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Abstract
Temperature control for a large data center is both important and expensive. On the one hand,
many of the components produce a great deal of heat, and on the other hand, many of the
components require temperatures below a fairly low threshold for reliable operation. A statistical
framework is proposed within which the behavior of a large cooling system can be modeled and
forecast under both steady state and perturbations. This framework is based upon an extension of
multivariate Gaussian autoregressive hidden Markov models (HMMs). The estimated parameters
of the fitted model provide useful summaries of the overall behavior of and relationships within
the cooling system. Predictions under system perturbations are useful for assessing potential
changes and improvements to be made to the system. Many data centers have far more cooling
capacity than necessary under sensible circumstances, thus resulting in energy inefficiencies.
Using this model, predictions for system behavior after a particular component of the cooling
system is shut down or reduced in cooling power can be generated. Steady-state predictions are
also useful for facility monitors. System traces outside control boundaries flag a change in
behavior to examine. The proposed model is fit to data from a group of air conditioners within an
enterprise data center from the IT industry. The fitted model is examined, and a particular unit is
found to be underutilized. Predictions generated for the system under the removal of that unit
appear very reasonable. Steady-state system behavior also is predicted well.
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1. INTRODUCTION
Data centers are facilities that accommodate large computer systems. Many modern data
centers are very large and cost millions of dollars to operate and maintain each year. A
major portion of these costs is associated with temperature control. The operation of a large
computer system produces an enormous amount of heat, and many of its components require
a fairly restricted temperature range to work in a reliable and efficient way.

The cooling of a data center is usually achieved by a system of several air-conditioners
(ACs) distributed through the space. Often each AC has a continuously running fan, and the
flow of coolant through each AC is thermostatically controlled. When the intake temperature
for an AC drops below some threshold, the flow of coolant is shut off, and when the intake
temperature jumps above another threshold, the flow of coolant is turned on. Because
reliable functioning of the computer system is the highest priority, the number of ACs
installed in a data center typically far exceeds the number that would be necessary under
foreseeable circumstances. As a result, many ACs are underutilized and produce much more
heat than they dissipate on average because of their continuously running fan.

By modeling the heat dissipation and production of the system of ACs, an important goal is
achieved. It is possible to generate predictions for system behavior under small
perturbations. For example, suppose that a particular unit is believed to be underutilized.
Then predictions of the system’s behavior can be generated under the removal of that unit
with various redistributions of its heat load. These predictions are under the assumption that
the system dynamics remain constant. Certainly, such predictions constitute extrapolation
and should be used with great care. Changes suggested by the extrapolated model should be
made incrementally and monitored carefully. In addition, it is possible to generate normal
behavior upper and lower prediction curves for future behavior. If the heat dissipation or
production for one or more ACs is outside the prediction boundaries for an extended period
of time, this indicates a change in system behavior to the data center monitor. This could
help identify a broken fan or open door before the reliable functioning of the computer
system is put in jeopardy.

Modeling the heat dissipation and production of the system of ACs is complicated for
several reasons. The observed heat dissipation and production for a particular unit at a
particular point in time depends on that unit’s previous values, as well as on the current and
previous values of nearby units. Moreover, the nature of this dependence on other units and
the past undergoes abrupt changes as the flow of coolant to units is switched on and off.
Consequently, to model the heat dissipation, a regime-switching type of time series model is
more appropriate than the classical multivariate autoregressive model. Hidden Markov
models (HMMs) have proven very useful for modeling time course data (Scott, James, and
Sugar 2005; Yuan and Kendziorski 2006). Because the pattern of abrupt changes or state
transitions is somewhat regular each day, a standard Markov model with a constant
transition matrix is not sufficient to characterize the underlying regime-switching process. In
this study, traditional multivariate Gaussian autoregressive HMMs (Rabiner 1989; Juang and
Rabiner 1991; Krolzig 1997) are extended to allow higher-order autoregression and a
periodic state transition matrix. With these modifications, a model that generates predictions
consistent with heat dissipation and production observations from an actual data center is
obtained.

