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Abstract
Mycobacterium tuberculosis (Mtb) and Yersinia pestis (Yp) produce siderophores with scaffolds
of nonribosomal peptide-polyketide origin. Compounds with structural similarities to these
siderophores were synthesized and evaluated as antimicrobials against Mtb and Yp under iron-
limiting conditions mimicking the iron scarcity these pathogens encounter in the host and under
standard iron-rich conditions. Several new antimicrobials were identified, including some with
increased potency in the iron-limiting condition. Our study illustrates the possibility of screening
compound libraries in both iron-rich and iron-limiting conditions to identify antimicrobials that
may selectively target iron scarcity-adapted bacteria and highlights the usefulness of building
combinatorial libraries of compounds having scaffolds with structural similarities to siderophores
to feed into antimicrobial screening programs.
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Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, and Yersinia pestis
(Yp), the etiologic agent of plague, are bacterial pathogens with serious impacts on global
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public health. Multidrug-resistant (MDR) tuberculosis is an emerging pandemic, whereas
the more recent emergence of extensively drug-resistant (XDR) tuberculosis poses a new
global threat.1 Plague is a re-emerging disease for which the documented occurrence of
MDR Yp strains and self-transferable Yp plasmids conferring antibiotic resistance raises
concerns about future Plague control.2 These grim scenarios underscore the need for
expanding the anti-tuberculosis and anti-plague drug armamentarium.

Many bacteria utilize secreted, small (<1,000 Da) Fe3+-chelating compounds (Kd <10−25 M)
called siderophores to scavenge Fe3+ from their microenvironments and transport it into the
cell.3 The Mtb siderophore (mycobactin/carboxymycobactin) and the Yp siderophore
(yersiniabactin) are based on substituted scaffolds of nonribosomal peptide-polyketide origin
(Figure 1).4 Studies in cellular and animal models of infection have established the
relevance of the mycobactin/carboxymycobactin and yersiniabactin siderophore systems in
these pathogens.5 The siderophores are believed to facilitate iron scavenging inside the host,
where free iron is scarce (10−25-10−15 M) and the pathogens experience and must adapt to
iron-limiting conditions.6 These observations suggest that the Mtb and Yp siderophore
systems represent potential in vivo conditionally essential target candidates for the
development of alternative therapeutics against tuberculosis and plague.7

We hypothesize that screening compounds with structural features resembling Mtb and Yp
siderophores for growth inhibitory activity against these pathogens may lead to the
discovery of novel antimicrobial scaffolds. Such novel antimicrobials could illuminate
alternative paths to drug development and/or be useful as small-molecule tools to assist in
the elucidation of new target candidates for drug development. Compounds with structural
features resembling Mtb and Yp siderophores may impair the siderophore systems (e.g., by
inhibiting siderophore biosynthesis or transport) and halt bacterial growth in the host’s iron-
limiting environments. Alternatively, these compounds might gain access to the intracellular
environment using siderophore transport systems and inhibit essential functions unrelated to
iron acquisition. Consistent with these views, we have recently demonstrated potent
antimicrobial activity against Mtb and Yp for novel diaryl-carbothioamide-pyrazoline
derivatives with structural features resembling the hydroxyphenyl-oxazoline/thiazoline-
containing half of Mtb and Yp siderophores.8

In an effort to identify additional novel inhibitors of Mtb and Yp growth, we synthesized
and evaluated the antimicrobial activity of new 3,5-diaryl-substituted pyrazoline (DAP)
derivatives (cmpds 1–22,9a Table 1). In addition, we synthesized and tested the activity of a
group of (2E)-2-benzylidene-N-hydroxyhydrazine carbo(ox/thio/oximid)-amide (BHHC)
derivatives (cmpds 23–32,9b Table 2) with hydroxyphenyl-cap functionalities resembling
that of the siderophores. The compounds were tested for growth inhibitory activity against
Mtb and Yp in iron-limiting media, which mimic the iron-scarcity condition that the
pathogens encounter in the host, and in standard iron-rich media.10a We also assessed
selected compounds for mode of action (bactericidal or bacteriostatic) in iron-limiting media
and for cytotoxicity toward mammalian cells.10b

