for these trials have not always matched
the pre-clinical models used. At least 2 of these trials [60,
61] have reported functional improvement in small patient
cohorts, which may be confirmed by future pre-clinical
studies on human OECs of various anatomical derivations
to support future clinical trials. The safe use of OECs in
clinical trials for other conditions, such as ischemic stroke,
further strengthens the case for their use in SCI (clinical
trial identifier: NCT01327768).

NPCs

NPCs can be generated from embryonic stem (ES) cells
(ESCs), which are derived from the inner cell mass of the
embryo. The latter have indefinite self-renewal capacity and
are pluripotent, with the potential to generate all cell types
of the body, making them a potentially limitless source of
cells for therapy. However, they are not without their
problems (Table 1), including and especially the moral
dilemmas and the practical constraints of their embryonic
derivation, their karyotypic instability with repeated freeze-
thaw cycles [77, 78] and their teratogenicity in the host.

Pre-clinical studies have shown that animals transplanted
with human ESC-derived oligodendrocytic progenitors
(OPCs) show a marked improvement in functional recovery
following SCI [79–84]. After observing such promising
pre-clinical data, extensive pre-clinical studies were con-
ducted to characterize the safety and efficacy of these
human ESCs exclusively in rodent models [85].1 The
Geron trial, which was originally approved by the FDA,
but then halted due to concerns of abnormal cyst formation,
was reinitiated and approved for phase I clinical trials in the
U.S. in October 2010, using human ESC-derived OPCs
implanted within 2 weeks into patients with thoracic SCI,
after the FDA was satisfied with pre-clinical safety data

1 There is a precedent for the approval for a clinical trial being given
on the basis of rodent-only pre-clinical data (i.e., the ProCord Phase I
and II trials of incubated macrophages) [85, 180].
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generated by Geron, but not without considerable objection
and controversy [86–88]. In addition to the data from
Keirstead’s group (which has not been independently
verified), and the unpublished data generated by Geron
for the FDA, the initiation of this clinical trial is further
supported by behavioral and histological data from studies
implanting glial restricted progenitors (GRPs) [89] and
OPCs [90, 91] isolated from embryonic and postnatal
rodents in SCI models, albeit indirectly. Although these
predominantly show astroglial differentiation of GRP
implanted within the blunt contusion-induced thoracic
lesion site, there is a shift toward oligodendrocytic specifica-
tion beyond the injury site correlated with the degree of
functional improvement [92–94], both of which can be
enhanced by transduction of factors, such as D15A, BDNF,
and/or NT-3 [95]. GRP implantation was also shown to be
neuroprotective and inhibited neuropathic pain.

Although more studies are required on the effects of
GRPs and OPCs of various derivations in subacute and
chronic cervical models, the overall picture emerging from
the current literature and reports of undisclosed safety
studies by Geron on ESC-derived OPCs is one that favors
the continuation of this clinical trial primarily on the
grounds of verification of safety, and secondarily on the
grounds of efficacy in humans.

Neural progenitor cells can also be derived from several
regions of the fetal, postnatal, and adult CNS, including the
subventricular zone of the brain, the central canal of the
spinal cord, the hippocampus, and the cortex. They can be
expanded in culture as nonadherent neurospheres, which
have the potential to generate all 3 neural cell types with the
appropriate conditions. The key advantage of this NPC
source is the amenability to in vitro manipulation (including
immortalization; see below) prior to implantation, as
well as the lack of tumorigenicity. However, autologous
derivation of the CNS NPCs would be unfeasible for cell
therapy purposes.

On the basis of promising results in the highly and
clinically relevant primate models [96–98]), the canine
cervical contusion models of SCI, and cell number-
dependent locomotor recovery in acute, subacute, and
chronic thoracic rodent models (stemcellsinc.com) [99–
102], a recently listed clinical trial in Switzerland sponsored
by the biotechnology firm StemCells Inc. is the only one
currently recruiting to treat SCI sufferers with nonimmortal-
ized fetal human CNS stem cells (HuCNS-SC) (clinical trial
identifier: NCT01321333). Despite an origin of the fetal
brain, they are regulated and often referred to as adult NPCs,
because they are nonembryonic (stemcellsinc.com). These
have been previously tested for the fatal infantile demyelin-
ation disorder Pelizaeus-Merzbacher disease (clinical trial
identifier: NCT01005004) and neuronal ceroid lipofuscinosis
(also referred to as Batten disease) (clinical trial identifier:T
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NCT00337636). In the latter, they have recently been
shown to persist without causing harm for as long as
2.5 years after implantation into immunosuppressed patients
(http://www.internationaldrugdiscovery.com/ViewArticle.
aspx?ContentID=2474).