The remainder of the article is organized as follows. Section 2 proposes a general statistical
model for modeling data center temperature differentials. Section 3 presents estimation and
prediction based on the proposed model. Section 4 illustrates the proposed method with a
real example from the IT industry. Section 5 concludes the article with some discussion.
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2. MODEL
As noted earlier, the behavior of the system of ACs is governed largely by a control system
that stops the flow of coolant to ACs whose intake temperature drops below a threshold.
When the control system changes states, one or more ACs changes from on to off or vice
versa, and an abrupt change in the behavior of the system of ACs occurs. Logically, the
control system has 2d settings or states, where d is the number of ACs, one for each
configuration of which ACs are turned on and which ACs are turned off. However, the
control system uses far fewer than 2d numbers of states. Several of the states correspond to
extremes, such as all but a few of the ACs are turned off or turned on. Moreover, several of
the states involve irrelevant ACs being turned on or important ACs being turned off.
Consider the heat dissipation and production for a system of ACs in a data center shown in
Figure 1. The fan within each AC runs continuously, causing underutilized units to have a
net heating effect as opposed to a cooling effect. Well-utilized units have a net cooling
effect, as indicated by the large temperature differential in Figure 1. Note that several units
in Figure 1 have occasional or perennial negative heat dissipation; for example, the AC in
the first column and ninth row in Figure 1 is consistently not turned on, and the AC in the
second column and first row of Figure 1 is consistently turned on. Several of the abrupt
changes can be seen in Figure 1. For example, the AC in the fourth column and fifth row
undergoes several sudden changes. The sequence of states of the control system through
each day is expected to be somewhat similar to the sequence of states for other days. This
cyclic behavior is evident in the majority of ACs in Figure 1. In addition to dependence on
the time of day, the probability of a transition to a particular state is expected to depend on
the previous state. In particular, it is assumed that the system of ACs has N ≪ 2d distinct
states forming a Markov chain whose transition probabilities depend on time of day in a
periodic manner. Denoting the state at time t by qt and allowing an arbitrary joint
distribution for the initial p states gives

(1)

A local likelihood approach (Tibshirani and Hastie 1987) with a periodic kernel is used to

enforce the restrictions that the state transition matrix, , be periodic and not too
jagged.

It is assumed that the given data is a d-dimensional system of temperature differentials
(difference between intake and out-take air flow temperature) through T evenly spaced time
points. Conditional on the states, it is expected that the system of temperature differentials at
a particular time will be a function of some average value for that state, the past several
systems of temperature differentials, and a random innovation that may depend on the state.
In particular, it is assumed that the system of temperature differentials is the sum of a mean
for that state, linear transformations of the past several systems of temperature differentials
deviations from their means, and a mean-0 random deviation whose shape and spread
depend on the state. Denoting the d-vector of temperature differentials at time t by yt and
allowing an arbitrary joint distribution for the initial p differentials y1, …, yp conditional on
the initial states q1, …, qp, the systems of temperature differentials are modeled as
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(2)

where . Autoregressive regime-switching models similar to the model
described here can be traced back to Hamilton (1989).

3. ESTIMATION AND PREDICTION

For a fixed number of states, N, and order of autoregression, p, the parameters μi, , Σi,

and  are unknown and are estimated via maximum likelihood and maximum local

likelihood in the case of . Letting θ denote the collection of unknown parameters, the
complete-data likelihood is

(3)

where fqt (yt|yt−1, …, yt−p, qt−1, …, qt−p) denotes the density of

(4)

This gives the complete-data log-likelihood

(5)

The portion of the complete-data log-likelihood depending on  is localized by using a
scaled convex combination of log-likelihoods over time to determine the value . In
particular, take a kernel K with support (−1, 1) and let

(6)

where ℤ denotes the integers. Then  has period δ, and each component function has
support (wδ − h, wδ + h) as a function of t. Hereinafter, the localized complete-data log-
likelihood,
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(7)

will be used. It is assumed that the period δ and bandwidth h are fixed a priori.