Testing against Mtb revealed that 17 compounds (1, 2, 5, 8–15, 24, 27–31) had IC50s and
MICs (3–222 μM range, Table 3) within the concentration series tested in the iron-limiting
medium, GASTD. Of these 17 compounds, 15 (1, 2, 5, 9-12, 14, 15, 24, 27–31) also had
determinable IC50s and MICs (2–132 μM range) in the iron-rich medium, GASTD+Fe.
Examination of IC50GASTD+Fe/IC50GASTD and MICGASTD+Fe/MICGASTD ratios revealed
that the inhibitors had no noteworthy increased potency in the iron-limiting medium within
the concentration series tested. This suggests that interference with iron acquisition, or any
other bacterial process differentially required for growth under the iron-limiting condition, is
not a property that significantly contributes to the compounds’ antimicrobial activity against
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Mtb. Interestingly, 14 is 5-fold more potent against Mtb cultured in GASTD+Fe, as judged
by MIC values. This phenomenon might suggest that the mechanism(s) of action of 14
against Mtb might be potentiated by an elevated production of cytotoxic hydroxyl radicals
originated through increased levels of Fenton reaction in the iron-rich medium. Such a
potentiation would be in line with recent findings of Collins and coworkers regarding
antibiotic-induced cell death.16 Alternatively, 14 might inhibit an oxidative stress protection
function(s) more critically needed in the iron-rich medium. Testing for cytotoxicity at the
MIC against Mtb (125 μM) revealed that 14 had no significant cytotoxicity at short cell-
cmpd contact time (4 hr), yet cell viability was reduced by 70% relative to untreated controls
after prolonged contact time (24 hr) (Supplementary Data, Fig. S1).

Among the active DAP derivatives, 10 and 15 were the most potent against Mtb (IC50 = 7–4
μM, MIC = 16 μM, Table 3). Of these two cmpds, only 10 displayed significant cytotoxicity
at the MIC against Mtb (16 μM). Cmpd 10 had a modest impact on cell viability, which was
reduced only by 24% after 24 hr of cell-cmpd contact (Supplementary Data, Fig. S1).
Encouragingly, these and most other inhibitors in the DAP derivatives series examined for
mode of action against Mtb were bactericidal (>99% killing relative to inoculum) at
concentrations of 1-2 × MICGASTD (Table 1). This finding is significant since bactericidal
activity is a desirable property in any early lead compound evaluated for antibacterial drug
development programs. It is worth noting that the only two compounds (11 and 12) defined
as bacteriostatic in Table 1 showed significant bactericidal activity, yet below the 99%
killing criterion set in this study for defining bactericidal mode of action. Among the
compounds of the BHHC derivatives series with defined IC50 and MIC values, 27 and 29
were the most active against Mtb (IC50 = 2–4 μM, MIC = 6–10 μM, Table 3). These two
compounds displayed no significant cytotoxicity in mammalian cells at their respective MIC
values determined against Mtb (Supplementary Data, Fig. S1). Gratifyingly, 27, 29 and
other active cmpds in this series displayed bactericidal mode of action against Mtb at
concentrations of 1.7-4 × MICGASTD (Table 3).

Testing against Yp revealed that 14 cmpds (1, 2, 7–9, 11, 13, 14, 19, 27–29, 31, 32; Table 1)
reached IC50s (0.04–181 μM range, Table 4) within the concentration series tested in the
iron-limiting medium, PMHD. Nine of these compounds (1, 11, 13, 14, 27–29, 31, 32) also
reached MICs (0.2–388 μM range) in PMHD. Only 29 and 30 had determinable activity in
the iron-rich medium, PMHD+Fe (29: IC50 = 156 μM, MIC = 233 μM; 30: IC50 = 305
μM). Interestingly, examination of the IC50PMHD+Fe/IC50PMHD ratios revealed that a number
of inhibitors (7, 11, 13, 14, 19, 27, 29, 31, 32) with increased potency (>3-fold) against Yp
cultured under iron scarcity. Cmpd 32, with >100-fold and >20-fold higher potency in
PMHD based on IC50 and MIC values, respectively, stood out in this group. The higher
potency of these compounds in the iron-limiting medium raises the possibility that
interference with an iron acquisition function, or other function more critically required for
growth under the iron-limiting condition, is a property that significantly contributes to the
compounds’ antimicrobial activity against Yp. One of the possible mechanisms of action of
these compounds could be related to iron-binding properties. An iron-binding ability strong
enough to outcompete the powerful iron chelating capacity of the bacterial siderophore
could lead to sequestration of the traces of iron in the iron-limiting medium, thus reducing
further iron bioavailability and producing a stronger antimicrobial activity under the iron-
scarcity condition. Alternatively, it is possible that these compounds gain intracellular access
using the iron-scarcity-unregulated yersiniabactin’s uptake system,5e therefore reducing IC50
and MIC values in PMHD.