There is a lack of trials of NPCs in SCI, in spite of the
bulk of pre-clinical findings to date in support of the
potential of fetal and adult neural stem/progenitor cells
(particularly the former) in experimental SCI models [23],
which is likely to reflect ethical concerns as to their origins
and practical issues hindering their isolation and directed
differentiation. Another possible explanation for the absence of
clinical trials of NPCs for SCI is that the mechanisms through
which NPCs provide functional benefit (including immuno-
modulation and angiogenesis) are only now beginning to be
understood, dismissing the absolute requirement in all cases
for cellular replacement by highly purified populations of pre-
differentiated NPC-derived neural cells. Also, aims of axonal
regeneration through the injury site have been replaced pre-
clinically by more realistic objectives of remyelination [23]
and provision of trophic support for endogenous precursors
and axons. This makes NPCs much more promising
candidates for cell therapy for SCI and probably heralds their
increased use in clinical trials.

In spite of the gaps in this field remaining to be filled by
further pre-clinical research, there is a compelling amount
and strength of evidence along with extensive safety and
efficacy testing that has been undertaken by the biotech-
nology firms sponsoring such trials (including Geron and
Stem Cells Inc.) to gain FDA approval. These support
clinical trials of fetal, adult, and ESC-derived NPCs for SCI
repair, although the considerable ethical and practical
challenges and concerns imposed by their origins and
derivation should not be ignored.

SCs

SCs myelinate axons of the peripheral nervous system and
can also remyelinate spared CNS axons as occurs after SCI.
They are promising in that they are obtainable autologously
and are not tumorigenic. SCs are the longest studied cell
type in the cell field of transplantation research [103, 104].
It has been shown that transplantation of SCs, but also
OECs and BMSCs promote the invasion of host SCs into
the lesion site after SCI [105, 106], and although this might
be interpreted as endogenous SCs playing a role in repair, it
might paradoxically hinder the endogenous repair process
[107]. The consequences of schwannosis, referring to the
invasion of host SCs into the post-SCI lesion site, need
further study to elucidate the possible undesirable side
effects of SC transplantation.

SC transplants have been studied the most in thoracic
models of contusion-compression and transection SCI.

Although they are demonstrably effective at promoting
sensory axonal sprouting, when transplanted alone they
are not capable of stimulating corticospinal tract
regeneration or of allowing axons that have penetrated
the graft site to grow across and re-enter the CNS
parenchymal microenvironment.

Although neonatal SCs have not been shown to be
effective in cervical crush SCI [108], subarachnoid neonatal
rodent SC transplantation after clip compression-induced
thoracic SCI has demonstrated dramatic functional
improvement after injecting only 50,000 cells into young rats
(100–140 g; 45–60 days old) [109].

Of the studies on adult nerve-derived SCs, only
approximately one quarter have carried out BBB assess-
ment of functional outcome. Of these, only 2 of 5 studies in
subacute and chronic thoracic contusion SCI have reported
improved functional motor outcome (BBB scores) with SC
transplantation alone [73, 74]. The remaining studies,
which were performed by the same group, combined SCs
and either OECs or other molecules [72, 110–113]. In
studies of SCs in transection models of SCI, all the required
controls often have not been included [114], making
interpretation of their results difficult.

A phase I clinical safety and feasibility trial of purified
autologous sural nerve-derived has already been conducted
according to ICCP guidelines2 in 33 stable chronic mid-
thoracic (T6-9) SCI patients with AIS motor scores A to C
[115], despite a lack of studies on adult human SCs without
co-administered therapies in cervical and thoracic contusion
spinal cord lesion models [116–118]. All patients received
intensive rehabilitation pre-surgery and post-surgery. Four
patients aged 22 to 43 were followed up for as long as
1 year post-transplant and so far have been reported. This
trial found autologous adult SC transplantation to be safe
(no pathological findings were reported), although a
beneficial outcome was found (as rated by using the ASIA
motor scale) in only 1 patient with incomplete SCI that
could not be attributed to cell treatment since the donor
cells could not be localized by magnetic resonance imaging.