Because the states are not actually observed, the Baum–Welch/EM algorithm (Baum et al.
1970; Dempster, Laird, and Rubin 1977) is used to maximize the incomplete-data log-
likelihood. Recall that in the EM algorithm, one begins with an initial estimate of the
parameters, and then at each iteration computes the expected complete-data log-likelihood
over the unobserved variables conditional on the observed variables and the parameter
estimates from the previous iteration. This quantity may be called (θ, θ*), where θ* denotes
the parameter estimates from the previous iteration. Then one takes as the parameter
estimate for the current iteration the maximizer of (θ, θ*) with respect to θ. For
computational convenience, a value of θ with (θ, θ*) > (θ*, θ*), corresponding to
generalized EM (Dempster, Laird, and Rubin 1977), is taken.

In this case, the complete-data log-likelihood and method of increasing  (described later)
are sufficiently well behaved, so the sequence of parameter estimates generated by the
generalized EM algorithm will converge to the maximizer of the observed data likelihood
(Wu 1983). Taking the expectation over the states conditional on the observed data and the
previous parameter estimates gives

(8)

where quantities depending on parameter estimates from the previous iteration in the EM
algorithm are designated with an *, Hqt, …, qt−p (t) = p(qt, …, qt−p|y1, …, yT ), and the

notation Σi, …, j is short for . An extension of the forward–backward
algorithm (Rabiner 1989; Juang and Rabiner 1991) may be used to compute H. Details are
given in the Appendix.

At each stage of the generalized EM algorithm,  is increased by using a single pass of a
block-coordinate–type maximization procedure (Bertsekas 1995). Initially, θ is set to θ*, the
parameter estimates from the previous iteration. Then  is maximized as a function of the μ
components of θ, and the μ components of θ are set to this maximizer. Second,  is
maximized as a function of the Σ components of θ, and the Σ components of θ are then set
to this maximizer. Third,  is maximized as a function of the Θ components of θ. The Θ
components of θ are then set to this maximizer. Finally,  is maximized as a function of the
A components of θ, and the A components of θ are then set to this maximizer. Details of the
individual maximizations of the block-coordinate procedure are given in the Appendix.

Once the parameter estimates have converged, one may be interested in estimating the
sequence of states through which the system has passed. In particular, it is of interest to find
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the sequence of states q* that maximizes p(q|y) ∝ p(y, q) with respect to q. This high-
dimensional maximization problem can be solved efficiently using a dynamic programming
approach similar to the Viterbi algorithm (Viterbi 1967). In particular, let

(9)

Then maxq p(y, q) = maxk0, …, kp−1 δk0, …,kp−1 (T). The δ’s may be calculated in a forward
manner as

The highest posterior density state sequence may be calculated in a backward manner as

(10)

Using the fitted model, predictions for future behavior can be generated. Although closed-
form expressions for E(yT+s|y1, …, yT ) and var(yT+s|y1, …, yT ) are obtainable, the
expressions are complicated; a much simpler and more flexible approach is to simulate
several d-dimensional traces forward through time and compute sample statistics of interest.
To generate these simulations, the following procedure may be repeated several times:

1. Generate a single draw from a multinomial distribution with probabilities Hk0, …, kp
(T), where T is the index of the final time point used for model fitting and p is the
order of the autoregression. Let ( ) denote the states corresponding to the
multinomial draw.

2. The Markov chain is simulated from time T + 1 to T + T*. For s = 1, …, T*,

generate a multinomial draw with probabilities ( ), and let 

denote the corresponding state. Generate , and let
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(11)

The foregoing procedure can be used to produce extrapolations on system behavior by
modifying the parameter values in the fitted model. In the interest of operating a more
efficient data center, it is desirable to predict the system’s behavior if particular ACs are shut
down. If a unit is shut down, then its average heat dissipated/produced will be 0. However,
the heat load for the system will be approximately the same as before, so the heat dissipated/
produced by the shut-down unit will be redistributed among the remaining units. In
particular, for each state, the unit’s mean is divided up among the remaining units and then
set to 0. Because it is not known how the heat load will be redistributed, several
redistribution scenarios should be examined. If no reasonable heat load redistribution places
an excessive load on any particular unit, this provides evidence that the unit of interest may
be safely turned off.