Compounds 13 (IC50PMHD = 4 μM, MICPMHD = 16 μM) and 14 (IC50PMHD = 5 μM,
MICPMHD = 21 μM) were the most potent among the active DAP derivatives with detectable
activity against Yp (Table 4). These two compounds displayed no significant cytotoxicity
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when they were evaluated at their respective MIC values determined against Yp
(Supplementary Data, Fig. S1). Testing of these and two other active DAP derivatives (1,
11) for mode of action against Yp revealed that the four compounds were bacteriostatic at
concentrations of 1-2 × MICPMHD (Table 4). Among the BHHC derivatives with defined
IC50 and MIC values in at least one condition (iron limiting or iron rich), 32 stood out due to
its remarkable potency (IC50PMHD = 0.04 μM, MICPMHD = 0.2 μM) against Yp cultured
under iron scarcity. Encouragingly, 32 displayed no significant cytotoxicity when evaluated
in cytotoxicity assays at the MIC determined against Yp (Supplementary Data, Fig. S1).
Notably, the activity of 32 was significantly higher than that of streptomycin (IC50 and MIC
~1 μM), a bactericidal drug used to treat plague and included herein as an anti-Yp activity
reference. Five compounds (27-29, 31, 32) of the BHHC derivatives series were tested for
mode of action against Yp in PMHD at concentrations of 1-2 × MICPMHD. Under the
conditions tested, 29 displayed bactericidal activity, whereas 27, 28, 31 and 32 were
bacteriostatic.

In sum, 20 of 32 compounds synthesized and evaluated herein have detectable antimicrobial
against Mtb and/or Yp in at least one condition, iron scarcity or iron sufficient. To our
knowledge, these are novel scaffolds not previously shown to have antimicrobial properties.
Most active compounds identified herein have comparable potency in the low and high iron
conditions. This finding suggests that their pharmacological targets are likely to be essential
bacterial functions required under both these conditions. In line with our aforementioned
hypothesis, however, some of our compounds have higher potency under the iron-limiting
condition. Under this condition, bacteria depend on siderophores for efficient iron
scavenging and engage an adaptive response to tailor their physiology to iron scarcity, thus
exposing novel potential in vivo conditional target candidates.7a Some of these
antimicrobials may impair siderophore system functioning as discussed above, a property
that would result in bacteriostatic activity conditional to environmental iron scarcity (e.g., as
seen with 27 and 32 against Yp). Overall, our study illustrates the possibility of screening
compound libraries in both iron-sufficient and iron-limiting conditions to identify
antimicrobials that may selectively target iron scarcity-adapted bacteria and highlights the
usefulness of building combinatorial libraries of compounds having scaffolds with structural
similarities to siderophores to feed antimicrobial screening programs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structures of M. tuberculosis and Y. pestis siderophores.
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Table 1

3.5-Diarvl-substituted pyrazoline (DAP) derivatives (1–22)

Compound R R’ R

1 –H –OH –H

2 –OH –H –H

3 –H –OH

4 –OH –H

5 –H –OH

6 –OH –H

7 –H –OH

8 –OH –H

9 –H –OH

10 –H –CH3

11 –H –OH

12 –OH –H
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Compound R R’ R

13 –H –OH

14 –OH –H

15 –H –OH

16 –OH –H

17 –H –OH

18 –OH –H

19 –H –OH

20 –OH –H

21 –H –OH

22 –OH –H
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Table 2

(2E)-2-Benzylidene-N-hydroxyhydrazine carbo(ox/thio/oximid)-amide (BHHC) derivatives (23–32)

Compound R R1 R2 R3

23 –H –OH –H =O

24 –OH –H –H =O

25 –H –OH –CH3 =O

26 –OH –H –CH3 =O

27 –H –OH –H =S

28 –OH –H –H =S

29 –H –OH –CH3 =S

30 –H –OH –H –NH

31 –OH –H –H –NH

32
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