Similarly, human SCs have been examined pre-clinically
in spinal cord demyelination models [119, 120], and they
have been implanted into MS patients, demonstrating safety
and feasibility, as well as remyelination [121]. These trials
offer partial support for clinical trials of SCs for SCI, from
the safety aspect, as well as from the point of view of
remyelinating the injured spinal cord. However, the
deleterious consequences of contaminating fibroblasts
demonstrated by pre-clinical studies [120] will greatly

2 A series of guidelines has recently been published and the principles
for ethical implementation of clinical trials in patients with SCI have
been established by the ICCP panel [163–166].

Clinical Trials of Cell Therapy for SCI are Justified 711

http://www.internationaldrugdiscovery.com/ViewArticle.aspx?ContentID=2474
http://www.internationaldrugdiscovery.com/ViewArticle.aspx?ContentID=2474


impact future clinical trials of SCs for SCI. It is clear that
more clinically relevant studies are required to examine the
potential of human SCs in SCI, even in conjunction with
other cells and therapies. Nonetheless, preliminary data
from the first trials are encouraging by helping to establish
the safety of SC transplantation for SCI.

Promising Cell Sources Evaluated in Pre-Clinical Studies
but Not Yet in Clinical Trials

In addition to the cell sources and types mentioned so far,
there are other promising cell sources with the potential to
be used in cell therapy clinical trials for SCI. However,
apart possibly from fetal and immortalized NPCs, their
safety and efficacy in clinically relevant experimental SCI
models still remain to be more extensively studied.

Human Adult and Immortalized NPCs

As previously mentioned, NPCs can be derived from the
adult, as well as the fetal CNS. It is generally recognized
that adult-derived progenitor cells tend to fare less well than
their fetal and embryonic counterparts in terms not only of
proliferative and differentiation potentials, but also in
regard to postimplantation survival, migration, and integration
within the recipient CNS.

However, the serious and well-founded ethical and
practical concerns of using material of fetal and embryonic
derivation have limited their study at the clinical level, at
least to date. From our own work and that of other
groups, the predominating oligodendrogenic differentia-
tion potential of adult rodent NPCs has been demon-
strated following intra-spinal [122, 123] or intravenous
[124] implantation into a range of rat and murine models
(i.e., thoracic contusion), compression, and cervical
transection SCI. The efficacy of NPCs can be enhanced
by co-administered chondroitinase treatment [122, 123].
As with some other cell types, however, there have been
indications of increased neuropathic pain, which remain to
be confirmed [125].

The conditional immortalization of cells might provide a
partial solution to limiting the use of fetal and embryonic
tissue, overcoming the limited supply of cells irrespective
of donor age, removing a source of variability between
clinical trials and enabling extensive characterization of cell
lines prior to clinical application. Clinically approved,
conditionally immortalized fetal cortical NPCs (ReN001
or CTX0E03) of human origin are already in a phase I
clinical trial for stroke in Scotland, UK (Pilot Investigation
of Stem Cells in Stroke; clinical trial identifier:
NCT01151124). These cells have been developed by the
biotechnology firm ReNeuron using a karyotypically stable
immortalization platform to enable cells to proliferate in

culture and differentiate when induced without oncogenic
transformation. Although this clinical trial will not include
SCI patients, the results of this trial will be very interesting
and relevant because stroke and SCI share many common
pathophysiological mechanisms.

The large differences in cells (including age of donor,
immortalization strategy, culture conditions) and the models
used make a direct comparison between studies challeng-
ing. For instance, no study has yet compared the efficacy of
adult versus fetal NPCs lines using the same immortaliza-
tion strategy and in the same SCI model; in fact, no study
has yet been published on immortalized adult NPCs in SCI,
an approach which would limit the use of an ethically
objectionable and difficult to procure posthumous source of
cells in limited supply.

There are also no direct comparisons of functional
outcome between adult and fetal NPCs in SCI, and between
different times of implantations following SCI. It has been
shown that implantation of fetal NPCs into the acutely
compressed or contused (and microenvironment of the
highly inflammatory) thoracic spinal cord is unsuccessful
compared to a subacute (7–9 days post-SCI) implantation
time point [126]. This suggests that implanting in the
subacute stages of SCI would be more likely to provide
benefit. On the other hand, immortalized fetal human NPCs
(ReN001; ReNeuron) have been shown to have anti-
inflammatory properties (to the extent that stroke
patients in the Pilot Investigation of Stem Cells in
Stroke trial are not being immunosuppressed following
implantation of these cells). This suggests that NPCs
could potentially be implanted in the acute stages of
SCI. Clearly, more pre-clinical studies are required to
investigate this to determine the likely outcomes of cell
implantation at different times following SCI.