In addition, steady-state prediction intervals computed from the simulated traces may be
used as control bounds for a data center monitor. If the actual temperature differences for
one or more ACs are outside the prediction bounds for an extended period, then the monitor
has an indication that the system’s behavior might have changed and should be examined
more closely.

A plot of the simulations and predicted quantities under steady state provides a visual
indication of the quality of the model. If the simulations and predictions look similar to the
data using in fitting, this is evidence that the model is adequate. In contrast, if the
simulations and predictions are markedly different from the data used in fitting, this is
evidence that the model is inadequate. A more rigorous approach would be to perform
parametric simulation. Using the fitted model, multiple replicates of the d-dimensional times
series could be generated and the likelihood of each replicate computed. If the observed
likelihood is not extreme compared with this distribution of simulated likelihoods, this is
evidence that the model is adequate.

4. CASE STUDY
The data used for illustration here consist of intake and output temperatures over time for a
group of d = 6 ACs located near one another, the temperature differentials of which are
shown in Figure 2. The temperatures are not all recorded at the same time points and are not
recorded on a regular grid; however, each temperature is recorded roughly every 2 minutes.
For convenience, the temperatures are forced onto a grid with an intake and output
temperature for each AC recorded every 2 minutes. This is done by taking the most recent
past observation for each AC. The quantity of interest is the amount of power dissipated/
produced by each AC. Because the ACs are all the same model and their fans generate
approximately the same amount of heat, the difference between output and intake
temperature is approximately proportional to the power dissipated/produced. The foregoing
model is fit to T = 3 × 24 × 60/2 = 2160, or 3 days of data at 2-minute intervals from these
six ACs.

For the illustration, the model is fit with eight states, N = 8, and second-order autoregression,
p = 2. The parameters of the model, with the exception of the transition matrix At, are fit
using the aforementioned generalized EM algorithm with a single sweep of a block-
coordinate–type maximization increasing the conditional expected complete-data log-
likelihood at each step. The time-dependent periodic transition matrix At is estimated using
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the periodic local likelihood approach discussed earlier with , a periodic square wave with
period δ = 720, the number of 2-minute intervals in a single day, and width 2h = 75, the
number of 2-minute intervals in  hours. The initial state and observation distributions are
taken to be πkp, …, k1 = N−p and fkp, …, k1 (y1, …, yp) ∝ 1.

To obtain starting values for the parameters, a k-means clustering with k = N = 8 is
performed on the system of temperature differentials. Then a Gaussian autoregressive model
with order p = 2 is fit to each cluster. The starting values for the μ’s, Σ’s, and Θ’s are taken
to be the cluster means, innovation variances, and autoregressive coefficients of each cluster,
respectively. The starting entries of the At’s are taken to be . For these starting parameter
values, the fitting procedure converges quickly.

Once the parameter estimates have converged, the Viterbi algorithm is used to compute the
highest posterior density state sequence. The state sequence is then used to plot the state
means over time, as in the left side of Figure 2. Whereas the different parameters for each
state represent far more than just the average behavior, this plot provides a visual indication
of parameter convergence. Figure 2 shows that the estimated state means over time follow
the actual data quite well.

Interpretation of the parameter estimates is not simple. For the eight-state HMM second-
order Gaussian autoregressive process with a periodic time-varying state transition matrix
fitted to the group of six ACs, there are Nd = 48 mean parameters, Npd2 = 576
autoregressive coefficients, and Nd(d+ 1)/2 = 168 innovation variances and covariances, as
well as approximately N(N − 1)δ/(2h) ≅ 538 free parameters in the transition matrix At. The
estimated means and autoregressive coefficients across states are shown in Figure 3, the
estimated individual innovation variances and innovation correlations across states are
shown in Figure 4, and the estimated transition matrix through time is shown in Figure 5.
The highest posterior density state sequence for the 3 days to which the model was fit is
shown in Figure 6.