Finally, NPCs are a heterogenous population of cells,
and differences in culture methods and durations are likely
to create and amplify differences in efficacy, depending on
the particular models used, as well as the design specifics of
each study examining them. However, there has been
extensive pre-clinical safety testing (reneuron.com; similar
to Geron and its GRNOPC1 cell line, and Stem Cells Inc.
and its HuCNS-SC adult NPC line) of at least 1 line of
immortalized fetal NPCs carried out by ReNeuron prior to
implantation into stroke patients. This addresses important
questions regarding the safety and tolerability of their
clinical use.

Human Wharton’s Jelly Cells/Umbilical Cord Matrix Cells

Nonembryonic tissues, such as bone marrow, peripheral
and umbilical cord blood, and umbilical cord matrix [127,
128] represent plentiful, ethical, and easily accessible
sources of mesenchymal stem cells (MSCs) for neural
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repair [129]. BMSCs, currently the main source of
autologous stem cells (apart from adipose stem cells,
incubated macrophages, olfactory mucosal cells and OECs,
of which the latter three are not stem cells per se), are
already in several clinical trials as mentioned.

The human umbilical cord consists of an outer layer of
amniotic epithelial cells enclosing a gelatinous matrix
known as Wharton’s jelly cells (WJCs) [130], which
harbors a stem cell population of WJCs [15]. Although
WJCs are similar to MSCs from other sources (umbilical
cord blood, amniotic fluid, bone marrow, and fetal blood),
there are several clinically important advantages to using
WJCs for cell transplantation (for more detail see Vawda et
al. [131, 132]). Most importantly, WJCs are more highly
proliferative and can thus be more rapidly and extensively
propagated than adult BMSCs [129, 133], but unlike the
latter, WJCs can undergo repeated freeze–thaw cycles
without a significant loss of viability, mesodermal differ-
entiation potential, and without accumulating karyotypic
abnormalities [129, 133]. WJCs are readily obtainable
without ethical constraints after normal and Caesarean
births. They are thought to be nonimmunogenic, and may
even have the capacity to suppress the immune response
[134], potentially making them suitable for allogeneic
transplantation [125]. WJCs are highly pathotropic
following transplantation [135]. Of greatest relevance to
SCI, they secrete a wide range of trophic factors known to
promote neural cell survival (including FGF2 and SDF-1a)
[136], which would make them useful for cell rescue and as
support cells. Unlike ES and induced pluripotent stem (iPS)
cells [137], WJCs are nontumorigenic following transplan-
tation [133, 135, 136], and they even exhibit anti-tumor
properties [138, 139].

Two studies so far have examined the use of WJCs in
SCI models, but were poorly conceived and designed.
Nonetheless, they did indicate that WJC administration into
SCI models can potentially promote repair and recovery
through the release of trophic factors [140, 141].

Fetal Human Mesenchymal Progenitor Cells

Fetal human mesenchymal progenitor cells can be isolated
by cardiocentesis from first trimester fetal blood and have
been characterized by Campagnoli et al.’s group [142].
Fetal human mesenchymal progenitor cells are antigen-
ically and morphologically similar to adult BMSCs and
virtually indistinguishable from WJCs, and they have
already been clinically used in Sweden for osteogenesis
imperfecta [143]. Given the source of fetal human
mesenchymal progenitor cells from elective abortions,
there are serious ethical and practical issues constraining
more widespread clinical use, but their potential in SCI
cannot be ignored.

Immunosuppression might not be necessary for success-
ful donor fetal MPC survival and engraftment, not only
without rejection but leading to functional benefit. In 2005,
Le Blanc et al.’s [143] team in Sweden transplanted
allogeneic human leukocyte antigen-mismatched male fetal
liver MSCs into an immunocompetent patient with
osteogenesis imperfecta (a genetic bone defect caused
by dysfunctional collagen) in utero at 32 weeks of
gestation. This study found successful engraftment and
osteogenic differentiation of donor cells, leading to
functional recovery.

Skin-Derived Progenitors

Nearly a decade ago, Miller’s group described a
population of multipotent progenitor cells residing
within the adult dermis (termed skin-derived precursors
[SKPs]) [144–146] with the potential to generate myeli-
nating cells [105, 147–152] and enable axons to grow
across the lesion site (unlike SCs) when injected intra-
spinally after SCI [105]. On the basis of convincing
histological and behavioral data in the latter study, the
potential for autologous transplantation of treated SKPs
for SCI is obvious. It is interesting to note the similarity
between this study and one on BMSCs, which were found
to further promote axonal sprouting when treated pre-
implantation with growth factors [29]. However, more
studies of the effects of SKP injection in direct compar-
ison with SCs into more clinically relevant models of SCI,
including cervical and chronic models, would be required
to characterize the safety parameters of this cell source and
to determine the optimal implantation criteria to maximize
functional benefit post-SCI.

Induced Pluripotent Stem Cells

Recently, the discovery of iPS cells has opened a new
potential therapeutic approach for regenerative neuroscience,
although iPS cells have not yet been used clinically in SCI cell
therapy [153–155].

We recently reviewed the potential of iPS cells in SCI
[154]. Given the novel nature of the technology and the
safety and reliability of recent variations on the induction
technique, these cells are not yet ready for use in clinical
trials. As with ES cells, there are well-founded concerns in
regard to the teratomatous potential of iPS cells in vivo. In
addition, their controlled differentiation remains to be
thoroughly compared to ES cells and conditions optimized
for the subsequent derivation of each neural lineage. Of
note, Tsuji et al. [156] recently derived “safe” mouse iPS
cells and observed trilineage neural differentiation and
functional recovery in a contusion model of SCI without
teratoma formation [156].
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A further concern is the inherent variability of the
differentiation and proliferative potential of different iPS
cell lines, an issue also raised by different ES cell lines and
by the low transduction rates of current transfection
strategies, and the requirement for extensive retrospective
characterization to ensure ES cell-like phenotype. This
needs to be resolved to be able to allow the “individuali-
zation” of iPS technology to derive patient-specific lines for
autologous transplantation.

Even then, the time required to generate and characterize
(and if required genetically manipulate) iPSC lines would
render individualized iPSC-based treatment impractical.
More likely is that a set of well-characterized iPSC lines
will be generated and tested pre-clinically for subsequent
administration into SCI patients. In this situation, the
immunogenicity of iPSCs is a major obstacle that will need
to be addressed [157]. As such, although clinical trials for
these cells may be a possibility in time, the current state of
the field would not warrant them.

Endogenous Progenitors

Stem/progenitor cells have been identified in the central
canal adult of the mammalian spinal cord [158, 159]. They
proliferate extensively following SCI [160] or in response
to the infusion of exogenous growth factors into the fourth
ventricle of the adult brain [161], which can also reduce
inflammation, and generate astrocytes and oligodendrocytes.
Although the potential of stimulating the proliferation and
subsequent differentiation of endogenous NPCs to effect
repair is clear, it needs to be seen alongside the possible risks
that supra-physiological levels of neurotrophic factors within
the cerebrospinal fluid might carry, including epileptogenesis
and oncogenesis.

Recommendations for the Conduct and Evaluation
of Pre-Clinical Studies and Clinical Trials
of Cell Therapies for SCI

The absolute requirement for international peer-reviewed
assessment, regulation, independent monitoring and dupli-
cation, complete transparency, and accurate record keeping
of every step of the process of designing, initiating, and
executing clinical trials cannot be over-emphasized [162].
In this regard, a series of guidelines and criteria has recently
been published, and the principles for ethical implementa-
tion of clinical trials in patients with SCI have been
established by the ICCP panel [163–166]. These include a
sound evidentiary basis and compelling clinical rationale
for conducting a clinical trial, registration with clinicaltrials.
gov, protection of the rights of participants and volunteers
through informed consent, the absence of renumeration

beyond basic expenses for patients and participating
institutions, the absence of charges made to the patients
for experimental treatments, which should not be
misrepresented as established treatments, a prospective,
controlled design, objective independent outcome assess-
ments, adequate follow-up time to monitor neurological and
safety issues, and oversight by an independent authority. This
will minimize the likelihood of adverse effects of
treatment, and if they do occur, the investigators will
be informed as to possible ways to avoid them, overcome
them, or manage them in future.

Amariglio et al. [53] published a report of a young boy
with ataxia telangiectasia who had received a multi-donor-
derived intrathecal injection of fetal human NPCs and
developed a benign multi-focal brain and spinal cord
glioneuronal neoplasm. It has been suggested that the
dysfunctional immune system of ataxia telangiectasia
patients increased the risk of this particular recipient to
develop donor cell-derived neoplasms. There are serious
doubts remaining in regard to the details of this clinical
case, especially relating to the karyotypic status of the
implanted cells after culture and immediately prior to
implantation. This is a genuine concern, which deserves
further investigation, as highlighted by the oncogenic
potential of ES cell-derived neural cells reported by Roy
et al. [167]. However, unfortunately, it is unlikely that this
particular case will yield any useful information for future
studies and trials, given the lack of details on the cells, their
origin, their isolation, and the implantation procedure, and
any co-administered treatments.