To illustrate parameter interpretation, examine the last 20 hours to which the model is fit in
Figure 2. Note that the means of the first, fourth, and sixth units are relatively constant, units
two and five start lower and end higher, and unit three starts higher and ends lower.
Furthermore, unit four has spikes of higher variability toward the end. The estimated state
sequence in Figure 6 shows that the system begins in state 6 and ends jumping between
states 3, 5, and 7. The transition matrix in Figure 5 shows that this midday transition is
feasible. In particular, it appears that from state 6 that the system went to state 2, then to
state 7. When the system is in state 7 at midday, transitions among states 3, 5, and 7 are not
unlikely. Examining the state means in the left panel of Figure 3 shows that units two and
five have lower average heat dissipation, and unit three has higher heat dissipation in state 6
than states 3, 5, and 7. Furthermore, examining the state variances of individual units in the
left panel of Figure 4 shows that the spikes of higher variability in unit four occur when the
system enters state 5. The changes in system behavior due to changes in innovation
correlations (right panel of Figure 4) and autoregressive coefficients (right panel of Figure 3)
are even more difficult to identify, because the changes occur across units and through time.

Now predictions for the future can be generated. Once the simulated traces are obtained,
averages across simulations and extreme upper and lower quantiles may be computed for
each AC in the group and each future point in time. For example, 50 simulations are
generated for the foregoing group of six ACs for the T* = 4 × 720 time points, or 4 days,
following the 3 days used to fit the model. These simulations are shown in gray in Figure 2.
In Figure 2, the upper, middle, and lower black curves over the last 4 days are the 0.975th
quantiles, averages, and 0.025th quantiles over time. Note that the simulated future
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observations in Figure 2 look similar to the observations used for fitting and the future
observations. The prediction boundaries and predicted average heat dissipation/production
track the future data closely. Referring to the first row of Figure 2, a watchful monitor might
want to take a closer look midway through day 5, when the first AC dips well outside the
prediction boundaries for a few hours.

Examining the second AC’s behavior in Figure 2 or its state means in the second row of the
left panel of Figure 3 shows that the second AC is almost always producing, not dissipating,
heat, and it has a negative average contribution to the total heat dissipation by the group in
each state. The group’s behavior if the second AC is shut down can be predicted. If a unit is
shut down, then the average heat that it dissipates/produces will be 0; however, the average
heat load for the group of ACs will be approximately the same as before, so the average heat
dissipated/produced by the shut-down unit will be redistributed among the units within its
group. The actual temperature differential across this unit at any point in time is subject to
random fluctuations and is unlikely to be 0. It is assumed that the relationships among
temperature differentials both across units and through time are unaffected by this
redistribution of average heat load. Because how the heat load will be redistributed is not
known, the space of heat load redistributions is explored by assigning a random proportion
of the shut-down unit’s heat load to each of the remaining units for each state within each
simulation. In particular, these proportions are taken to be independent and identically
distributed Dirichlet(1, …, 1). Figure 7 shows predictions for the group of six ACs under
this heat load redistribution scheme. Note that if unit two were actually shut down, then its
average heat load within each state could be redistributed in some way that is not fully
reflected in the average traces shown in Figure 7. Moreover, shutting down unit two could
possibly cause changes in the remaining parameters. The extrapolations should be used
conservatively. For example, it would seem wise to shut down at most one unit at a time.
The model then could be refit before considering shutting down additional units.

5. DISCUSSION
Here we have proposed a statistical framework that might be used to model and predict the
behavior of a large cooling system. This framework is applicable to other large temperature
control systems, such as those used for enterprise web servers (Li 2005). A multivariate
Gaussian autoregressive HMM with periodic transition probabilities as described earlier is
fit to the system of temperature differentials. This fitted model could be used to generate
predictions for future behavior of the system under both small perturbations and no change.
For example, to explore the system’s behavior if a particular unit is shut down, the average
heat dissipated or produced for that unit can be set to 0 and the unit’s average heat load
redistributed among the other units within the group in several different ways. If the
predictions generated from these perturbed models do not appear to place too heavy of a
heat load on any particular unit, this is evidence that the unit under consideration might be
shut down, thereby increasing the energy efficiency of the data center. In addition, a data
center monitor may use the predictions for no system changes to flag irregular behavior and
intervene before system integrity is compromised.

We now discuss how to account for the uncertainty in estimated parameters when using
predictions generated in the manner described near the end of Section 3. For a fixed number
of states, N, and order of autoregression, p, the inverse of the observed information matrix
can be used to quantify the uncertainty in the parameter estimates, and the simulation
scheme can be modified accordingly. The formula
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(12)

given by Oakes (1999), is valid for all θ. A modified profile likelihood approach also can be
used to obtain standard errors of parameters of interest, ψ. In particular, Woodbury’s result
on inverses of sums (Harville 2008) can be used to show that

(13)

is more conservative than a profile likelihood information estimate. For example, if the

parameter of interest is , then, referring to (A.11), it can be seen that the
modified profile information estimate in (13) is

(14)

where  is as defined in the first paragraph of Section 5. Figure 8 shows the standard
errors of β, the square roots of the diagonal elements of the inverse of (14). Note that all of
the standard errors of the mean estimates are small. Other approaches to quantifying the
parameter uncertainty include Bayesian methods (Fruhwirth-Schnatter 2001; Scott 2002)
and bootstrapping (Carlstein et al. 1998; Ryden 2008). A model selection criterion can be
used to choose the number of states and order of autoregression (Hannan and Rissanen
1982; Celeux and Durand 2008). These and other methods of determining the number of
states and order of autoregression have been discussed briefly by Krolzig (1997).

In the current work, no simplifying structure has been imposed on the autoregressive
coefficients Θ, covariance matrices Σ, or transition matrices At. Several simplified models
were examined, but these generally did not perform as well as the fully flexible model.
Figure 9 presents two examples of predictions based on simplified models. The model in the
left panel was fit under the assumption that the transition matrix At is constant over time t;
the model in the right panel was fit under the assumption that the innovation variances Σk0
and autoregressive coefficients  are constant over states k0. Note that if the transition
matrix is assumed constant in time, then changes in the group’s center and spread are not
captured. Furthermore, if the innovation variances and autoregressive coefficients are
assumed constant across states, the changes in some units’ variability over time are not
captured. In particular, units three and five exhibit complex behavior that is not well
modeled under these simplifications. In some situations, it will be possible to obtain a
reasonable fit with a simpler structure such as diagonal Θ or shared Σ across states. In many
cases, estimators based on these types of simplifying assumptions are obtainable in a manner
similar to that presented in the Appendix. Other assumptions, such as spatial structure on Σ
or scaled and shifted combinations of trigonometric functions for At, for example, also
might work, but at the expense of closed-form estimators.
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APPENDIX

Computation of H
Applying the Markov property and letting y denote the collection of observations y1, …, yT,
Hqt, …, qt−p (t) may be expressed as

(A.1)

where

(A.2)

Noting that Σqt, …, qt−p Hqt, …, qt−p (t) = 1 for t = p + 1, …, T, p(y) also may be expressed in
terms of α and β as

(A.3)

The α’s may be calculated in a forward recursive manner as

(A.4)

for t = p + 1, …, T and

(A.5)

Similarly, the β’s may be calculated in a backwards recursive manner as
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(A.6)

for t = p, …, T − 1, where βqT, …, qT−p+1(T) ≡ 1.

Difficulties arise in the actual computation of the α’s and β’s, because the terms fqt (yt|yt−1,
…, yt−p, qt−1, …, qt−p) are often < 1, causing the α’s and β’s to decrease to 0 at an
exponential rate, rapidly becoming too small for the computer to distinguish from 0. This
problem is easily avoided by applying the following scaling to keep the α’s and β’s within
the computer’s dynamic range while still allowing the computation of the H’s.

Let cp = 1/p(y1, …, yp) and ct = 1/p(yt|yt−1, …, y1) for t = p + 1, …, T. Then,

. Furthermore,

(A.7)

for t = p + 1, …, T, where α̃qt, …, qt−p+1 (t) = p(qt, …, qt−p+1|y1, …, yt). Let 1/cp = p(y1, …,
yp) = Σq1, …, qpfq1, …, qp (y1, …, yp) × πq1, …, qp. Observe that

(A.8)

Therefore,

(A.9)

for t = p + 1, …, T and α̃qp, …, q1 (p) = cpαqp, …, q1(p). Letting

, gives β̃qT, …, qT−p+1 (T) = cT and

(A.10)
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for t = p, …, T − 1. Because replacing α and β with α̃ and β̃ in the expression for H in (A.2)

and (A.3) introduces the term ( ) both the numerator and denominator, these terms
cancel and H is not affected by the scaling.