Although we advocate a combined strategy of careful
exploration of cell-based therapies in phase I and II trials in
humans, and intensive pre-clinical evaluation of these
approaches in cervical models of SCI, it is important to
emphasize that clinical investigation needs to follow sound
ethical and scientific principles. One of the key principles
involves establishing a sound scientific basis for the
preclinical research [23, 24, 162, 168, 169].

Concluding Remarks

The National Institutes of Health translational roadmap
(http://commonfund.nih.gov/clinicalresearch/overview-
translational.aspx; http://CTSAweb.org/) was drafted to
validate animal models and protocols developed in the
laboratory, and to drive the implementation of pre-clinical
studies and basic research, thus enabling scientists to begin
addressing and overcoming the issues and challenges
emanating from the clinic. In this regard, immediate,
further, and larger clinical trials are justified for cells
already proven safe and even effective through extensive
laboratory testing, and/or through past and ongoing clinical
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trials, such as autologous BMSCs, OECs, olfactory mucosal
cells, NPCs, and ESC-derived OPCs.

Given the paucity of studies carried out in more
clinically relevant models of SCI, such as chronic cervical
SCI [23], current clinical trials are justified primarily on the
basis of pre-clinical studies conducted predominantly in
thoracic models to determine the relative safety and
feasibility of the cellular interventions currently at our
disposal in thoracic SCI, and to iron out neurosurgical
technical and logistical issues, and also to objectively
evaluate functional outcome to determine efficacy using
internationally recognized and established standards.

It is acknowledged that animal models are continuing
to evolve and improve so as to more closely reflect the
clinical situation [6–8, 170–177], and that better and more
accurate standardized analysis techniques (including the
CatWalk system [178]) will enable more objective
assessment of functional outcome. However, we argue
that there is a real and urgent need to press ahead with
human trials on the basis of relevant solid scientific pre-
clinical evidence gathered from well-established models
analyzed using thoroughly validated techniques. The
feasibility of this approach is amply demonstrated by
the ongoing trials of ESC-derived OPCs (GRNOPC1)
by Geron.

Although the case in support of clinical trials of cell
therapies for SCI generates vigorous debate and divergent
views, it is our strong view that the field is now at a stage in
which advancement into phase I and early phase II trials is
justified and essential to move the field forward. Certainly,
an important principle in considering the clinical translation
of a therapeutic strategy is the need for replication of
results. However, this principle may be more complex
when a biotechnology company is driving the translational
process, given the considerations of protecting intellectual
property. Moreover, the need for data from 1 laboratory to
be replicated using identical conditions and cells may be an
unrealistic and unreasonable challenge to meet, given the
pressure on researchers to publish novel rather than
confirmatory data. Therefore, there will always be differ-
ences between studies, even on the same cell type (or types)
or the same model (or models) that might make a direct
comparison of results difficult. On the other hand, it is
precisely those differences that are the most informative
and pave the way ahead toward new developments and
findings preceding clinical trials.

Taking into account the various issues at hand, it is our
view that, while this is by no means a clear-cut situation,
there are nonetheless sufficient pre-clinical and earlier
clinical safety studies of satisfactory quality and reliability
carried out so far to justify the immediate translation into
the clinic of a greater number of pre-clinical findings, such
as the clinical trial of OECs by Mackay-Sim et al.’s [55]

group, and Mackay-Sim and St. John’s [179], the work on
fetal cells by Giovanini et al.’s [27] group and the phase I
Procord trial on macrophages [85].

Finally, no clinical intervention is 100% risk-free. The
decision to forge ahead with clinical trials of cell therapy for
SCI relies on striking a balance between the current and
anticipated burden of SCI and the potential risks of cell therapy.
Setbacks are an expected feature of novel therapies (as in the
case of bone marrow transplantation, development of the polio
vaccine, and initial gene therapy trials), and as difficult as
setbacks can be to contemplate and overcome, they have been
overcome, and they have even provided vital clinical and
scientific information that has enabled subsequent therapies to
be made safe and effective. Without the clinical translation of
the firmly established basic scientific findings, however, we
will be stuck at the preclinical level. Advances in the
application of regenerative neuroscience to SCI can only be
made with an investigative approach that balances excellent
preclinical research with rigorous, ethical clinical trials.
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