Individual Maximizations

First consider the μ components of θ. Let  and  for i = 1, …,
N, where  denotes the ith column of an N-dimensional identity, Id denotes a d-dimensional
identity, and A ⊗ B denotes the tensor product {Bai,j}. Then μi = Ziβ. Also, let

 and . Then

(A.11)

Setting this derivative equal to 0 gives

(A.12)

Second, consider the Σ components of θ. The basic problem is that of maximizing

(A.13)

subject to Σ being positive definite. Writing Σ−1 = CC′ and taking the logarithm, the
problem can be expressed in terms of the eigenvalues, λ1, …, λd, of C′AC as

(A.14)

subject to λi > 0 for i = 1, …, d. This problem has solution C′AC = nId or Σ̂ = A/n. Applying
this result gives

(A.15)

Next, consider each of the  components of θ in turn for i = 1, …, N and m = 1, …, p.
Vectorizing  gives
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(A.16)

where  and bj denotes column j of B: m × n. Setting the foregoing
derivative equal to 0 and solving for  gives

(A.17)

Finally, consider the transition matrix At. Let

(A.18)

Then

(A.19)

Setting the foregoing derivative equal to 0 and solving for ηk1 and  gives

(A.20)

In practice, At need not be computed at every time point, because it is assumed to vary
smoothly through time. In the case study presented in Section 4, At is computed only every
1/2 hour.
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Figure 1.
Temperature differentials for 53 ACs in a large data center over 1 week. A color version of
this figure is available in the electronic version of this article.
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Figure 2.
Seven days of temperature differentials for six ACs in a group (in red). The model is fit to
the first 3 days, and 50 simulations (in gray) are generated for the last 4 days. The highest
posterior density state means for first 3 days are in black. Predicted averages and individual,
pointwise 95% prediction intervals for the last 4 days are in black. The online version of this
figure is in color.
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Figure 3.
Left panel State means for each of the six units in the group versus state. Right panel: d × d
× N Θ1, the first-order autoregressive coefficients, and Θ2, the second-order autoregressive
coefficients, in solid and dotted black lines, respectively. Each of the subpanels shows a
particular element of Θ1 and Θ2 across states. A color version of this figure is available in
the electronic version of this article.
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Figure 4.
Left panel Individual innovation variances for each of the six units in the group versus state.
Right panel: d × d × N innovation correlations. Each of the off-diagonal subpanels shows a
particular component of the innovation correlation across states. A color version of this
figure is available in the electronic version of this article.
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Figure 5.
N × N × δ periodic state transition matrix. Each subpanel shows a particular component of
the transition matrix through time, At versus t, over its period, a single day. Panels i, j show
the probability of a transition from state i to state j as it changes through the day.
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Figure 6.
Estimated state versus time for the 3 days to which the model was fit. A color version of this
figure is available in the electronic version of this article.
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Figure 7.
Four days of predicted power dissipation/production for group of six ACs under the
shutdown of the second unit. A total of 50 simulations are in gray. Each simulation is
generated by redistributing the average heat load for unit two to the average heat loads for
the remaining units for each state using independent Dirichlet(1, …, 1) random proportions.
The other parameters are fixed at their fitted values. Predicted average trace and 95%
pointwise individual prediction intervals under the Dirichlet redistribution scheme are in
black. A color version of this figure is available in the electronic version of this article.
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Figure 8.
Standard errors for the mean estimates of each of the six units in the group versus state. A
color version of this figure is available in the electronic version of this article.
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Figure 9.
Two days of predicted power dissipation/production for group of six ACs under simplified
models. The 50 simulations are in gray, and predicted averages and individual, pointwise
95% prediction intervals are in black. Left panel: Transition matrix At assumed constant in
time t. Right panel: Innovation variances Σk0 and autoregressive coefficients  assumed
constant across states k0. The online version of this figure is in color.
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